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ABSTRACT Path loss prediction is essential for network planning in any wireless communication system.
For cellular networks, it is usually achieved through extensive received signal power measurements in the
target area. When the 3D model of an area is available, ray tracing simulations can be utilized; however, an
important drawback of such an approach is the high computational complexity of the simulations. In this
paper, we present a fundamentally different approach for path loss distribution prediction directly from 2D
satellite images based on deep convolutional neural networks. While training process is time consuming and
completed offline, inference can be done in real time. Another advantage of the proposed approach is that
3D model of the area is not needed during inference since the network simply uses an image captured by an
aerial vehicle or satellite as its input. Simulation results show that the path loss distribution can be accurately
predicted for different communication frequencies and transmitter heights.

INDEX TERMS Path loss, deep learning, convolutional neural networks.

I. INTRODUCTION

For wireless communication system operators, estimating the
path loss is necessary for network planning of the target
coverage area. For small number of transmitter locations,
outdoor field measurements can be done to obtain the chan-
nel parameters [1], [2]. Alternatively, with the aid of the
3D model of the area, ray tracing (RT) or ray launching (RL)
simulations can be deployed. The performance of these meth-
ods is satisfactory when it is compared to the field measure-
ments [3], [4]. RT and RL simulations require 3D models,
which can be obtained in different ways, such as depth esti-
mation from stereo image pairs. Nevertheless, 3D model of a
target area may not be readily available, and generating one
in a short time is neither economical nor practical. It should
also be noted that, even when the 3D model is available, high
computational costs of RT/RL simulations prevent real time
applications [5], [6].

Various models have been suggested to estimate path loss
for wireless communication networks. One of these models is
the COST231 Walfisch-Ikegami (COST-WI) model, which is
applicable for urban areas as it contains parameters like street
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orientations, road widths, separation between buildings, and
heights of buildings [7]. Such detailed features of a region
are usually hard to obtain, limiting the use of these models.
Simpler models have also been proposed; for example, the
model in [8] includes only the building density between the
transmitter and receiver. Estimating the building density from
images requires manual annotation or the use of computer
vision based segmentation techniques [9], [10].

Machine learning techniques are increasingly utilized in
wireless communication applications, including path loss
prediction. For example, in [11], the use of artificial neural
network (ANN), support vector machine (SVM), as well
as dimensionality reduction techniques, is investigated to
predict path loss. The features include building heights,
widths and distances from the transmitter along the path
between the transmitter and the receiver. The choice of
feature set is critical; and various other features, such as
transmitter/receiver heights, antenna seperation, transmitting
frequency, mean building height and road width have been
proposed [12]-[18]. Aside from urban areas, it is also possi-
ble to classify the target region from the aerial images into
different classes such as forest or village, and use a suitable
path loss model [19]. Recently in [20], a survey of existing
machine learning methods in literature for path loss predic-
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tion, including decision tree based [21] and support vector
regression based [22] methods, is presented. Moreover, the
use of satellite images as input to a deep neural network is uti-
lized in [23] to predict LTE signal quality metrics, including
RSRP (Reference Signal Received Power), RSRQ (Reference
Signal Received Quality) and SINR (Signal to Interference
and Noise Ratio). In a recent study [24], deep learning model
is applied on real measurements with the aid of satellite
images and input features to predict the RSRP for specific
receiver locations in a limited area/scenario. Instead, in [25],
channel parameters (e.g., path loss exponent and standard
deviation of shadowing) are estimated directly from satellite
images using deep learning without the need of any additional
input features and for different area types and scenarios.

In this paper, we present a deep learning based method
to predict the distribution of path loss in a given region.
This is unlike the existing approaches, which explicitly
use 3D models (e.g., in [11]), 2D segmented images
(e.g.,in [9], [10]), or satellite images aided with additional
features (e.g., in [23], [24]) to predict the path loss at a spe-
cific receiver location. For the first approach, it is necessary
to have 3D models, which may not be available for a target
region. For the second approach, the target region has to be
segmented, which is done either manually (which is time con-
suming) or automatically (which is prone to error); moreover,
the lack of height information (using only segmented images)
limits the performance of segmentation based approaches.
The approach in [24] is similar in spirit to ours that it uses
deep learning and satellite images to predict path loss. How-
ever their application scenario is very limited, since all the
training and test data come from the same university campus.
Our dataset, on the other hand, covers different types of
regions, such as densely populated urban/suburban regions,
with or without high-rise buildings, vegetation, and water.

The proposed approach in this paper uses 2D aerial/satellite
images directly, without any additional features, to estimate
the path loss distribution of the whole area. While most of
the existing work (e.g. [10], [24]) in literature aims to predict
path loss at a single receiver location, our goal is to predict the
distribution of path loss in the entire region. Path loss distribu-
tion depends mostly on the general characteristics of a region
(i.e. urban/suburban region type, and the density of high-rise
buildings, etc.). In this paper we also show that regions with
similar characteristics have similar path loss histograms. Our
deep learning model learns these regional characteristics from
2D cues in the satellite image and successfully predicts the
corresponding path loss histogram.

Another advantage of the proposed approach is that the
features are learned through deep learning, as opposed to
manually crafting features, which takes time and effort, and
is not guaranteed to depict the underlying characteristics
affecting the prediction. Our deep learning based method
uses a convolutional neural network (CNN), which incorpo-
rates multiple convolutional layers [26] for feature learning.
We adapt a well-known CNN architecture, VGG-16 [27], for
the problem of path loss distribution prediction. (The use of
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other deep architectures, such as ResNet [28], is possible but
not investigated in this paper.)

Deep learning based methods have been used before in
several other areas of telecommunications. For example,
in [29] and [30], it is used to identify wireless technologies.
In [31], cooperative spectrum sensing with ANN is devel-
oped. An important research field for new generation wireless
networks is how to allocate resources between different users;
in [32], it is suggested to use ANN for proactive resource allo-
cation. In [33], an unsupervised learning based relay selection
method is introduced for multi-hop networks.

The proposed approach uses 2D satellite images in path
loss distribution prediction. This approach turns out to be
successful because a satellite image includes low-level and
high-level cues/features, such as color, shape, texture, shad-
ows, non-orthogonal views of buildings, to help infer the
3D structure and 2D information (e.g., building and non-
building areas), which are critical in the wireless channel
characteristics. The optimal features are learned by the deep
network through training. There are some recent studies
demonstrating the use of deep networks to extract building
segments [34], [35] and 3D structures [36] from 2D images;
these studies also demonstrate the feasibility of extracting
3D characteristics of a region from 2D images.

In our case, the deep network takes a satellite image
as its input, and produces the path loss distribution of the
entire area at the output. The path loss distribution is quan-
tized as a fixed-bin-size histogram; and the value of each
bin is predicted using supervised regression. The regression
network is based on the VGG-16 architecture, whose pre-
trained weights are used for initialization before training.
In a previous work [25], we also used deep learning for
path loss model parameter prediction. The main difference
between [25] and this work is that, in [25] we predict two
model parameters, i.e. path loss exponent and shadowing
factor. In this work, we predict the overall distribution of path
loss. In [25], path loss exponent and shadowing factor param-
eters are quantized, forming a discrete set of classes; hence,
the network is constructed as a classifier network. In this
work, the path loss distribution is divided into bins to form
a histogram; and the network is constructed as a regression
network.

Our main contributions can be listed as follows:
« We show that deep learning can be used to accurately

predict path loss distribution from 2D satellite images
without the need for a 3D model of the region.

o Through transfer learning (i.e., using a pre-trained exist-
ing network architecture), we achieve good prediction
performance even with a limited dataset.

o We show that a deep network model can be trained
for any specific transmitter height and frequency. We
compare the experimental results for multiple scenarios
(i.e., different transmitter height and frequency combi-
nations).

In Section II, we give an overview of the proposed

approach. In Section III, we explain how the dataset (to be
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used in training and testing the network) is generated. We give
the details of the network in Section IV. We discuss the results
in Section V and conclude the paper in Section VI.

Il. OVERVIEW OF THE PROPOSED APPROACH
For a wireless communication system, the propagation path
loss is defined as the power loss that happens in the channel
between the transmitter and the receiver. Path loss is crucial
in defining the channel characteristics, and for the design and
analysis of wireless communication systems [37].

Path loss can be defined as the ratio between transmitted
and received powers [38], and in logarithmic scale it can be
written as:

PL = Pr, — Pg, 1)

where PL is the path loss (in dB), Pr, is the transmitted
power, and Pg_ is the received power.

According to the log-normal shadowing model [37], the
large-scale path loss can be modeled using the following
formula:

d
PL(d) = PL(do) + 10nlog,, (d—> + X, 2)
0

where PL(d) is the path loss (in dB) at distance d from the
transmitter, PL(dp) is the path loss at a reference distance
do, n is the path loss exponent and X, is a normal random
variable with zero mean and standard deviation of ¢, i.e., the
large-scale shadowing factor which refers to the amount of
shadowing in the environment. This model is widely used
in communication systems, including air-to-ground UAV
communications [39].

The goal of this work is to obtain the path loss charac-
teristics in a region. Instead of the log-normal shadowing
model given in (2), where the excessive path loss X, is
modeled as a random variable, we assume the path loss PL
is a random variable and estimate its distribution directly.
Specifically, we propose a deep learning based method to esti-
mate path loss distribution in an area using 2D aerial/satellite
images of the area. This is illustrated in Fig. 1. The path
loss distribution is modeled as a histogram with fixed bin
locations and widths. The network consists of convolu-
tional layers (to extract the features from the input image)
and a regression layer to predict the value of each bin.
The details of the network architecture will be discussed
in Section IV.

IIl. DATASET GENERATION
Deep neural networks require large amount of data for train-
ing. For our task, it is not feasible to do actual measurements

Path Loss

2D Image —— | — Histogram

Deep Neural Network

FIGURE 1. Path loss distribution prediction. An aerial/satellite image is
input to a deep neural network to obtain an estimate of the path loss
distribution for that region.
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to cover a variety of scenarios. Therefore, we follow the
process of using 3D models and ray tracing simulations to
generate the dataset [25]. (While some parts of the pro-
cess are identical to those of [25], we write all the steps
here for completeness.) In Fig. 2, we present the dataset
generation process. We acquire a set of images with corre-
sponding 3D models. For an image, we use its 3D model
in a ray tracing simulation to calculate the path loss at a
dense grid of receiver locations. The path loss histogram
is calculated for the entire region; and the image-histogram
pair is added to the dataset. This process is repeated for all
regions.

To obtain the 3D models and the corresponding satellite
images, we use the SketchUp software' with the Place-
Maker plugin.> The area of each region is 1.8 x 1.8 km.
We then use Wireless InSite software’ to import each
3D model and do a ray tracing simulation. For the sim-
ulation, we use a flat terrain model and place a grid of
12,100 (110 x 110) receiver points and one transmitter point
at the center of the 3D model. The receiver points are posi-
tioned at 1.5 meters from ground level. The receiver points
that are inside the buildings are then excluded. Hence, only
outdoor receiver locations are considered when computing
the path loss histograms. The transmitting power is set to
60 dBm using an omni-directional antenna. The terrain mate-
rial is set as dry earth while the buildings are set as con-
crete in the simulation environment. The simulations are
repeated for different transmitter heights and frequencies, as
shown in Table 1. The simulation parameters are summarized
in Table 2.

TABLE 1. Transmitter heights and freq ies used to g te the
datasets.
Frequency | Height
3.5GHz 300 m
900 MHz | 300 m
900 MHz 80 m

TABLE 2. Measurement parameters.

Transmission frequencies 900 MHz or 3.5 GHz
Transmit Power +60 dBm

Antenna polarization Vertical

Antenna radiation pattern Omni-directional
Transmitter antenna height | 300 m or 80 m
Receiver antenna height 1.5m

Transmitted signal Sinusoid

Bandwidth 8§ MHz

do 57.28 m

PL(do) 63.44 dB

By quantizing the path loss values of the outdoor
receivers, the path loss distribution is formed as an 8-bin

1 https://www.sketchup.com/
2https :/lwww.suplacemaker.com/

3 https://www.remcom.com/wireless-insite-em-propagation-software
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FIGURE 2. Dataset generation process. For a target area, we have both its satellite/aerial image and 3D model.
The 3D model is first processed with ray tracing simulation to calculate the path loss at each receiver point; the
path loss values are then used to calculate the path loss histogram of that region. The histogram and the
corresponding image are added to the dataset.
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FIGURE 3. Satellite images, their corresponding 3D models, and path loss histograms are shown for two different regions. For the path loss bin
ranges, refer to Table 3.
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FIGURE 4. The VGG-16 architecture [27]. In this figure, “fc” stands for fully connected layer and “conv” stands for convolution layer. The last layer is
changed in our method.

TABLE 3. Path loss (PL) bin values. loss, is split into 8 bins, with intermediate bin widths

PL(dop) = 63.44 dB of 10 dB.

/]; 55 IFD) ﬁ g é(do)ég As a result, we obtain a total of three datasets, for
30 2 PP LE dg; =0 three different height-frequency combinations as indicated
D [ 40 < PL — PL(do) < 50 in Table 1. Each dataset consists of 999 images with their
E | 50 < PL— PL(dp) <60 corresponding path loss histograms. In Fig. 3, we pro-
F | 60< PL— PL{do) < 70 ide two sample images, their corresponding 3D model

G 70 < PL— PL{dg) <80 vide two sample images, their corresponding odels,
H | 80 < PL—PL(do) and the calculated path loss histogram. It should again be

noted the 3D models are used in training or testing the
network; they are only used to generate the histograms

histogram. As shown in Table 3, the residual path loss,
that is, the measured path loss minus the reference path
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through ray tracing simulations. More samples are provided
in Section V.
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TABLE 4. Average and median MSE values between the true and
predicted histograms.

Proposed method Baseline method Variance of
Dataset Average | Median | Average | Median | the dataset
3.5 GHz 0.0027 0.0001 0.0275 0.0260 0.0623
300 m
900MHz 1 3003 | 0.0001 | 0.0224 | 00200 | 0.0618
300 m
900 MHz 0.0016 0.0003 0.0038 0.0023 0.0360
80 m
MSE box plot

0.0014

Q3 + 1L.5*IQR
0.0012
0.0010 3 + 1.5*1QR
0.0008
#' Q3+ 1.5*IQR
= @
0.0006
0.0004 1] @ &
_ ®

Median
=4
4 Median E Q1
ot
Q1 - 15*IQR Q1 - 1.5*IQR-

900 MHz 300 m

IQR

0.0002

Median
L
0.0000] Q1 - 15*IQR

3.5 GHz 300 m

900 MHz 80 m

FIGURE 5. This box plot shows the distribution of the MSE based on the
median, first quartile (Q1): the middle value between the smallest value
and the median of the MSE dataset, third quartile (Q3): the middle value
between the median and the highest value of the MSE dataset,
interquartile range (IQR): 25th to the 75th percentile, maximum:

(Q3 + 1.5*IQR), and minimum: (Q1 — 1.5*IQR).

IV. NETWORK ARCHITECTURE

Instead of training a network from scratch, we take a pre-
trained network (trained for image classification), make
the necessary modifications for our purpose, and fine-tune
it with our training set. This idea of transfer learning is
adopted when the size of the dataset is not large enough.
Specifically, we utilize a well-known architecture, named
VGG-16 [27]. VGG-16 is a network of medium depth, which
has more than 138 million trainable parameters. The net-
work is pre-trained using the 1000-class ILSVRC ImageNet
dataset [40]. The VGG-16 architecture is shown in Fig. 4;
we use the same architecture except for the last layer.
The last layer is replaced with a fully connected layer of
8 outputs, corresponding to the bins of the path loss his-
tograms; and finally, the softmax function is applied to
outputs.

For optimization, the cross-entropy loss function is used.
The network outputs (b;) are mapped to probabilities using
the softmax function and then the cross-entropy loss (Lcg) is
computed:

8
exp(b;)
Lcg = — E h;l ), h = =
CE £ ilog(pi) where p; Zj exp(bj)

3

and h; are the true histogram values. The training process is
explained in detail in the next section.
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FIGURE 6. True vs. predicted path loss for each dataset.

V. RESULTS AND DISCUSSIONS

A. TRAINING PROCESS AND TEST PERFORMANCE

For each of the three datasets (i.e. 3.5 GHz 300 m, 900 MHz
300 m, 900 MHz 80 m) a separate VGG-16 network is trained
and tested to fit the path loss histograms. The image set is
divided into 700 training and 299 test images. The input
image size to the network is 224 x 224 x 3, hence the images
are resized to match the network input size. The batch size is
set to 6 and the learning rate is set to 0.0001.

We evaluate the performance of the trained networks
by calculating the mean square error (MSE) between the
predicted histogram and the true histogram for each test
image. Table 4 provides the average and median MSE
for each test dataset. For 900 MHz 300 m, we get the
lowest average and median MSE among all available
datasets.
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FIGURE 7. Sample histogram predictions and the corresponding regions. The top row includes representative cases with the lowest MSE.
The bottom row includes the worst cases for each dataset. For the path loss bin ranges, refer to Table 3.

As an alternative to the proposed approach, we predict path
loss histograms using the log-normal shadowing model given
in Equation (2). The model parameters (path loss exponent n
and shadowing factor o) are directly calculated from the
Wireless InSite ray-tracing simulations. For each receiver
location, the path loss value is randomly generated using
the model parameters in (2); these values are then used to
obtain the path loss histogram of the region. The results of
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this baseline method are also presented in Table 4. It is seen
that the proposed method outperforms the baseline method
significantly. In the table, we also provide the variance of
the test dataset. The variance is an indicator of error if we
simply predict the distribution as a constant uniform distribu-
tion; the improvement over the variance indicates how well
a predictor works. We see that the baseline method produces
average MSE values which are about one-half to one-tenth
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FIGURE 8. Cluster centroids for the datasets. For the path loss bin ranges, refer to Table 3.

of the dataset variance. The proposed method, on the other
hand, produces average MSE values that are about 1/20th to
1/200th of the variance.

In Fig. 5, we show the box plot for MSE of the predicted
histograms in each dataset. The box plot is a good repre-
sentation of how the error values in the data are spread out.
It is seen that 900 MHz 300 m dataset provides the lowest
MSE. Histogram prediction accuracy drops as the transmitter
height decreases and/or the frequency increases. The results
are intuitive because when the transmitter is higher, we expect
to have one strong line of sight and less shadowing. On the
other hand, at higher frequencies, the free space path loss is
higher and shadowing is more severe. For 900 MHz 80 m, the
transmitter is slightly above or at the building heights in some
cases. This makes the prediction of path loss less reliable due
to multi-path reflections.

In Fig. 6, we can see the true vs. predicted histogram bin
values for each dataset. We notice many outliers in case of
3.5 GHz 300 m dataset and 900 MHz 80 m dataset. The
outliers correspond to cases where there is significant error
in histogram prediction.

In Fig. 7, we provide some samples of true, predicted and
baseline histograms and the corresponding images. In the
top row, the prediction accuracy is very high; we note that
these correspond to suburban regions, where there are no
high-rise buildings. The bottom row shows the worst MSE
cases. The poor performing outliers typically correspond to
densely populated urban regions with high-rise buildings.
Such regions suffer from severe shadowing and multi-path
reflections. If there are not enough number of similar images
in the training set, the performance on such test images is
inevitably poor. While the worst cases of 900 MHz 300 m
and 900 MHz 80 m scenarios are identical, the worst case of
3.5 GHz scenario is different. If we investigate the histogram
of that case, we notice that bin C of the actual histogram
is distributed to bins B and C in the predicted one. This is
resulting from the fundamental issue of using histograms for
distributions; bin locations of a histogram affect the final look
of the histogram, especially when there are border samples.
We should however note that this would not be critical in an
application where we decide on the coverage ratio based on
the cumulative distribution function [37].
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When the outcomes of proposed and baseline approaches
are compared in Fig. 7, we see that baseline approach tends to
produce better results for two out of three outlier cases in the
bottom row. However these images represent the worst cases
for the proposed method (i.e., the worst cases of 900 MHz
300 m and 900 MHz 80 m scenarios). For most of the region
types, proposed method performs better than the baseline, as
can be seen from the histograms of the top row. Also, baseline
approach assume perfect knowledge of path loss exponent
and shadowing factor, which explains its better performance
in some outlier regions.

B. K-MEANS CLUSTERING OF HISTOGRAMS

In order to better understand the dataset, the relation between
the regions and the corresponding path loss histograms, we
perform K-means clustering analysis [41] over each dataset.
This may help to get intuitive deductions about the region
types and communication channel characteristics. K-means
clustering is applied with different K values (i.e., the number
of clusters). In Fig. 8, we include cluster centroids for some
cases. When the transmitter height is 300 m, we notice two
main clusters; increasing the value of K further resulted in
cluster centroids that are very close to the existing ones. When
the transmitter height is 80 m, we have a more variety of
clusters. This is due to the fact that when the transmitter
is at a lower altitude, the characteristics (e.g., heights of
the buildings, density of the buildings) of the region affect
the path loss values more. When the transmitter is at a
high altitude, most receivers have direct line of sight to the
transmitter.

In Fig. 9, we show some sample regions with their corre-
sponding path loss histograms for two clusters for 3.5 Ghz
300 m and 900 Mhz 300 m datasets. For 900 Mhz 80 m,
we show four clusters. Investigating these regions and his-
tograms, we can make some deductions. For instance, in
case of 900 MHz 80 m, the fourth cluster corresponds to
densely populated high-rise area. The first cluster consists
of mixture of high-rise areas and suburban/flat regions. The
second and third clusters correspond to regions in between
these two region types. In case of 3.5 GHz 300 m, the first
cluster corresponds to urban areas with high-rise buildings;
the second cluster corresponds to suburban areas. In case of
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FIGURE 9. Predicted histograms for different clusters using K-means clustering. For the path loss bin ranges, refer to Table 3.
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the 900 MHz 300 m, the clusters are not as sharply distinct;
a strong path loss at bin B is dominant.

C. LIMITATIONS OF THE PROPOSED APPROACH
While the proposed approach is very practical as it only
requires satellite images to predict the path loss distribu-
tion, 2D images may not be sufficient to characterize the
3D structure in some cases. This is more critical for urban
regions, especially when the transmitter altitude is low and
the frequency is high. As a future work, the use of building
height maps in addition to 2D images as inputs to a predictor
network can be investigated.

In order to train a deep network with supervised learning,
a large training set is crucial. In this paper, the dataset is
generated with the aid of the available 3D models using ray
tracing simulations. As a future work, actual field measure-
ment campaigns can be carried out to obtain real-life dataset,
which would include other factors, such as different building
structures, environmental factors, and terrain characteristics,
that may potentially affect the channel characteristics.

VI. CONCLUSION

In this paper, we presented a deep learning based approach
to predict the path loss distribution in a region directly from
the corresponding satellite image. One benefit of using deep
learning is that there is no need for explicitly extracting any
features, as they are learned as part of the training process.
We modified a well-known deep convolutional neural net-
work architecture as a regression network for our model and
reported the performance on several cases of communication
frequencies and transmitter heights. For each case a separate
network has to be trained; we believe that the approach can
be applied to other scenarios as well, including different alti-
tudes and frequencies. The predicted distributions can be used
for different purposes, for example, to determine the coverage
in an area. An extension for this work can incorporate build-
ing height maps; this may result in better performance at the
cost of the requirement to extract height maps.
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