
Received January 28, 2020, accepted March 29, 2020, date of publication April 6, 2020, date of current version April 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985699

A GPU-Based Quantum Annealing Simulator for
Fully-Connected Ising Models Utilizing Spatial
and Temporal Parallelism
HASITHA MUTHUMALA WAIDYASOORIYA AND MASANORI HARIYAMA, (Member, IEEE)
Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan

Corresponding author: Hasitha Muthumala Waidyasooriya (hasitha@tohoku.ac.jp)

This work was supported in part by the MEXT KAKENHI, under Grant 19K11998.

ABSTRACT Simulated quantum annealing (SQA) is a probabilistic approximation method to find a solution
for a combinatorial optimization problem using digital computers. The processing time of SQA increases
exponentially with the number of variables. Therefore, acceleration of SQA is regarded as a very important
topic. However, parallel implementation is difficult due to the serial nature of the quantum Monte Carlo
algorithm used in SQA. In this paper, we propose a method to implement SQA in parallel on a GPU while
preserving the data dependency. According to the experimental results, we have achieved over 97 times
speed-up while maintaining the same accuracy-level compared to a single-core CPU implementation.

INDEX TERMS Simulated quantum annealing, optimization problems, high performance computing, GPU
acceleration.

I. INTRODUCTION
Quantum annealing (QA) [1], [2] is a probabilistic approx-
imation method to find the global optimum of a ‘‘combi-
natorial optimization problem’’ [3]. Solving combinatorial
optimization problems is important in real world applications
such as traffic-flow simulation [4], financial analysis [5],
[6], graph problems [7], [8], etc. A quantum annealer such
as D-wave [9] uses quantum properties to find solutions.
However, the number of bits available in a quantum annealer
is too small to solve many real world problems. As a result,
simulated quantum annealing (SQA) on digital computers is
important.

Quantum annealing can be simulated on a digital com-
puter using quantum Monte Carlo algorithm [10]. However,
the processing time of SQA increases exponentially with the
number of variables. As a result, extremely large processing
time is required to solve real world problems. ASICs (applica-
tion specific integrated circuits) [11], [12] and FPGAs (feild
programmable gate arrays) [13]–[17] are already employed
to accelerate SQA. Using a highly-parallel processor such
as a GPU that has thousands of cores is a promising way
to accelerate SQA. Currently, GPUs are commonly avail-
able and already included in many supercomputers [18],
[19] and computing clusters [20], [21]. However, it is very

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhamamd Aleem .

difficult to accelerate SQA for fully-connected Ising models
due to severe data dependency. Existing GPU accelerators
such as [22] are proposed for sparse Ising models with small
data dependency. GPU accelerators such as [23] completely
ignore the data dependency so that the quality of the solutions
of fully-connected Ising models is low.

This paper proposes a highly-parallel GPU-based SQA
accelerator for fully-connected Ising models. We schedule
mutually independent operations in parallel, while the rest
of the operations serially. Parallelism is achieved within the
computation of a single spin, and also within the compu-
tations among multiple spins belonging to different Trot-
ters. Note that a Trotter is a replica of spins, and using
more Trotters often increases the quality of the solution.
We propose a method to execute spins belonging to multi-
ple Trotters in parallel using ‘‘concurrent kernel execution’’.
According to the evaluation, the proposed accelerator pro-
vides over 97 times speed-up with a similar accuracy-level,
compared to single-core CPU implementation. We also com-
pare the performance, power and power-efficiency against
recent FPGA-based accelerators and discus the advantages
and disadvantages of each method.

II. PREVIOUS WORKS
A. SIMULATED QUANTUM ANNEALING (SQA)
Ising model is a mathematical model of a system consisting
of spins and their interactions. The energy or the Hamiltonian

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 67929

https://orcid.org/0000-0001-5108-9891
https://orcid.org/0000-0001-8342-5757


H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 1. Transverse-field Ising model.

of an Ising model is expressed by Eq.(1).

H (σ ) = −
∑
ij

Ji,jσiσj −
∑
i

hiσi (1)

A spin is denoted by σ , the interaction coefficient between
spin i and j is denoted by Ji,j and the local magnetic field is
denoted by hi. A spin has either the value −1 (spin-down)
or the value +1 (spin-up). Transverse-field Ising model
[1], [24], [25] is used to solve optimization problems. The
transverse-field controls the rate of transition between states
and plays a similar role that the temperature does in simulated
annealing [26]. By decreasing transverse-field from a very
large value to zero, we hopefully drive the system into the
optimal state that has the lowest energy. The m-dimensional
transverse-field Ising model can be mapped to a (m + 1)-
dimensional classical Ising model [27]. It uses multiple repli-
cas called ‘‘Trotters’’ as shown in Fig.1. When there are
interactions between every spin-pair in a Trotter, we call it
a ‘‘fully-connected Ising model’’.

Quantum Monte Carlo simulation [10] is used on digi-
tal computers to simulate quantum annealing. Algorithm 1
shows an extract of the quantum Monte Carlo simulation.
It consists of four loops. The outer-most loop is executed
for multiple iterations, and each iteration is called a ‘‘Monte
Carlo steps’’ (MC step). The transverse-field decreases with
each MC step. Having a lot of MC steps implies that the
transverse filed is decreasing slowly, and it usually produces
better result that are closer to the global optimum. The next
loop in line 2 is executed for all Trotters. The next loop in line
3 is executed for all spins in a Trotter. The computation of a
spin is called ‘‘one spin flip’’. The inner-most loop (in line
5) is executed for all interactions among spins. In each MC
step, we start the computation from Trotter 1 and compute
the local-field energy of each spin sequentially. A spin flips
its value in probabilistic manner considering the energy dif-
ference. After all the spins of a Trotter are computed, the same
process is repeated in the next Trotter.

B. PREVIOUS SQA ACCELERATORS
Many previously proposed accelerators such as [12]–[14],
[22], [23] are suitable only for ‘‘sparse Ising models’’ such
as king-graphs or near-neighbor connections, where most of

Algorithm 1 An Extract of the SQA Algorithm

1 for t ← 1 to MC_steps do
2 for m← 1 to M do
3 for i← 1 to N do

// one spin flip computation
4 local_field[i]← 0

// compute local-field
5 for j← 1 to N do
6 local_field[i]+ = spin(m, j)× J (i, j)
7 end

// compute transverse-field
8 local_field[i] + =

Jtran × (spin(m+ 1, i)− spin(m− 1, i))
9 energy_diff = local_field[i]× . . .

// spin update
10 if exp(−energy_diff /..) > rand_num then
11 spin[i] = ¬spin[i]
12 end
13 end
14 end
15 end

the spins do not have interactions with each other. When
two spins have no interactions, there is no data depen-
dency. Therefore, previous studies employ parallel compu-
tations among such spins. However, we have to use minor
embedding [28] to simulate ‘‘dense Ising models’’ or ‘‘fully-
connected Ising models’’ on those accelerators. Studies in
[4], [29] show that minor embedding reduces the number of
usable spins and allows only small problems to be mapped.

Previous studies such as [15]–[17] employs Trotter-level
temporal parallelism on FPGAs to accelerate SQA. This
method can be used on any Ising model including
fully-connected ones. These studies use shift-registers in
FPGAs to precisely schedule each computation at clock-
cycle-level to preserve the data dependency while employing
parallel computation. However, it is not possible to use the
same implementation method on GPUs, since we cannot
control the timing of the operations at clock-cycle-level.

In contrast to previous GPU accelerators [22], [23] which
are suitable for sparse Ising models, this paper proposes
a GPU accelerator for fully-connected Ising models. The
accelerator uses both temporal and spatial parallelism similar
to [17]. However, the implementation is completely differ-
ent from the shift-register based clock-cycle-level schedul-
ing proposed in [17]. We use a concurrent kernel execution
approach with parallel reduction to accelerate SQA.

III. GPU ACCELERATION OF SQA
A. SPATIAL PARALLEL PROCESSING FOR LOCAL-FIELD
COMPUTATION USING PARALLEL REDUCTION
As shown in Algorithm 1, the computation of the local-field
is a reduction operation. We can use ‘‘parallel reduction’’
on a GPU to decrease the processing time. Fig.2 shows how

67930 VOLUME 8, 2020



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 2. Parallel reduction computation in a GPU.

to perform the reduction operation in parallel using multiple
threads of a thread-block. First, the required data are copied
to the shared memory. Then each thread in the thread-block
access two data values and do the computation. The results
are written back to the shared memory. After all threads have
written the results, a half of the threads access two values
again from the shared memory. In each step, the number of
threads become half. At the final step, the thread 0 writes the
summation to the shared memory.

We can increase the degree of parallelism by using mul-
tiple thread-blocks for reduction operation. When there are
multiple blocks, each block computes a partial sum. Each
block writes the partial sum to the global memory. After all
the partial sums are written, we access those from the global
memory and perform another parallel reduction operation.
Previous works such as [30], [31] explain the implementation
of parallel reduction operation on a GPU.

Algorithm 22 shows how to implement parallel reduction
on local-field computation. The kernel program computes the
local-field of spin(i) using multiple threads. This is called the
‘‘spatial parallelism’’. After the local-field is obtained, the
transverse-field computation and spin update is performed.
The transverse-field computation and update is done using a
single thread, since there is no parallelism. The host program
executes the three outer loops. It executes the kernel program
one_spin_flip for all the spins in all the Trotters for all MC
steps serially.

B. TEMPORAL PARALLEL PROCESSING FOR
MULTIPLE-SPIN-FLIPS USING CONCURRENT KERNEL
EXECUTION
As shown in Algorithm 1, spins of two neighboring Trotters
are required for the computation of one spin flip of a Trotter.
For example, the computation of spin k of Trotter m requires
spin k of Trotterm−1 and spin k of Trotterm+1. The spin k of
Trotter m−1 is already computed, while the spin k of Trotter
m+1 is yet to be computed. As a result, we can compute spin
k+1 of Trotterm−1 and spin k of Trotterm in parallel without
violating the data dependency. Similarly, we can schedule
parallel computations among Trotters as shown in Fig.3. This
is called the ‘‘temporal parallelism’’.

Algorithm 2 Spatial Parallel Processing of the
Local-Field Computation. The Spin and Trotter Numbers
Are i and m Respectively

// Processing on CPU (host)
1 for t ← 1 to MC_steps do
2 for m← 1 to M do
3 for i← 1 to N do
4 one_spin_flip(i,m)
5 end
6 end
7 end

// Processing on GPU
8 __kernel: one_spin_flip(i,m)
9 shared memory spin[. . .]

10 shared memory local_field[. . .]
// copy spin from global to local

11 __barrier__
// compute local-field in parallel

using multiple threads
12 Parallel reduction for j← 1 to N do
13 local_field[i]+ = spin(m, j)× J (i, j)
14 end
15 __barrier__
16 if threadId == 0 then

// compute transverse filed
17 local_field[i] + =

Jtran × (spin(m+ 1, i)− spin(m− 1, i))
18 energy_diff = local_field[i]× · · ·

// one spin flip
19 if exp(−energy_diff /..) > rand_num then
20 spin[i] = ¬spin[i]
21 end
22 end

// copy spin from local to global

FIGURE 3. Parallel processing of spins belonging to three different
Trotters.

We can implement this method on a GPU using ‘‘con-
current kernel execution’’ technique. We use independent
‘‘CUDA streams’’ for the computation of each Trotter as
shown in Fig.4. A stream contains a kernel that is correspond-
ing to the computation of a spin in a Trotter. As shown in
Algorithm 3, the streams are executed by the host according
to the schedule in Fig.3. Then we synchronize all streams
and make sure all kernels are executed. After that, we launch
another set of streams that contain kernels corresponding to
the spins belonging to different Trotters.

VOLUME 8, 2020 67931



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 4. Concurrent execution of kernels using multiple CUDA streams.

Algorithm 3 Temporal Parallel Processing of Spin-Flips
Belonging to Multiple Trotters

// Processing on CPU (host)
1 for t ← 1 to MC_steps do
2 for i← 1 to N do

// Concurrent kernel execution
for all Trotters.

3 . . .
4 stream( one_spin_flip(i+ 1,m− 1) )
5 stream( one_spin_flip(i,m) )
6 stream( one_spin_flip(i− 1,m+ 1) )
7 . . .
8 __barrier__
9 end

10 end

Each stream is launched one after the other, so that the total
launch time increases with the number of streams. Usually,
the kernel launch time tl is negligible compared to the kernel
execution time tk . However, when there are hundreds of
streams, tl can be comparable to tk . Therefore, in order to
executeM streams concurrently, the condition in Eq.(2) must
be satisfied.

(M − 1)× tl < tk (2)

For smaller number of spins, tk can be too small, so that the
condition in Eq.(2) is not satisfied. In order to satisfy this con-
dition, we have to increase tk by doingmore computations in a
kernel. Therefore, instead of computing one spin, we compute
a block of spins serially in each kernel.

Fig.5 shows the concurrent execution of kernels where
each kernel computes multiple spins serially. Blocks of spins
called ‘‘spin-blocks’’ are shown in Fig.5a. A spin-block con-
tains multiple spins that should be computed serially due to
data dependency. However, different spin-blocks belonging
to multiple Trotters can be computed in parallel as shown
in Fig.5b. The size of a spin-block b can be chosen to satisfy
the condition in Eq.(2). If b is too large, most of the spins are
processed serially, and that reduces the degree of Trotter-level
parallelism. For example, if b equals to the number of spinsN ,
all Trotters are executed serially. Therefore, the condition in
Eq.(3) also must be satisfied to compute all M Trotters in

FIGURE 5. Concurrent execution of kernels that compute spin-blocks.

FIGURE 6. Spin-block size vs. processing time. Number of spins is
32,768 and the number of Trotters is 32.

parallel.

b ≤
N
M

(3)

IV. EVALUATION
The evaluation is done using an Nvidia Quadro GV100 GPU.
CPU host code and GPU kernels are compiled using gcc
7.4.0 and CUDA 10.1 respectively on CentOS 7.5 operating
system.

A. EVALUATION OF THE PROCESSING TIME
Fig.6 shows the relationship of the spin-block size and the
processing time. In this example, the number of spins and
Trotters are 32,768 and 32 respectively. According to Eq.(3)
the maximum spin-block size for parallel computation is
1024. If we know the values of tk and tl , we can also
calculate the minimum spin-block size for parallel compu-
tation using Eq.(2). However, it is difficult to measure tk
and tl accurately. Therefore, we change the spin-block size
from 1 to the maximum value and measure the processing
time to find the optimal one. The processing time is mini-
mized when the spin-block size is 64. When the spin-block

67932 VOLUME 8, 2020



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 7. Trotter size vs. processing time.

size decreases, the number of kernels increases. Therefore,
the kernel launch time and the total processing time increase.
When the spin-block size increases, the degree of parallelism
decreases and the processing time increases. As a result,
we can see that the processing time is minimized at a certain
spin-block size. In this paper, we evaluate various spin-block
sizes and chose the one that provides theminimumprocessing
time.

Fig.7 shows the comparison of processing time against
‘‘single-core CPU implementation’’ and ‘‘GPU implemen-
tation that use only spatial parallelism’’. Spatial parallelism
is employed as described in section III-A. CPU codes are
executed on Intel Xeon Silver 4116 CPU using gcc com-
piler version 9.2. The optimization options are -O3 and
-march= native. Figs.7a, 7b, 7c and 7d shows the processing
time per MC step, when the numbers of spins are 4,096,
8,192, 16,384 and 32,768 respectively. We have achieved
up to 97.7 times speed-up compared to single-core CPU
implementation. We have also achieved up to 38.7 times
speed-up compared to the GPU implementations with spatial
parallelism. The processing times of CPU implementations
and GPU implementations with spatial parallelism increase
linearly with the number of Trotters. However, the process-
ing time of the proposed GPU implementation is nearly a
constant for relatively smaller Trotters sizes of less than 64.
The reason for this is the temporal parallel computation of
multiple Trotters. When the number of Trotters is large, there
is not enough resources in the GPU to execute all kernels

FIGURE 8. An example of a max-cut.

concurrently. Therefore, some of the kernels have towait until
the previous ones are completed. As a result, the processing
time increases for larger Trotter sizes.

B. ACCURACY EVALUATION USING MAX-CUT PROBLEM
We use ‘‘max-cut problem’’ [32] benchmarks called
‘Gset’’ [33] to evaluate the accuracy of the proposed accel-
erator. Those benchmarks are online available and many
previous studies such as [34]–[37] use those benchmarks. In
order to solve a max-cut problem using SQA, we have to
map it to the Ising model. That means, we have to formulate
the problem in the form of Eq.(1). The max-cut problem is
defined as finding a subset S from a set of vertices such that
the weighted edges between S and its complementary subset
S ′ are as large as possible. Fig.8 shows an example of the
max-cut which equals to 5. Themax-cut problem of n vertices

VOLUME 8, 2020 67933



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

TABLE 1. Comparison of accuracy.

is given by Eq.(4). The weight of the edge between vertices i
and j is denoted by wij. Since wij/2 is a constant, we can write
the Hamiltonian using Eq.(5), which is the Ising formulation
of the max-cut problem. Using Eq.(5), we can determine the
interaction coefficients among spins.

Maximize : Cut size =
∑

1≤i<j≤n

wij
(1− σiσj)

2

where : σi, σj = {−1, 1} (4)

H (σ ) = −
∑
ij

wij
2
σiσj (5)

Table 1 shows the accuracy comparison of the proposed
accelerator using ‘‘Gset’’ [33] benchmarks. The ‘‘best known
solutions’’ are obtained by investigating several previous
studies such as [34]–[37]. In this evaluation, we use the
same random numbers and the same initial spin values for
both CPU and GPU implementations in each sample. Each
benchmark is simulated for 100 samples, and different initial
data are used for different samples. The number of Trotters
is 16 for all implementations. The results of all benchmarks
obtained after 1000MC steps of the GPU implementation are
similar to those of the single-core CPU implementation. This
shows that there is no accuracy degradation due to parallel
GPU implementation compared to serial CPU implementa-
tion. We have obtained the best known cut for ‘‘G13, G20,
G34’’ and ‘‘G50’’ benchmarks, while over 99% accuracy
for the rest. The average value of the max-cut is more than
97% of the best known solution for all benchmarks. We
obtained better solutions for all benchmarks, compared to
the most recent study of GPU acceleration in [23] that uses
Tesla K40c. Note that the accuracy is compared with [23]

FIGURE 9. Number of MC steps vs. max-cut for G9 benchmark.

under the same conditions of 1000 MC steps while taking
the average max-cut value. We obtained such a high accuracy
by preserving the data dependency of the computation, while
implementing parallel operations.

Fig.9 shows the relationship between the number of MC
steps and the max-cut for ‘‘G9’’ benchmark. The max-cut
gets larger when the number of MC steps are increased. The
best known solution for ‘‘G9’’ is found when the simulation
is executed for 65,536 MC steps. This shows that the solution
is not converged to a local minimum and a better solution can
be found by increasing the number of MC steps.

C. COMPARISON WITH MULTICORE CPU AND FPGA
IMPLEMENTATIONS
In this section, we compare the proposed method against
highly-optimized and recently published SQA accelerator
in [17] and also with multicore CPU implementation that uses

67934 VOLUME 8, 2020



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 10. Comparison of the processing time of GPU, 12-CPU and FPGA implementations. Dashed-lines show the approximated
processing time of FPGA implementation, that is calculated under the assumption of processing multiple Trotter-blocks serially and the
Trotters in a block in parallel.

spatial parallelism. The accelerator [17] uses both spatial and
temporal parallelism. It is implemented on a ‘‘Nallatech 385A
accelerator board’’ [38] that contain Intel Arria 10 FPGA.
In this accelerator, all Trotters are processed in parallel. The
maximum number of Trotters that can be processed in parallel
is less than or equals to 32 due to the FPGA resource con-
straint. Therefore, we can process a small block of Trotters
in parallel, and multiple blocks serially. The multicore CPU
implementation is also described in [17]. It computes the
inner-most loop of algorithm 1 in parallel using parallel
reduction pragma in OpenMP [39]. Multicore CPU imple-
mentations are done on Intel Xeon Silver 4116 CPU using all
12 cores. Compiler version is gcc 9.2, and the optimization
options are −O3, -march = native and -fopenmp.
Fig.10 shows the processing time comparison against

FPGA [17] and multicore CPU accelerators. Note that the
dashed-lines show the approximated processing time of
FPGA accelerators, that is calculated under the assumption
of processing multiple Trotter-blocks serially and the Trotters
in a block in parallel. Both GPU and FPGA accelerators
are faster compared to the multicore CPU accelerators. On
the one hand, the GPU accelerator is slower than the FPGA
accelerator for smaller number of spins, as shown in Figs.10a
and 10b. The reason for this is the synchronization overhead
of multiple streams in GPU that occupies a relatively large

portion of the total processing time. One the other hand,
the GPU accelerator is faster than or equals to the FPGA
accelerator for larger number of spins and Trotters, as shown
in Figs.10c and 10d. When the number of spins and Trot-
ters increases, FPGA accelerators require a large amount of
internal memory resources to store the interaction coefficient
data that are represented in single-precision floating-point.
As a result, the degree of parallelism in FPGA decreases
with the number of spins and the number of Trotters. The
GPU accelerators store only the spin data in the internal
memory those have a value either ‘‘−1’’ or ‘‘+1’’. Therefore,
the required internal memory (shared memory) capacity is
much smaller compared to that of FPGA accelerators. As
a result, GPU accelerators have a relatively large degree of
parallelism for larger number of spins and Trotters compared
to that of the FPGA accelerators. Note that, when the number
of spins increases over 32,768, the internal memory of GPU
is not enough to store all the spin values. Similarly, FPGA
also does not contain enough resources to process more than
32,768 spins.

Fig.11 shows the comparison of the power consumption
of the GPU and FPGA accelerators. The power consumption
of the FPGA is measured using MMD (memory-mapped
device) library API (application programming interface) of
the Nallatech BSP (board support package) 17.1 [38]. It reads

VOLUME 8, 2020 67935



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

FIGURE 11. Comparison of the power consumption of GPU and FPGA implementations.

the current and voltage sensor data of the FPGA board in real
time and provides the power consumption data. The power
consumption of GPU is measured using NVML (NVIDIA
management library) API [40] that also reads the sensor data
of the GPU board and provides the power consumption data.
Since the power consumption changes in each measurement,
we plot all power consumption data and use the peak value.
The power consumption varies from 60W to 150W, and from
30W to 50W, in GPU and FPGA respectively. For the same
number of spins and Trotters, the power consumption of the
GPU is 1.6 to 3.9 times larger compared to that of the FPGA.

We can see that the power consumption increases initially
with the number of Trotters in Fig.11. This is due to the
increase in parallel operations. However, we can also see
that the power consumption is reduced after 128 Trotters
in Figs.11a and 11b. We assume the following reason for
this reduction. As shown in Fig.2, the total processing time
composed of the kernel execution time in GPU and also the
stream launch and synchronization times in CPU. When the
number of spins are smaller, the kernel execution time in
GPU is also smaller. In order to execute multiple steams
concurrently, the condition in Eq.(2) must be satisfied. The
possibility of satisfying this condition decreases with the
number of streams. Therefore, when the host launches new
CUDA streams, the execution of the previous streams is
already completed. As a result, the degree of parallelism is
reduced for larger number of Trotters, while decreasing the

power consumption. In contrast, the power consumption is
the same or increases with the number of Trotters for large
number of spins, as shown in Figs.11c and 11d. When the
number of spins is large, kernel execution time is sufficiently
large for concurrent kernel execution. Therefore the degree of
parallelism and the power consumption increase.

Fig.12 shows the comparison of the power-efficiency of the
GPU and FPGA accelerators. Power-efficiency is calculated
by Eq.6.

power-efficiency =
speed-up

power consumption
(6)

The speed-up is calculated compared to the single-core
CPU implementation. According to the results, the power-
efficiency of the GPU is smaller than that of FPGA.
The power-efficiency is peaked near 64 Trotters and then
decreases or stays the same. When the number of Trot-
ters increases, both power consumption and performance
decrease for smaller number of spins, and power consumption
increases for larger number of spins. In either case, the power-
efficiency decreases.

In Table 2, we summarize the advantages and disadvan-
tages of the proposed GPU accelerator compared to previous
studies using FPGAs. Both the proposedGPU accelerator and
the previous FPGA accelerator [17] handle quantum anneal-
ing simulations up to 32,768 spins, with similar accuracy-
level. Both accelerators provide a large speed-up compared to

67936 VOLUME 8, 2020



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

TABLE 2. Comparison of advantages and disadvantages of GPU and FPGA accelerators.

FIGURE 12. Comparison of the power-efficiency of GPU and FPGA implementations.

single-core CPU implementation. FPGA accelerator in [17] is
more power-efficient and consumes less power compared to
the proposed one. In addition, for smaller Ising models with
less than ten thousand spins, FPGA implementation is faster.
However, for bigger Ising models with over ten thousand
spins and 64 Trotters, the performance of the proposed GPU
accelerator is similar or even better compared to that of the
FPGA accelerator. In addition, GPUs are commonly available
for many different price-points and easily affordable com-
pared to FPGAs. Many supercomputers are already equipped
with GPUs, including ‘‘Summit’’ [18] and ‘‘Siera’’ [19],
the world’s number 1 and 2 from top 500 supercomputers list

of 2019 [41]. There are other high-performance GPU clus-
ters such as [20], [21]. Most users are already familiar with
different GPU programming methods such as CUDA [42],
OpenCL [43], OpenACC [44], OpenHMPP [45] etc. The
compilation time of a GPU program is less than a minute
while FPGA takes several hours. Therefore, the design time
of GPU accelerators is smaller compared to that of FPGAs.
For those reasons, it is extremely important to consider GPU
acceleration of SQA. Depending on the application, design
goal, project schedule, availability of hardware and software
resources, cost and design knowledge, we can chose between
FPGA and GPU accelerations.

VOLUME 8, 2020 67937



H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

V. CONCLUSION
We have proposed a highly-parallel GPU accelerator for
SQA, exploiting temporal and spatial parallelism of the
quantum Monte Carlo simulation. Parallel operations are
implemented on a GPU using concurrent kernel execution
and parallel reduction. The processing speed of the proposed
implementation is more than 97.7 times larger compared
to the single-core CPU implementation. The experimental
results using max-cut benchmarks show that the accuracy of
the proposed accelerator is similar to that of a single-core
CPU implementation. We have found the best known solu-
tion for four benchmarks, while the accuracy of the rest is
over 99%. We expect to find even better solutions by simu-
lating for a long period of time.

The proposed accelerator provides the same or better per-
formance compared to FPGA acceleration, when using bigger
Ising models with over ten thousand spins and 64 Trotters.
However, proposed accelerator is less power-efficient while
consuming from 1.6 to 3.9 times of power compared to
FPGA. Therefore, various factors such as design goal, project
schedule, design knowledge, budget should be considered to
choose between FPGA and GPU accelerations.

REFERENCES
[1] T. Kadowaki andH.Nishimori, ‘‘Quantum annealing in the transverse ising

model,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 58, no. 5, pp. 5355–5363, Nov. 1998.

[2] T. Kadowaki, ‘‘Study of optimization problems by quantum annealing,’’
Ph.D. dissertation, Dept. Phys., Tokyo Inst. Technol., Tokyo, Japan, 1998.

[3] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003, vol. 24.

[4] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and
B. Parney, ‘‘Traffic flow optimization using a quantum annealer,’’ Fron-
tiers ICT, vol. 4, p. 29, Dec. 2017.

[5] R. Orús, S. Mugel, and E. Lizaso, ‘‘Quantum computing for finance:
Overview and prospects,’’ Rev. Phys., vol. 4, Nov. 2019, Art. no. 100028.

[6] N. Elsokkary, F. S. Khan, D. La Torre, T. S. Humble, and J. Gottlieb,
‘‘Financial portfolio management using D-wave quantum optimizer:
The case of Abu Dhabi securities exchange,’’ Oak Ridge Nat. Lab.,
Oak Ridge, TN, USA, Tech. Rep., 2017.

[7] O. Titiloye and A. Crispin, ‘‘Quantum annealing of the graph coloring
problem,’’ Discrete Optim., vol. 8, no. 2, pp. 376–384, 2011.

[8] H. Ushijima-Mwesigwa, C. F. A. Negre, and S. M. Mniszewski, ‘‘Graph
partitioning using quantum annealing on the D-Wave system,’’ in Proc.
2nd Int. Workshop Post Moores Era Supercomput. (PMES). New York, NY,
USA: ACM, 2017, pp. 22–29.

[9] (2019). D-Wave. [Online]. Available: https://www.dwavesys.com
[10] M. Suzuki, S. Miyashita, and A. Kuroda, ‘‘Monte Carlo simulation

of quantum spin systems. I,’’ Prog. Theor. Phys., vol. 58, no. 5,
pp. 1377–1387, 1977.

[11] A.-H. Abdel-Aty, A. N. Khedr, Y. B. Saddeek, and A. A. Youssef, ‘‘Ther-
mal entanglement in quantum annealing processor,’’ Int. J. Quantum Inf.,
vol. 16, no. 01, Feb. 2018, Art. no. 1850006.

[12] M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and
H. Mizuno, ‘‘A 20k-spin ising chip to solve combinatorial optimization
problems with CMOS annealing,’’ IEEE J. Solid-State Circuits, vol. 51,
no. 1, pp. 303–309, Jan. 2016.

[13] T. Okuyama, M. Hayashi, and M. Yamaoka, ‘‘An ising computer based on
simulated quantum annealing by path integral Monte Carlo method,’’ in
Proc. IEEE Int. Conf. Rebooting Comput. (ICRC), Nov. 2017, pp. 1–6.

[14] H. M. Waidyasooriya, Y. Araki, and M. Hariyama, ‘‘Accelerator archi-
tecture for simulated quantum annealing based on Resource-Utilization-
Aware scheduling and its implementation using OpenCL,’’ in Proc.
Int. Symp. Intell. Signal Process. Commun. Syst. (ISPACS), Nov. 2018,
pp. 336–340.

[15] H. M. Waidyasooriya, M. Hariyama, M. J. Miyama, and M. Ohzeki,
‘‘OpenCL-based design of an FPGA accelerator for quantum annealing
simulation,’’ J. Supercomput., vol. 75, no. 8, pp. 5019–5039, Aug. 2019.

[16] C.-Y. Liu, H. M. Waidyasooriya, and M. Hariyama, ‘‘Data-transfer-
bottleneck-less architecture for FPGA-based quantum annealing simula-
tion,’’ in Proc. 7th Int. Symp. Comput. Netw. (CANDAR), Nov. 2019,
pp. 164–170.

[17] H. Waidyasooriya and M. Hariyama, ‘‘Highly-parallel FPGA accelerator
for simulated quantum annealing,’’ IEEE Trans. Emerg. Topics Comput.,
early access, Dec. 2, 2019, doi: 10.1109/tetc.2019.2957177.

[18] (2020). SUMMIT, Oak Ridge National Laboratory’s 200 Petaflop
Supercomputer. [Online]. Available: https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/

[19] (2020). Sierra. [Online]. Available: https://hpc.llnl.gov/hardware/
platforms/sierra

[20] (2020). NVIDIA DGX-1. [Online]. Available: https://www.nvidia.com/en-
us/data-center/dgx-1/

[21] (2020). NVIDIA DGX-2. [Online]. Available: https://www.nvidia.com/en-
us/data-center/dgx-2/

[22] M. Weigel, ‘‘Performance potential for simulating spin models on GPU,’’
J. Comput. Phys., vol. 231, no. 8, pp. 3064–3082, Apr. 2012.

[23] C. Cook, H. Zhao, T. Sato, M. Hiromoto, and S. X.-D. Tan, ‘‘GPU
based parallel ising computing for combinatorial optimization problems
in VLSI physical design,’’ 2018, arXiv:1807.10750. [Online]. Available:
http://arxiv.org/abs/1807.10750

[24] R. B. Stinchcombe, ‘‘Ising model in a transverse field. I. Basic theory,’’
J. Phys. C, Solid State Phys., vol. 6, no. 15, pp. 2459–2483, Aug. 1973.

[25] P. Pfeuty and R. J. Elliott, ‘‘The Ising model with a transverse field.
II. Ground state properties,’’ J. Phys. C, Solid State Phys., vol. 4, no. 15,
pp. 2370–2385, Oct. 1971.

[26] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[27] M. Suzuki, ‘‘Relationship between d-dimensional quantal spin systems
and (d+1)-dimensional Ising systems: Equivalence, critical exponents and
systematic approximants of the partition function and spin correlations,’’
Prog. Theor. Phys., vol. 56, no. 5, pp. 1454–1469, Nov. 1976.

[28] A. Zaribafiyan, D. J. J. Marchand, and S. S. Changiz Rezaei, ‘‘System-
atic and deterministic graph minor embedding for Cartesian products of
graphs,’’ Quantum Inf. Process., vol. 16, no. 5, p. 136, May 2017.

[29] M. Booth, S. P. Reinhardt, and A. Roy, ‘‘Partitioning optimization prob-
lems for hybrid classical/quantum execution,’’ D-Wave, Burnaby, BC,
Canada, Tech. Rep. 14-1006A-A, 2017, pp. 01–09.

[30] J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C Pro-
gramming. Hoboken, NJ, USA: Wiley, 2014.

[31] Optimizing Parallel Reduction in CUDA. Accessed: 2020. [Online].
Available: https://developer.download.nvidia.com/assets/cuda/files/
reduction.pdf

[32] E. Boros and P. L. Hammer, ‘‘The max-cut problem and quadratic 0–1
optimization; polyhedral aspects, relaxations and bounds,’’ Ann. Oper.
Res., vol. 33, no. 3, pp. 151–180, Mar. 1991.

[33] 2019. Gset. [Online]. Available: https://web.stanford.edu/~yyye/yyye/
Gset/

[34] Q. Wu and J.-K. Hao, ‘‘A memetic approach for the max-cut problem,’’
in Proc. Int. Conf. Parallel Problem Solving Nature. Berlin, Germany:
Springer, 2012, pp. 297–306.

[35] Y. Wang, Z. Lü, F. Glover, and J.-K. Hao, ‘‘Probabilistic GRASP-tabu
search algorithms for the UBQP problem,’’ Comput. Oper. Res., vol. 40,
no. 12, pp. 3100–3107, Dec. 2013.

[36] G. A. Kochenberger, J.-K. Hao, Z. Lü, H. Wang, and F. Glover, ‘‘Solving
large scale max cut problems via tabu search,’’ J. Heuristics, vol. 19, no. 4,
pp. 565–571, Aug. 2013.

[37] U. Benlic and J.-K. Hao, ‘‘Breakout local search for the max-cutproblem,’’
Eng. Appl. Artif. Intell., vol. 26, no. 3, pp. 1162–1173, Mar. 2013.

[38] (2018). Nallatech 385A Accelerator Card. [Online]. Available: http://
www.nallatech.com/store/fpga-accelerated-computing/pcie-accelerator-
cards/nallatech-385a-arria10-1150-fpga/

[39] (2020). OpenMP. [Online]. Available: https://www.openmp.org
[40] (2020). NVML API Reference Guide. [Online]. Available:

https://docs.nvidia.com/deploy/nvml-api/index.html
[41] (2020). Top500. [Online]. Available: https://www.top500.org/lists/

2019/11/
[42] (2020). CUDA Toolkit. [Online]. Available: https://developer.nvidia.

com/cuda-toolkit

67938 VOLUME 8, 2020

https://doi.org/10.1109/tetc.2019.2957177


H. M. Waidyasooriya, M. Hariyama: GPU-Based QA Simulator for Fully-Connected Ising Models Utilizing Spatial and Temporal Parallelism

[43] (2020). OpenCL Overview. [Online]. Available: https://www.khronos.
org/opencl/

[44] (2020). OpenACC. [Online]. Available: https://www.openacc.org
[45] J. M. Andión, M. Arenaz, F. Bodin, G. Rodríguez, and J. Touriño,

‘‘Locality-aware automatic parallelization for GPGPU with OpenHMPP
directives,’’ Int. J. Parallel Program., vol. 44, no. 3, pp. 620–643,
Jun. 2016.

HASITHA MUTHUMALA WAIDYASOORIYA
received the B.E. degree in information
engineering, the M.S. degree in information
sciences, and the Ph.D. degree in information
sciences from Tohoku University, Japan, in 2006,
2008, and 2010, respectively. He is currently an
Associate Professor with the Graduate School
of Information Sciences, Tohoku University. His
research interests include reconfigurable com-
puting, high-performance computing, processor

architectures, and high-level design methodology for VLSIs.

MASANORI HARIYAMA (Member, IEEE)
received the B.E. degree in electronic engineering,
the M.S. degree in information sciences, and the
Ph.D. degree in information sciences from Tohoku
University, Sendai, Japan, in 1992, 1994, and
1997, respectively. He is currently a Professor
with the Graduate School of Information Sciences,
Tohoku University. His research interests include
real-world applications, such as robotics andmedi-
cal applications, big data applications, such as bio-

informatics, high-performance computing, VLSI computing for real-world
application, high-level design methodology for VLSIs, and reconfigurable
computing.

VOLUME 8, 2020 67939


	INTRODUCTION
	PREVIOUS WORKS
	SIMULATED QUANTUM ANNEALING (SQA)
	PREVIOUS SQA ACCELERATORS

	GPU ACCELERATION OF SQA
	SPATIAL PARALLEL PROCESSING FOR LOCAL-FIELD COMPUTATION USING PARALLEL REDUCTION
	TEMPORAL PARALLEL PROCESSING FOR MULTIPLE-SPIN-FLIPS USING CONCURRENT KERNEL EXECUTION

	EVALUATION
	EVALUATION OF THE PROCESSING TIME
	ACCURACY EVALUATION USING MAX-CUT PROBLEM
	COMPARISON WITH MULTICORE CPU AND FPGA IMPLEMENTATIONS

	CONCLUSION
	REFERENCES
	Biographies
	HASITHA MUTHUMALA WAIDYASOORIYA
	MASANORI HARIYAMA


