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ABSTRACT Modern image and video compression standards employ computationally intensive algorithms
that provide advanced features to the coding system. Current standards often need to be implemented in hard-
ware or using expensive solutions to meet the real-time requirements of some environments. Contrarily to
this trend, this paper proposes an end-to-end codec architecture running on inexpensive Graphics Processing
Units (GPUs) that is based on, though not compatible with, the JPEG2000 international standard for image
and video compression.When executed in a commodity Nvidia GPU, it achieves real time processing of 12K
video. The proposed S/W architecture utilizes four CUDA kernels that minimize memory transfers, use
registers instead of shared memory, and employ a double-buffer strategy to optimize the streaming of data.
The analysis of throughput indicates that the proposed codec yields results at least 10× superior on average
to those achieved with JPEG2000 implementations devised for CPUs, and approximately 4× superior to
those achieved with hardwired solutions of the HEVC/H.265 video compression standard.

INDEX TERMS Wavelet-based image coding, high-throughput image coding, JPEG2000, GPU, CUDA.

I. INTRODUCTION
Over the past decades, the computational complexity of
image and video coding systems has increased notably.
In the early nineties, the JPEG standard (ISO/IEC 10918) [1]
employed the low-complexity discrete cosine transform [2]
and Huffman [3] coding. Ten years after, the JPEG2000 stan-
dard (ISO/IEC 15444) [4] introduced more computationally
demanding algorithms such as the discrete wavelet trans-
form (DWT) [5] and bitplane coding [6]. In the last years,
HEVC/H.265 (ISO/IEC 23008) [7] doubled the compression
efficiency of previous standards by using complex techniques
that exploit intra- and inter-redundancy of frames. Nowa-
days, most codecs (including JPEG2000 and HEVC) provide
advanced features such as scalability by quality, interac-
tive transmission, and error resilience, among others. To do
so, they use algorithms that scan, transform, and code the
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samples1 of the image multiple times, consuming significant
processing time even when executed in the latest processors.

JPEG2000 is a widespread standard in fields that deal with
large sets of images and/or videos. Its coding pipeline has
three main stages [8]. The first reduces the image redundancy
through a color transform (CT) and the DWT. The second
employs bitplane coding together with arithmetic coding to
reduce the statistical redundancy of wavelet coefficients. The
third reorganizes the data to produce the final codestream.
The high computational complexity of these stages poses a
challenge to meet the real-time requirements of some sce-
narios. In Digital Cinema, for instance, JPEG2000 needs
to be implemented in Field-Programmable Gate Arrays to
process 2K (i.e., 2048 × 1024) and 4K (i.e., 4096 × 2048)
resolution [9]. In medical and remote sensing applications,
dedicated servers and workstations are employed to manage
and store the large quantity of images that are produced

1A sample is the basic unit of a digital image, representing a level of
brightness in a grayscale or color component (each RGB pixel has three
samples).

68474 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0868-6479
https://orcid.org/0000-0001-6697-0331
https://orcid.org/0000-0002-1551-3680
https://orcid.org/0000-0002-3208-9957
https://orcid.org/0000-0003-1390-399X


C. de Cea-Dominguez et al.: GPU-Oriented Architecture for an End-to-End Image/Video Codec Based on JPEG2000

daily [10], [11]. This has motivated many works in the litera-
ture that propose hardware architectures to accelerate partic-
ular stages of the JPEG2000 coding pipeline [12]–[22].

Highly parallel architectures may help to reduce process-
ing time and costs in some environments. Graphics Process-
ing Units (GPUs) may be ideal due to their high throughput,
low cost, and widespread availability. Their architecture is
mainly based on the Single InstructionMultiple Data (SIMD)
paradigm, which executes a flow of instructions on mul-
tiple data in a lock-step synchronous way. When the pro-
gram allows data (in addition to task) parallelism, thou-
sands of threads can be executed in parallel, achieving a
throughput that is potentially an order of magnitude higher
than that achieved by conventional Central Processing Units
(CPUs) [23]. This is in part because the architecture of the
CPUs is more based on the Multiple Instruction Multiple
Data (MIMD) paradigm, which allows the asynchronous exe-
cution of fewer threads over different sets of data.

Most of the workload in the first stage of the
JPEG2000 pipeline lies in the DWT, which is well-suited
to the SIMD paradigm. The first implementations of the
DWT for GPUs appeared in the 2000s making use of the
graphics pipeline [24]–[26]. Later, the use of the Compute
UnifiedDeviceArchitecture (CUDA) programming language
introduced by Nvidia increased the throughput of such imple-
mentations significantly [27]–[31]. Recently, we proposed a
register-based implementation of the DWT for GPUs [32]
that yields 40× speedups compared to CPU implementations.
Similar results are also achieved in [33].

In general, the DWT takes 15% of the total execution time
of the codec. The most expensive stage is the bitplane and
arithmetic coding, which spends about 80% of the time. This
stage poses the major challenge for GPUs because it is not
well-suited to the SIMD paradigm. In this stage, the wavelet-
transformed image is partitioned in small sets of typically
64 × 64 wavelet coefficients, called codeblocks, and codes
them independently. This provides coarse-grain parallelism.
The coding within each codeblock must be carried out by a
single thread, since there exist causal relationships among
coefficients. This means that the coding of a coefficient
depends on the output of the previous, so they can not be
processed in parallel. Even so, there have been efforts to
implement this stage in GPUs [34]–[40], though these solu-
tions do not to fully occupy the resources of the GPU due
to the lack of fine-grain parallelism. In 2014, we started a
line of research [41]–[45] focused on providing fine-grain
parallelism to this stage without sacrificing any feature of
the system. The goal was not to implement the compliant
JPEG2000 algorithm, but to redevise it keeping in mind the
SIMD architecture of GPUs. The proposed algorithm is not
compatible with the standard, but it allows parallel coefficient
processing within the codeblock.

Following a similar line, in 2017 the Joint Photographics
Experts Group launched a call for proposals with the aim
to augment the parallelism in the second stage of the cod-
ing pipeline. This new part of JPEG2000 (ISO/IEC 15444-

15) adopts the algorithm proposed in [46]. Such algorithm
is devised to mostly benefit from the modern instruction
sets like AVX2, NEON, and BMI2 included in new CPUs,
though it can also be implemented in GPUs [47]. It is about
10× faster than the standard, but it penalizes coding per-
formance in approximately 10%. Also, it sacrifices quality
scalability, which is a valued feature of the system since
it permits the transmission of an image progressively by
quality.

This paper introduces a highly-parallel, GPU-oriented
codec based on JPEG2000. The proposed codec is the final
piece of our research line that was aimed to explore new cod-
ing techniques for image/video compression tailored for the
fine-grain parallelism of GPUs. The JPEG2000 framework is
employed to show that the proposed techniques can virtually
obtain the same coding performance of this standard without
sacrificing any feature. Evidently, compliance with the stan-
dard is lost since the proposed techniques require significant
changes in the core coding system. A preliminary version
of the proposed codec was partially described in [48], [49].
This paper vastly improves our previous work by describing
the complete coding pipeline with the needed machinery
to avoid bottlenecks, providing the color transform and the
codestream reorganization stages with an in-depth analysis
of the kernel metrics and memory transfers, and report-
ing extensive experimental tests. The obtained results show
that the proposed S/W architecture can process real-time
12K (i.e., 12288 × 6144) video, achieving a throughput
4× superior to that achieved by the state-of-the-art Nvidia
codec of HEVC that is supported by in-chip dedicated
hardware.

The rest of the paper is structured as follows. Section II
briefly overviews the architecture of Nvidia GPUs and
JPEG2000. Section III describes the proposed codec from
a top-down perspective and Section IV details each kernel
employed. Section V evaluates the throughput of our archi-
tecture and compares it to some of the fastest JPEG2000
and HEVC implementations. The last section contains
conclusions.

II. BACKGROUND
A. NVIDIA GPU ARCHITECTURE
Nvidia GPUs are hardware devices that are mainly consti-
tuted by individual computing units called Streaming Mul-
tiprocessors (SMs). Depending on the model and the archi-
tecture, a Nvidia GPU may contain from one to tens of
SMs. Each SM can work independently, allowing the GPU to
process sequences of instructions from different algorithms.
Typically, SMs execute multiple 32-wide vector instructions
in parallel.

CUDA refers vector instructions as warps. Each lane of
a vector is virtualized into a software thread. Aggregations
of 32 threads form a warp. A group of warps, called thread
block, is assigned to a SM for execution. From the first
CUDA-compatible architecture (v1.0) up to Pascal (v6.2),
warps are always executed synchronously and in a lock-step
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FIGURE 1. JPEG2000 coding pipeline.

fashion, featuring an implicit synchronization at the end of
any divergence [50]. Volta (v7.0) introduced amodification in
the warp scheduler that allows the execution of warp threads
asynchronously [51], so the synchronization among threads
must be explicitly programmed when needed. Our codec is
adapted to work with both implicit and explicit synchroniza-
tion.

The memory architecture of the GPU is organized in three
levels: global, shared, and local. The size of the global mem-
ory is, in general, in the order of GBs and is accessible by
all SMs. When this memory is accessed in a coalesced way
(i.e., via consecutive positions) the available bandwidth is
used efficiently and the latency is minimized. The size of the
shared memory is in the order of MBs and its latency is lower
than that of the global, though it can only be shared within the
thread blocks. The local memory is the fastest though it is also
limited in size and is only accessible by the threads within a
warp. The data allocated in the local memory are commonly
stored in the registers, though theymay be temporarily moved
to the device memory (i.e., DRAM of the GPU) when the
register space is saturated. Typically, the global memory is
employed to read and store the application’s data, the shared
memory is used for communication among threads of differ-
ent warps, and the local memory is utilized for intermediate
computation. The local memory can be shared among threads
within a warp via the low-level shuffle operation. This kind
of memory sharing technique proved to be very efficient in
some applications [32], [52]–[54]. The GPU has two levels of
cache, denoted by L1 and L2. The registers and the L1 cache
are in the SM. The data transferred from the devicememory to
the registers passes through the L1 and L2 caches, which are
reservoirs of the most recently accessed data to be (possibly)
reused in future petitions.

As previously mentioned, each SM runs thread blocks.
These blocks can execute code from one or more CUDA
functions, called kernels, independently. This allows the par-
allel execution of many different kernels from a single or
various applications. CUDA provides the so-called streams to
organize the execution of running kernels. Each stream may
process a sequence of kernels of an application in a set of
SMs asynchronously from the rest. An appropriate use of the
streams optimizes the use of the GPU resources, which can
help to increase the throughput.

B. JPEG2000
As previously stated, JPEG2000 is an image/video coding
standard employed in professional environments due to its
excellent features and performance. The proposed codec car-
ries out almost the same operations as JPEG2000, so they are
briefly described herein for completeness. Figure 1 depicts
these operations. Depending on whether lossy or lossless
compression is needed, some of these operations are irre-
versible or reversible. As stated before, the first stage of
JPEG2000 applies several transformations to the image. The
first is carried out for color images, converting the red, green,
and blue (RGB) components to the lesser redundant color
space YCbCr , which holds the luminance information in the
first component and the chrominance with respect to blue and
red in the second and third components, respectively. This
is a pixel-wise operation that holds no dependencies among
pixels. It is carried out applying floating-point or integer
operations for the irreversible or reversible path, respectively.

The second operation is the DWT. Most implementations
apply it via the lifting scheme [55] since it has low com-
putational complexity. The main idea behind this scheme is
to first apply a series of arithmetic operations to all rows of
the image and then to all columns. These operations can be
carried out in parallel to all rows and then to all columns since
there are no inter-row/column dependencies. Then, the result-
ing coefficients are re-ordered taking the coefficients in the
even and odd positions in each direction. This produces four
different subbands of one quarter the size of the original
image. In general, the same procedure is applied again four
more times in the subband that contains the low-detail image.
The operations carried out in each step apply a low- and
high-pass filter. JPEG2000 uses the irreversible CDF 9/7 and
the reversible CDF 5/3.

The irreversible filter bank employs floating-point arith-
metic, so the resulting coefficients need to be converted to
integers before bitplane coding. This operation is called dead-
zone quantization [8]. It multiplies the coefficients by a step
size and keeps the integer part. This operation is not necessary
for the reversible transform since it already produces integer
coefficients.

The second main stage of the coding pipeline carries out
bitplane coding together with arithmetic coding. As stated
before, this stage is applied in each codeblock independently.
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FIGURE 2. Illustration of the codec architecture when using 2 CUDA streams. The cycle of the data is as follows. First, frame data (individually identified
by color) are read from disk to a RAM buffer. Then the data are managed by a stream in the GPU. Within the device the data are transferred from global
memory MD to local memory R and inversely before and after running each kernel. The kernel execution is illustrated by the matrix of 0s and 1s. Each
stream processes the three components of the frame before transferring the compressed data back to the host memory MH and disk.

Through the binary representation of the integer coefficients
(without sign), a bitplane is defined as the set of bits from
all coefficients in the same binary position. Bitplanes are
coded from the most to the least significant. Just after the
first non-zero bit of a coefficient is coded (referred to as
significance bit), its sign is coded too so that the decoder
can reconstruct that coefficient. The bits coded for a coeffi-
cient after its significance bit are called refinement bits. The
coefficients within a codeblock are scanned in a pre-defined
order that visits four rows of coefficients, called stripes,
consecutively. In each stripe, coefficients are scanned from
the left- to right-most column and, in each column, from the
top to the bottom row. JPEG2000 codes each bitplane in three
coding passes. The first is called significance propagation.
It follows the scanning order processing only those coeffi-
cients that have at least one significant neighbor. The second
is called magnitude refinement. It processes coefficients that
were found significant in previous bitplanes. The third pass
processes the remaining coefficients. It is called cleanup. This
multiple-pass coding is aimed to code first the information
that reduces the most the distortion of the image [6].

Each processed bit is fed to the arithmetic coder together
with its contextual information. The context considers the sig-
nificance, or sign, of its eight neighbors. One of 18 different
pre-defined contexts is chosen depending on this information.
The context of the coefficient is employed by the arithmetic
coder to establish a probability for the currently processed bit,
generating a compacted stream of bits.

The output produced in this stage for each codeblock is a
bitstream that can be truncated at the end of each coding pass.
Like most coding systems, JPEG2000 permits specifying a
size for the final codestream, so bitstreams may be truncated
to fit the target rate. This rate-distortion optimization proce-
dure is not defined in the standard, so each codec can choose
among a great variety of methods [56]. The final operation

re-organizes these bitstreams to put them in the compressed
file together with ancillary information for decoding. The
decoder carries out the same operations in reverse order
except the rate-distortion optimization stage, which is not
necessary.

III. OVERVIEW OF THE CODEC ARCHITECTURE
A. OVERVIEW
Except for bitplane and arithmetic coding, all operations of
the JPEG2000 coding pipeline offer fine-grain parallelism.
Our codec implements these operations following the stan-
dard, so their input/output is the same as that obtained
by a conventional JPEG2000 implementation. To use the
JPEG2000’s bitplane and arithmetic coder would signifi-
cantly hinder the throughput of the GPU, so this is the only
stage that is not compliant with the standard. This stage is
replaced by the coding engine proposed in [44], [45]. The aim
of our codec is to code large quantities of images. The input
data set may contain frames of a video sequence or images
of the same size. For convenience, frame is used to refer both
terms in the following.

When possible, the proposed architecture joins operations
in a single kernel instead of using a straightforward approach
that uses one kernel per operation. Within the same kernel,
the data are always accessed in the same fashion and the data
types do not change. This permits the kernels to maximize the
use of local memory in detriment of shared memory, using
a register-based strategy [52]–[54] that minimizes memory
latencies. When the data set needs to be re-organized or the
data type is changed, then the data are transferred to the global
memory preparing them for the next kernel. This architecture
minimizes the overall memory transfers and significantly
increases performance.

Algorithm 1 describes the main routine of the codec. Its
architecture is also illustrated in Figure 2. First, all memory
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TABLE 1. Evaluation of the memory bandwidth achieved by our codec when transferring data from host to device (MH → MD) and device to host
(MD → MH ) with pinned and paged memory, for two different GPUs.

Algorithm 1 Main Routine of the Codec
1: CPUMemoryAllocation()
2: GPUGlobalMemoryAllocation()
3: for each empty MH [i] do
4: MH [i]← HDRead()
5: MD[i]←MH [i]
6: end for
7: A1..3← CT(MD[i])
8: for k ∈ {1..3} do
9: Dk ← DWT_Q(Ak )
10: {Bl} ← BPC_AC(Dk )
11: MD[o]← CR({Bl})
12: end for
13: for each filled MD[o] do
14: MH [o]←MD[o]
15: HDWrite(MH [o])
16: end for

t1



Sj


t2


needed during the coding process is pre-allocated both in the
host RAM and the device DRAM, which are respectively
referred to asMH andMD. This allocation (lines 1 and 2 in
the algorithm) considers the space needed for a double buffer
strategy to load the frames (see below), auxiliary memory
structures, and number of GPU streams employed. The host
RAM allocation is performed in pinned memory2 to avoid
memory positions requests to the CPU when transferring
data. This allocation greatly improves the memory bandwidth
achieved in some GPUs. See, for instance, in Table 1 the
difference in the bandwidth achieved by our codec when
coding a 4K video (with the test environment described in
Section V) using pinned or paged memory. To use pinned
memory in the Nvidia GTX 1080 Ti (Pascal architecture)
almost doubles the bandwidth achieved as compared to paged
memory. For the RTX 2080 Ti (Turing architecture), the dif-
ferences are much smaller due to the use of DDR4 RAM
modules in the host, though there is a slight increase of 4% in
the bandwidth achieved. It is worth noting that the practical
maximum speed of the PCI-E 3.0 bus employed is 13.2 GB/s
(with 15.8 GB/s of theoretical maximum), so our codec yields
maximum bandwidth in practice.

Memory transfers are programmed to be asynchronous
so they can absorb variations in the time spent to process

2Pinned memory indicates that the allocated space has a fixed location in
the RAM module(s) during the whole execution.

each frame. The reading of frames is managed by a thread,
denoted by t1 in Algorithm 1, that is executed by the host.
Each stream, denoted by Sj, j ∈ {1..̂S} with Ŝ being the
number of streams, employs two input buffers in both MH

and MD so that when a buffer is being processed the other
can be filled. These buffers are referred to as MH [i], MD[i]
with i ∈ {1..2̂S}. This filling is carried out in lines 3-6. t1
continuously checks if there is any empty buffer in MH .
If so, it reads the data from disk and transfers them to MH .
Then, it issues an asynchronous copy to the device memory
in line 5. t1 is active until all frames have been buffered. The
data are read and stored considering their original bit-depth
to optimize transfers and memory space. In general, 8-bit
integers are employed.

The writing of the compressed data to the disk is done
similarly by thread t2, which is executed by the host in
lines 13-16. A double-buffer strategy is also employed so
that when a stream finishes coding a frame, it can readily
start coding another without waiting for the compressed data
to be transferred to the host memory. These output buffers
are referred to as MH [o], MD[o] with o ∈ {1..2̂S}. Again,
the data transfer from device to host is carried out via an
asynchronous copy in line 14. Once the transfer is done,
t2 writes them to the disk. The data are copied in the disk
orderly, i.e., following the same frame order of the original
sequence.

Lines 7-12 in Algorithm 1 describe the calls to the ker-
nels and the auxiliary memory structures employed in the
GPU. Four kernels are used. The first carries out the color
transform. It transfers all frame data from MD[i] to local
memory converting them to 32-bits integers (floats) for the
(ir)reversible path and performs the arithmetic operations
on the registers. The result is left in the auxiliary struc-
ture denoted by A1..3 using the same data type employed
in the kernel. After this, each component is processed
independently. The next kernel carries out the DWT and,
if using lossy compression, quantization. Our codec employs
a rate-distortion optimization method that controls the rate
through the quantization step employed in this operation [56].
It transfers the data from Ak to the registers, applies the
lifting scheme, and leaves the result inDk . The third kernel is
the most complex. It applies bitplane and arithmetic coding.
Like the other kernels, it reads the data from the global
memory and puts them in the local. These data are organized
in codeblocks holding 64×64 coefficients. Each codeblock is
processed by an individual warp of 32 threads. The result of
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TABLE 2. Analysis of the codec’s kernels when coding a 2K and 4K frame with the Nvidia RTX 2080 Ti.

TABLE 3. Analysis of the hierarchical memory transfers of the codec’s kernels when coding a 2K and 4K frame with the Nvidia RTX 2080 Ti.

this kernel is stored in the set {Bl} that contains one bitstream
per codeblock, with l ∈ {1..̂L} and L̂ being the number of
codeblocks per component. The length of each bitstream is
not known before coding, so the space for bitstreams {Bl}
is pre-allocated amply. As a result, the bitstream data are
scattered throughout the whole structure. These data must be
compacted before transferring them to the host memory and
disk, which is the function of the last kernel. Contrarily to the
other kernels, it does not put the frame data to the registers but
only the lengths of the generated bitstreams (via pointers to
memory positions), so that it can compute the final position of
each compressed byte. Then, it re-organizes the compressed
frame data in the global memory leaving them in one of the
two output buffers.

The decoder employs a similar structure to that of the
encoder. It executes the kernels in inverse order, performing
the reverse operations.

B. ANALYSIS
Table 2 and 3 report the kernels’ metrics obtained via the
Nvidia Nsight Compute tool when coding a 2K and 4K frame
using the test environment described in Section V. The first
kernel (i.e, ICT(·)) achieves high occupancy, optimal warp
efficiency (since it does not have divergence), and very high
memory bandwidth (see Table 2). These results are due to
the pixel-wise operation that it carries out. The differences
between the 2K and 4K frame with respect to execution
time and total number of instructions executed are a 4 fold
increase, coinciding with the increase in number of processed
samples. We recall that this kernel processes the three image
components, whereas the following kernels process only one.
As seen in Table 3, the three image components are trans-
ferred from MD to R requiring 6 and 24 MB for a 2K and
4K frame, respectively. Once the data are in the SM, they
are converted from 8-bit integers to 32-bit integers or floats
depending on whether the reversible or irreversible transform
is selected. This conversion is seen in the memory transfers

when the data are transferred back from the registers to the
device memory via the L1 and L2 caches.

The DWT_Q(·) kernel can perform a variable number
of transformation levels, typically 5. The metrics reported
in Table 2 correspond to the first call to the kernel, which
performs the first level of transformation. The achieved occu-
pancy is about 84% for 2K and 90% for 4K. This indicates
that other computations can be done while this kernel is
running. Similar to the previous kernel, the warp efficiency is
almost 100% since there are no divergent paths. The increase
in execution time and total number of instructions between
2K and 4K is also proportional to the frame size. As seen
in Table 3, this kernel utilizes more registers per thread due
to a larger data tile processed by each warp. The data require
8 MB and 32 MB for the 2K and 4K frame, respectively,
which approximately correspond to the transfers between
MD toR and inversely. The extra data transferred correspond
to auxiliary information. The transfers between the L1 and
L2 cache are higher than those from the device memory
to the registers because this kernel processes the data tiles
employing a redundant halo.

As shown by the metrics, the BPC_AC(·) kernel is the
most complex. First, the occupancy is much lower than that
achieved by the other kernels, especially for 2K frames. This
is because 2K frames do not have enough data to fill the
resources of the GPU. 4K frames achieve higher occupancy,
though it is still below that achieved by the other kernels.
Second, the warp efficiency is 63% due to the multiple diver-
gent paths of the algorithm. Third, the memory bandwidth
is much lower than that achieved by the other kernels since
BPC_AC(·) is bounded by the latency of the computing
instructions [45]. Fourth, the time spent for coding a 2K
and 4K frame is not proportional to the frame size. This is
due to the low occupancy that is achieved for 2K frames
and due to the image content. Let us explain further. The
codeblock size is 64 × 64 regardless of the frame size. This
causes that codeblocks of 2K frames have more details (i.e.,
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more entropy) than codeblocks of 4K frames, requiring more
instructions to code their information. This is manifested in
the total number of instructions and instructions per sample
executed, since the 4K frame requires approximately 20%
fewer instructions to code each sample. Thememory transfers
when reading the data are higher than in the other kernels
mainly due to the register pool size (see Table 3). Differently
from the previous kernels, BPC_AC(·) visits each coefficient
of the codeblock many times. The number of visits depends
on the codeblock’s data, but is approximately 8 or 9 times per
coefficient on average. Since the size of the register space
is limited, once a coefficient is visited it is transferred back
to the device memory so the register can be employed for
other coefficients. When the coefficient is needed again, it is
transferred from the device memory to the registers. Many
of these coefficients are kept in cache and are reused, so the
transfers between the L2 and L1 cache are high as well.
The data transfers when writing are not as high because the
kernel only stores the compressed data. Even so, the data in
the compressed bitstream are accessed many times, so the
transfers between registers and device memory are higher
than in the previous kernels.

The occupancy and efficiency of the CR(·) kernel is similar
to that achieved by ICT(·) andDWT_Q(·). The execution time
for 4K frames is twice as that needed for 2K. This is because
both frames require 5µs to generate preliminary tables, and
then the data to be reorganized are about 1 MB and 3 MB
respectively for the 2K and 4K frame,3 requiring 10µs and
30µs. The memory bandwidth is lower than that obtained
in the first two kernels since the transferred data are already
compressed(also seen in Table 3).

This analysis indicates that the BPC_AC(·) kernel con-
sumes most of the total execution time and it achieves the
lowest occupancy. This suggests that the codec may underuse
the resources of the GPU when coding large sets of images
or video unless more workload is feed to the device. The pro-
posed architecture alleviates this issue by employing multiple
streams of execution. Each stream processes a frame, so more
data are processed in parallel, employing more resources
and increasing the overall throughput. See in Figure 3 the
throughput achieved by our multiple-streamed codec when
encoding 2K and 4K video in the same conditions as before.
The results are reported as the number of Mega Samples
coded per second (MS/s). The figure depicts the throughput
needed to code 4K, 8K, and 12K video in real-time with
straight horizontal lines for the convenience of the reader.
As seen in the figure, the throughput increases notably when
multiple streams are employed. In the case of 2K (4K) video,
13∼14 (7∼8) streams obtain maximum efficiency. Again,
the coding of 4K video achieves higher throughput due to the
nature of the data.

As seen in Section V the throughput achieved by the
decoder is only slightly lower than that of the encoder because

34K frames are compressed more efficiently than 2K frames, so they
generate fewer data per sample coded.

FIGURE 3. Analysis of the throughput achieved by the proposed codec
when encoding 2K and 4K video using different number of execution
streams, for the RTX 2080 Ti.

Algorithm 2 Kernel Routine CT(MD[i])
1: GPULocalMemoryAllocation()
2: R1..3←MD[i]
3: R′1..3← φ(R1..3)
4: A1..3← R′1..3
5: return(A1..3)

the decoder requires more local memory, which reduces the
occupancy. The rest of the decoding process is very simi-
lar to that of the encoder, so it is not reported herein for
brevity.

IV. DESCRIPTION OF THE KERNELS
Algorithm 2 details the routine of the CT(·) kernel. In this
and following kernels, the algorithm describes the main oper-
ations that are performed at a thread level. Like in the other
kernels, the first instruction allocates the local memory. All
kernels only use registers since this increases the throughput.
After allocating the required space, the data of the three
frame components are transferred from the global memory
to the register space, referred to as R for the input data.
This is the only kernel that needs the three components of
the frame. It applies a transformation that involves several
arithmetic operations, denoted by φ(·) in line 3, and the result
is left in the output register space R′. Then the data are
returned to the global memory, ready to be fetched by the
next kernel. Both reading and writing in the global memory
in this and following kernels is carried out in a coalesced way
to maximize memory performance since the GPU stores data
blocks adjacent to that requested in the L2 cache for (possi-
ble) future requests. Depending on whether lossy or lossless
compression is selected, the operations and the data types
employed in the registers are floating points or integers,
respectively.

The second kernel is detailed in Algorithm 3. The wavelet
transform is applied in blocks of 64×Ŷ samples that are
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Algorithm 3 Kernel Routine DWT_Q(Ak )
1: GPULocalMemoryAllocation()
2: R← Ak
3: for y ∈ {1..Ŷ } do
4: for x ∈ {0..1} do
5: R[y][x]← ϕ(R[y][x])
6: end for
7: end for
8: for x ∈ {0..1} do
9: for y ∈ {1..Ŷ } do
10: R[y][x]← ϕ(R[y][x])
11: end for
12: end for
13: for y ∈ {1..Ŷ } do
14: for x ∈ {0..1} do
15: if (y, x) /∈ halo then
16: R[y][x]← R[y][x] · Q
17: Dk ← R[y][x]
18: end if
19: end for
20: end for
21: return(Dk )

processed by a single warp.4 This allows communication
among threadswithout needing sharedmemory. The height of
the block is denoted by Ŷ . Each thread processes two columns
of a block. The kernel applies a 2D high-pass/low-pass filter
to all samples. First, the filter ϕ(·) is applied horizontally
(lines 3-7) and then vertically (lines 8-12). The filter consists
in a series of arithmetic operations that use the adjacent
samples to the processed coefficient, in which the result is
left. This type of operation does not require two register
spaces (for input and output) like in the previous kernel, but
only one that is referred to asR. When the thread needs data
from other threads, it uses shuffle instructions (not shown in
Algorithm 3) since they have lower latency than using shared
memory [32]. If more than one level of wavelet transform
is selected, the instructions from line 3 to 12 are repeated
each time over a quarter of the last data processed, which
contains the results of the low-pass filter. This is carried out
calling the kernel again. It is not detailed in Algorithm 3 for
the sake of clarity. The final step in this routine is to transfer
the data from the local space to the global memory. It is
only done for those samples that do not belong to the halo.5

Before transferring the data, a quantization step size, denoted
by Q in line 16, may be applied. Again, lossy and lossless
compression respectively requires the use of floating points
and integers when applying ϕ(·). Quantization is only applied
for lossy compression.

4Note that these blocks are not the codeblocks utilized in BPC_AC(·), but
a tile of the original image. Although the partitioning is similar for paral-
lelism purposes, the block transformed by DWT_Q(·) contains overlapped
samples of adjacent blocks.

5The halo is an area surrounding the processed samples that is employed
by the warp to obtain the correct result of the wavelet transform.

The BPC_AC(·) kernel is detailed in Algorithm 4. It is
applied to all codeblocks of the component, though we recall
that the algorithm details the operations carried out at thread
level. The kernel receives a frame component that is parti-
tioned in codeblocks of 64×Ŷ ′ coefficients, with typically
Ŷ ′ = 64. The data for the codeblock are implicitly transferred
to the local memory in line 2 of the algorithm. Then the
coefficients are coded from bitplane B̂, which is a sufficient
number of magnitude bits to code all coefficients within the
codeblock, to the lowest bitplane 0. This is performed in
the loop of line 3. Like in the previous kernel, each thread
processes two columns and each codeblock is processed
by a warp. Contrarily to JPEG2000, this kernel carries out
2 coding passes instead of 3 since virtually same compres-
sion efficiency is achieved [6], [44], [45] while increasing
throughput about 40%. The loop in lines 4-17 performs
significance coding. It checks whether the coefficient was
significant in previous bitplanes via the γ (·) function, which
returns the significance bitplane of the coefficient. If not,
significance coding is performed. First, context C of the
coefficient is determined via 8(·) and, through this context
and the current bitplane, probability P for the coded bit is
extracted from the lookup table LUTsig. This table contains
pre-computed probabilities determined with a training set
of images. Then, the bit is coded via arithmetic coding.
The procedure for AC(·) is not detailed in the algorithm
for simplicity. It can be found in [45]. If the coefficient is
significant in the current bitplane (i.e., γ (R[y][x]) = b),
its sign is coded in lines 11-13 with a similar procedure to
that of significance coding. Refinement coding is carried out
in lines 18-25. In this case, no context is employed. The
return of the AC(·) function is the bitstream Bl that contains
the compressed information. Each time that this function is
called, some data may be added toBl . We note thatBl is in the
global memory. Each thread puts data in Bl asynchronously
from the others ensuring mutual exclusion. This exclusion is
guaranteed considering the threads that need a new chunk of
memory to write their information, assigning positions based
on the thread index within the warp. This kernel also stores
the length of Bl in a separate global memory region, denoted
by L.

The last kernel (i.e., CR(·)) is detailed in Algorithm 5.
It receives the set of bitstreams {Bl}. As previously stated, its
purpose is to reorganize the bitstream data in a compact struc-
ture. To do so, blocks of 2 bytes are assigned to each thread in
the warp to be written in the final memory positions. The first
step is to generate a memory map to know these positions.
This map is denoted as L′ and contains an aggregated list of
lengths, more precisely,L′ = {0,L1,L1+L2, · · · ,L1+· · ·+

LL̂}. L′ is generated via the Device Scan primitive from the
Nvidia CUB framework [57]. To accelerate the access to this
map, a fast lookup table, denoted by LUTL′ , is created. This
LUT is generated applying a binary search over L′ in which
each position represents some positions of the original map.
Our experience indicates that speedups about 2× are achieved
by using such a strategy. These operations are carried out
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Algorithm 4 Kernel Routine BPC_AC(Dk )
1: GPULocalMemoryAllocation()
2: R← Dk
3: for b ∈ {̂B..0} do
4: for y ∈ {1..Ŷ ′} do
5: for x ∈ {0..1} do
6: if γ (R[y][x]) ≤ b then
7: C ← 8(R[y][x])
8: P← LUTsig[C][b]
9: Bl ← AC(R[y][x],P)
10: if γ (R[y][x]) = b then
11: C ′← 8′(R[y][x])
12: P′← LUTsign[C ′][b]
13: Bl ← AC(R[y][x],P′)
14: end if
15: end if
16: end for
17: end for
18: for y ∈ {1..Ŷ ′} do
19: for x ∈ {0..1} do
20: if γ (R[y][x]) > b then
21: P′′← LUTref [b]
22: Bl ← AC(R [y][x],P′′)
23: end if
24: end for
25: end for
26: end for
27: Ll ← length(Bl)
28: return(Bl)

Algorithm 5 Kernel Routine CR({Bl})
1: S ← computePosition(T ,LUTL′ ,L′)
2: if (S ∈ {L′}) then
3: MD[o][H ]← Bl[S]
4: else
5: MD[o][D]← Bl[S]
6: end if
7: return(MD[o])

before running the CR(·) kernel, so they are not specified in
Algorithm 5.

Once the LUTL′ is created, each warp thread T com-
putes the position S of the data to be written (line 1). Then,
it checks whether the information to be copied is auxiliary
information of the codeblock (i.e., most significant bitplane),
or compressed data. This is carried out in line 2 checking
if the thread is copying the first bytes of the codeblock’s
bitstream. The corresponding bytes are either copied to the
header or body section of the final structure, respectively
denoted by MD[o][H ] and MD[o][D]. The data transfers
are also performed in a coalesced fashion to maximize
throughput.

Again, the kernels employed in the decoder are very similar
to those of the encoder, so they are not detailed herein.

V. EXPERIMENTAL RESULTS
The proposed codec is evaluated with four Nvidia GPUs,
namely, the RTX 2080 Ti, the GTX 1080 Ti, the Xavier,
and the Tegra X2. These devices are commodity GPUs, with
prices ranging from 650¿ to 1350¿. Their specifications are
reported in Table 4. Both the RTX 2080 Ti and the GTX
1080 Ti are commonly employed in workstations for design
applications and gaming. The RTX 2080 Ti has the highest
peak throughput. It is employed with an i9 9900K CPU
workstation with 16 GB of DDR4 RAM. The 1080 Ti is used
on an i7-3770 workstation with 8 GB of DDR3 RAM. Both
the Xavier and the Tegra X2 are GPUs devised for devices in
which efficiency and size are important aspects, for example
in the Nintendo Switch. In our tests, they run on a Jetson
SDK platform [58]. Both GPUs have low performance, but
consume very little power. Both allow different power modes
with varying performance and Thermal Design Power (TDP).
The results reported below correspond to the maximum per-
formance mode except when indicated.

JPEG2000 results are obtained with Kakadu (v8.0.2) [59].
Kakadu is among the fastest CPU implementations of the
standard. It is heavily optimized in assembler, achieving
superior throughput than other implementations for GPUs
such as CuJ2K [60] and GPU-J2K [61]. It is executed in
a workstation with an Intel i9-9900K CPU with 8 cores
and 16 GB of DDR4 RAM. Kakadu is compiled for this
architecture and it is run with 16 threads of execution to
achieve maximum throughput. The compression parameters
for both Kakadu and our codec are: lossy or lossless com-
pression as indicated, 5 levels of DWT, and codeblocks of
64× 64. Although there are other competitive GPU imple-
mentations of JPEG2000 such as Comprimato [62] and
CUDA-JPEG2000 [63], it was not possible to compare them
in our test environment. Some results reported in their cor-
responding webpages suggest that they obtain competitive
throughput, though lower to that achieved by the proposed
codec.

For comparison purposes, the following experiments also
provide the throughput achieved with the HEVC implemen-
tation developed by Nvidia [64], which is executed with the
RTX 2080 Ti and the GTX 1080 Ti. This codec runs in
the GPU employing in-chip support and dedicated hardwired
components. The parameters for HEVC are: rate control with
constant quantization 1-51 (0) for lossy (lossless), inter-frame
coding with GOP=32, and high performance mode. This
configuration achieves maximum throughput in our tests.
We note that HEVC is not supported in Jetson GPUs.

The data set employed in the experiments is a 2-minute
segment of the movie ‘‘Star Wars: The Last Jedi,’’ at a reso-
lution of 2K and 4K. The video contains 2,880 color frames
with a bit-depth resolution of 24 bits per pixel (i.e., 8 bits per
pixel per component), resulting in 67,5 GB (16,875 GB) of
uncompressed data for the 4K (2K) resolution. The HEVC
codec uses a subsampled 4:2:0 version of the video for
compatibility issues with the 4K resolution in the GTX
1080 Ti. This is taken in consideration when measuring the
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TABLE 4. Features of the GPUs employed. ?Both the Xavier and Tegra X2 do not have dedicated GPU memory. Memory is shared by both the CPU and GPU.

FIGURE 4. Analysis of the throughput achieved by the proposed codec when coding 2K (left) and 4K (right) video using different number of execution
streams, for lossy compression at maximum quality.

performance achieved. In general, the size of this data set
is sufficiently large to fill the resources of the GPU. Larger
data sets achieve similar results as those reported below.
In all results, the execution time is measured without con-
sidering the I/O time spent to read/write the files from/to
the disk since that would affect results significantly depend-
ing on the hard drive employed. The results below evaluate
only the throughput achieved since coding performance of
the proposed codec is extensively analyzed in [44]. Herein,
the codecs are compared when their coding options yield
equivalent image quality.

The first test evaluates the throughput achieved by the
proposed codec with the four GPUs when using a differ-
ent number of execution streams. The test evaluates both
the encoder and decoder in lossy mode with a quantization
step size that achieves maximum quality (about 50 dB).
Figure 4 reports the results achieved. Again, this fig-
ure depicts with horizontal lines the throughput needed to
yield 4K, 8K, and 12K video compression in real time, assum-
ing a frame rate of 24 frames per second. The results indicate
that both the RTX 2080 Ti and GTX 1080 Ti increase the
throughput as more streams are employed, yielding optimal
performance depending on the frame resolution and GPU
employed. TheXavier and Tegra X2 do not benefit asmuch of
using multiple streams because they have fewer SMs, so their
resources are mostly filled with a single execution stream.

FIGURE 5. Evaluation of the average number kernels executed per unit of
time depending on the number of streams employed.

In all results, the decoder yields slightly lower throughput
than the encoder because it requires more local memory.
This behavior is not common in software implementations of
image and video codecs since the encoder generally requires
more computations. Highly optimized implementations such
as the presented herein, however, may obtain different results
due to the need of different data structures in the decoder.
In the following tests, 20 and 9 streams are employed for
the RTX 2080 Ti and GTX 1080 Ti, respectively, to achieve
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FIGURE 6. Throughput evaluation for lossy (with highest image quality) and lossless compression of 4K video, for all codecs and GPUs. Each pair of
columns reports the results for the encoder (back) and decoder (front).

maximum throughput. The Xavier and Tegra X2 employ
14 and 10 streams, respectively, though their throughput is
almost the same as when using only 2.

The next test evaluates the number of kernels that are
executed in parallel depending on the number of streams
employed. This analysis complements the previous for the
RTX 2080 Ti. TheGTX 1080 Ti, Xavier, and Tegra X2 are not
included in this analysis. Figure 5 depicts the results achieved.
For 4K video, the maximum number of running kernels
is 4, which is yield when employing 10 streams. 4 parallel
kernels already fill the resources of the GPU. This indicates
that no more kernels can be executed despite increasing the
number of streams employed, although a slight increase in
throughput can be achieved as it seen in the previous figure.
2K video obtains a different behavior. Number of streams and
running kernels are almost directly related, reaching a peak at
20 streams and 10 parallel kernels. This is because 2K frames
have only a quarter of the data of 4K frames, so the GPU
requires more kernels to fill its resources.

Figure 6 reports the throughput achieved by the proposed
codec with the four GPUs, Kakadu, and HEVC when coding
4K video in lossy and lossless mode. For lossy compres-
sion, the average image quality yield for all codecs is about
50 dB. At this level of quality, distortion is not perceptible
by the human eye. Each codec has a pair of columns. The
first reports the results for the encoder whereas the second
for the decoder. The results for 2K video are similar but
with lower performance, so they are not included in this
figure. Results for the Xavier and Tegra X2 are reported
when using three power modes, namely, maximum (0), min-
imum (1), and mid-tier (2) performance. The results show
that the proposed codec yields superior performance to that
achieved by Kakadu and HEVC for both the RTX 2080 Ti
and GTX 1080 Ti regardless of using lossy or lossless com-
pression. In all codecs, the performance in lossless mode is

slightly lower than that achieved in lossy since more data
are processed, generating larger compressed files. Even so,
real-time 12K video can be managed by our codec for both
compression modes. The Xavier and Tegra X2 GPUs do not
achieve such a high performance, but the Xavier is able to
process 4K video in real time when employing the maximum
performancemode. This throughput is similar to that obtained
by Kakadu, though we recall that Kakadu employs a modern
CPU and the Xavier is an embeddedmobile solution. Both for
the Xavier and the Tegra X2, the minimum power mode sig-
nificantly lowers performance and themid-tiermode achieves
an intermediate performance. This is more pronounced in
the Xavier. HEVC yields higher performance than Kakadu,
though it is lower than that achieved by our codec. Surpris-
ingly, the HEVC encoder achieves higher throughput with the
GTX 1080 Ti than with the RTX 2080 Ti. Even though it is
executed using theNvidia SDKHEVC software (v9.0) [64] in
maximum performance mode in both, each GPU has its own
hardwired solution for this codec. More precisely, the RTX
2080 Ti includes one NVEnc Turing engine whereas the
1080 Ti includes two Pascal engines. Note also that the GTX
1080 Ti obtains higher throughput for the encoder than for
the decoder, whereas the RTX 2080 Ti yields more balanced
results.

The previous test evaluates the performance achievedwhen
there is (almost) no quality loss. Scenarios such as video
streaming or TV broadcast may tolerate more distortion.
Reducing the image quality results in higher throughput
since fewer data are coded. Figure 7 depicts the throughput
achieved by Kakadu, HEVC, and the proposed codec when
coding 4K video at different levels of quality, namely, from
50 dB to 20 dB, which is the quality range employed in
most scenarios. The image quality is controlled via the quan-
tization parameter Q in our codec, and similarly in HEVC
and Kakadu. As seen in the figure, reducing the quality has
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FIGURE 7. Throughput evaluation for lossy compression of 4K video at different quality levels. Results are for the proposed codec except when indicated.

a direct impact on throughput for all codecs. The proposed
codec achieves real-time encoding of 16K video for qualities
below 46 dB. The decoder has a lower increase in perfor-
mance as the quality decreases because the aforementioned
need of more local memory. The Xavier and Tegra X2 also
increase their throughput, though more gradually due to their
inferior performance power. It is worth noting that, even
though the RTX 2080 Ti and GTX 1080 Ti have a similar
peak throughput (about 14 TFlops), the RTX 2080 Ti obtains
approximately 50% more throughput when encoding. This is
due to the distribution of performance power in the GPU. The
RTX 2080 Ti has fewer CUDA cores in each SM, but more
than twice SMs than the GTX 1080 Ti. This provides more
resources per thread, especially, more local memory. Our
codec greatly benefits from this architectural improvement
since it employs registers extensively. The highest speedups
reported in Figure 6 are achieved by the HEVC decoder,
which increases the throughput almost 6×.
Power consumption is nowadays an important aspect due

to the advent of mobile devices. Figure 8 evaluates the power
consumption of our codec, HEVC, and Kakadu when coding
4K video at 50 dB, like in Figure 6. The results are depicted
in MS processed per Watts consumed. A Nvidia tool that
measures consumption in real-time is employed to obtain
these results. Kakadu’s consumption is measured via the
utility PowerTOP. The results depicted in Figure 8 suggest
that the proposed codec is the most efficient in terms of power
consumption. Evidently, the Xavier and Tegra X2 yield the
best results due to its architecture. Our codec employed with
the three power modes of these GPUs is less power-hungry
than the remaining, with the minimum mode achieving the
highest efficiency. The proposed codec is more efficient than
HEVC even when executed in the RTX 2080 Ti and GTX
1080 Ti, though moderately so. In general, CPUs consume
more power than GPUs, so Kakadu seems to consume the

FIGURE 8. Power consumption evaluation when encoding 4K video at
50 dB. Each pair of columns reports the results for the encoder (back) and
decoder (front).

most. The low power consumption of our codec means that,
in practice, it can allow batteries of mobile devices last much
longer and/or codemoreminutes of video for the same battery
capacity.

VI. CONCLUSION
Faster and less power-hungry image and video codecs are cur-
rently needed in multiple scenarios. Typically, high through-
put codecs are achieved by means of integrated hardware
architectures such as ASICs or FPGAs. GPUs are also a
widely pursued means to accelerate codecs, though these
architectures do not commonly obtain the high performance
of their counterparts. This is because the core algorithms of
conventional image and video coding systems do not provide
enough fine-grain parallelism to fully exploit the SIMD archi-
tecture of GPUs. This paper introduces an image/video codec
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based on the JPEG2000 standard. All stages of the coding
pipeline have been devised to extract fine-grain parallelism.
All stages are compliant with the standard except for the
core algorithm called bitplane and arithmetic coding. The
proposed codec introduces a similar algorithm to that of
JPEG2000 that augments its parallel capabilities. Although
the resulting codestream is not compliant with JPEG2000,
the coding system has the same advanced features of the stan-
dard. The throughput of the resulting architecture when exe-
cuted in consumer-gradeGPUs is at least 10× higher than that
achieved with CPU implementations executed in high-end
workstations, and superior to that achieved by Nvidia’s SDK
implementation of the HEVC video standard. Experimental
results suggest that our codec can encode (decode) real-time
12K (8K) video in a Nvidia RTX 2080 Ti and that it consumes
very little power, especially in mobile GPUs.
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