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ABSTRACT This paper deals with the sampled-data fuzzy observer design problem with time-varying gains
under the sensor fault consideration. To this end, a nonlinear system with sensor fault is represented by a
Takagi–Sugeno fuzzy model with immeasurable premise variables. The sensor fault considered in this paper
is assumed to be a time-varying uncertain matrix included in measurements. The observer is designed to
consist of gains varying exponentially between two consecutive sampling instants, by which the equilibrium
point of the estimation error dynamics is asymptotically exponentially stabilized. In addition, the observer
considered in this paper is assumed not to share the same premise variable with a system. Unlike previous
studies, this paper proposes a method handling this mismatched premise problem by using an H-infinity
criterion. The proposed observer design condition is formulated in terms of linear matrix inequalities, which
is relaxed based on a novel fuzzified Lyapunov–Krasovskii functional and a matrix inequality. Finally, two
simulation examples are given to validate the effectiveness of the proposed method.

INDEX TERMS Sampled-data fuzzy observer, sensor fault, Takagi–Sugeno (T–S) fuzzymodel, linearmatrix
inequality (LMI).

I. INTRODUCTION
For stable control, it is important to obtain the exact infor-
mation about states of a system. However, in general, it is
not easy to measure the overall state variables of a system,
requiring estimating the remaining state variables form given
measurements. For this reason, studies on the state estimation
have been actively carried out for several decades [1]–[3].
Among the various approaches, the Takagi–Sugeno (T–S)
fuzzy-model-based approach [4] is noteworthy in the state
estimation of nonlinear systems because it provides a system-
atic design procedure. Moreover, it is easy to implement com-
pared to the best known solution, Kalman filter [3], because
it dose not even require any stochastic information about the
system and measurement noises.

Studies for the state estimation of T–S fuzzy models are
mainly based on either the fuzzy filter [5]–[9] or the fuzzy
observer [10]–[17] approaches. The fuzzy filter approach has
been studied in various fuzzy control systems, including time
delays [5], interconnected systems [6], uncertain systems [7],
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and others. Despite its successful application, the fuzzy filter
approach has an limitation in that it is only applicable to
asymptotically stable systems, but, very recently, some stud-
ies have begun on solving this problem [8]. On the other hand,
studies regarding the fuzzy observer-based approach have
been actively carried out combined with the controller design
[10]–[14]. As a controller and an observer can be designed
simultaneously, the observer-based approach is applicable
to not only asymptotically stable systems but also unstable
systems. Recently, a pioneer study of designing an observer
for oscillating systems without a controller was conducted
in [15]. As a practical application of the fuzzy observer
approach, authors in [16] studied the fuzzy observer-based
attitude and heading reference system composed of inertial
sensors. Also, in [17], a study of fuzzy observer design for
systems with immeasurable premise was conducted based on
the concept of imperfect premise matching [18]. However,
this method has a disadvantage of complicating the observer
design conditions, requiring a less complex solution. This is
the first motivation of this paper.

Due to the popularization of digital computer related
technologies, a sampled-data system [19] which consists
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of continuous-time systems with digital sensors has been
actively researched. In this system configuration, the system
operates in the continuous-time domain, while its measure-
ments are available only at discrete sample instants. Since the
continuous- and discrete-time signals coexist in sampled-data
systems, we cannot directly apply the existing continuous-
or discrete-time observer design techniques to this system
configuration. To handle this problem, a number of studies
have been carried out, and they can be categorized into a
discretization method [13], [14], [20], [21] and a time delay
method [22]–[28]. In the discretization method, the sampled-
data observer is designed based on its discretized model.
To this end, the stability of a discretized model is analyzed
in the discrete-time domain using a discrete-time Lyapunov
function. The complex discretization process makes stability
conditions be conservative. In addition, there is no study for
guaranteeing the stability of the estimation error system under
variable sampling rates.

On the other hand, in the time delay approach,
discrete-time measurements are converted into equivalent
time-delayed continuous-time measurements. Therefore,
the state estimation error system becomes a time delayed
continuous-time system, and its stabilization condition is
derived based on a Lyapunov-Krasovskii functional (LKF)
in the continuous-time domain. In early research, stability
conditions suffer from the conservativeness come from a
single quadratic LKF [22]. Recently, less conservative results
have been obtained based on the fuzzified LKF [24]. In [27]
and [28], extended studies to further relax stability condi-
tions by allowing gain matrices to be time-varying between
two consecutive sampling instants was conducted. However,
to the best of our knowledge, there are few or no studies
on designing sampled-data fuzzy observer with time-varying
gains, and there is room to further improve the conservatism
of existing stability conditions. This is the second motivation
of this paper. In addition, using the fuzzified LKF provokes
the need for develop another matrix inequality, because a
fuzzy integral term makes it difficult to use the conventional
matrix inequalities (examples include [23], [32], and others).

In addition, sensors may have faults for a variety of rea-
sons, causing wrong measurements. In order to achieve reli-
able control, the sensor fault has to be considered. Along
this line, authors in [29] designed an observer that detects
sensor defects and compensated for it. Similar to the sensor
fault, actuator fault is also the serious problem in the control
engineering. In [30], fault tolerant control was studied by
assuming the actuator fault as a time-varying uncertainty in
the gain matrix. This method is simple and powerful to handle
the actuator fault. The same approach can be applied to the
sensor fault problem, but, such research is still insufficient.
This is the last motivation of this paper.

Motivated by the aforementioned analysis, in this paper,
we propose amethod to design a sampled-data fuzzy observer
with time-varying gains for estimating state variables of a
nonlinear system under sensor fault consideration. A nonlin-
ear system with immeasurable premise variables is expressed

as a T–S fuzzy model. The sensor fault is modeled as
a time-varying uncertainty included in measurements. The
sampled-data fuzzy observer is allowed not to share the same
premisewith the system.H∞ performance criterion is defined
to handle both the immeasurable premise and the minimiza-
tion of the state estimation error. A sufficient condition that
guarantees the exponential stability and the H∞ criterion is
derived in terms of linear matrix inequalities (LMIs). We pro-
pose the fuzzified LKF and the novel matrix inequality to
relax the conservativeness of the derived sufficient condition.
Finally, the effectiveness of the proposed method is validated
by the simulation examples.
Notations: For any matrix M , sym{M} = (M )T +M . The

term λX represents the maximum eigenvalue of XT (t)X (t) for
all time t and a time-varying matrix X (t). For a positive scalar
a, Ia represents an integer set {1, 2, . . . , a}.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider a T–S fuzzy system with an external disturbance
which is described by the following IF–THEN rules:

Ri: IF z1(t) is 0i1 AND · · · AND zp(t) is 0ip

THEN

{
ẋ(t) = Aix(t)+ Biω(t),
y(t) = Cx(t),

(1)

where Ri denotes the ith rule with i ∈ Ir ; zj(t) with j ∈ Ip
is the jth premise variable; 0ij is the fuzzy set for zj(t) in
Ri; Ai ∈ Rn×n, Bi ∈ Rn×m, and C ∈ Rl×n are the system
matrices; x(t) ∈ Rn, y(t) ∈ Rl , and ω(t) ∈ Rm are a
state vector, an output vector, and an external disturbance,
respectively.

By applying the singleton fuzzifier, the product inference
engine, and the center-average defuzzifier to (1), we obtain
the following defuzzified output of the system:

ẋ(t) =
r∑
i=1

wi
(
z(t)

)
{Ai(x)+ Biω(t)} ,

y(t) = Cx(t),

where z(t) = col{z1(t), z2(t), . . . , zp(t)} is the premise vector,
and wi

(
z(t)

)
∈ [0, 1] is a normalized membership function

satisfying the following properties:

wi
(
z(t)

)
=

µi
(
z(t)

)∑r
j=1 µj

(
z(t)

) , µi(z(t)) = p∏
j=1

0ij
(
zj(t)

)
,

r∑
i=1

wi
(
z(t)

)
= 1,

r∑
i=1

ẇi
(
z(t)

)
= 0,

in which 0ij
(
zj(t)

)
: Uzp ⊂ R → R[0,1] is the membership

function of zj(t) on a compact set Uzp , and wi
(
z(t)

)
is a

differentiable function.
The system mentioned above holds the following assump-

tion:
Assumption 1: All pairs of (Ai,C) with i ∈ Ir are observ-

able. The state and premise variables are not measurable, but
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the output vector is measurable only at sampling instances,
t = tk with k ∈ {1, 2, . . . }.
Based on the above assumption, we propose a sampled-data

fuzzy observer with exponential time-varying gains whose
IF-THEN rules are as follows:

R̂i: IF q1(t) is ϒi1 AND . . . AND qp(t) is ϒip THEN{
˙̂x(t) = Aix̂(t)+ e−η(t−tk )Li

(
ŷ(tk )− yF (tk )

)
,

ŷ(t) = Cx̂(t),
(2)

where R̂i with i ∈ Ir is the observer rule; qj(t) with
j ∈ Ip is the jth premise variable; ϒij is the fuzzy set;
x̂(t) ∈ Rn and ŷ(t) ∈ Rl are system and output vectors of an
observer, respectively; e−η(t−tk )Li ∈ Rn×l is the exponential
time-varying observer gain matrix to be determined in which
η ∈ R≥0 is a given scalar; tk is the kth sampling time
satisfying tk+1 − tk = hk ≤ h, in which h is an allowable
maximum sampling period; yF (tk ) ∈ Rl represents an output
of the system with measurement faults.

The difference between the output of the observer and the
output of the systemwithmeasurement fault is represented by
the following relationship using the time-varying uncertain
matrix:

ŷ(tk )− yF (tk ) := F(tk )
(
ŷ(tk )− y(tk )

)
,

where F(tk ) ∈ Rl×l is an unknown time-varying matrix
denoting the sensor fault which has the following structure:

F(tk ) = diag{f1(tk ), f2(tk ), . . . , fl(tk )},

in which, for a ∈ Il , fa(tk ) ∈ [f La , f
U
a ], and f La and f Ua

are constant scalars denoting the lower and upper bounds of
admissible failures of the sensor, respectively.

Applying the same process used for the system to (2),
we have

˙̂x(t)=
r∑
i=1

mi
(
q(t)

){
Aix̂(t)+e−η(t−tk )LiF(tk )

(
ŷ(tk )−y(tk )

)}
,

(3)

where q(t) = col{q1(t), q2(t), . . . , qp(t)} is the premise vec-
tor, and mi

(
q(t)

)
∈ [0, 1] is the normalized membership

function satisfying the following properties:

mi
(
q(t)

)
=

νi
(
q(t)

)∑r
j=1 νj

(
q(t)

) , νi(q(t)) = p∏
j=1

ϒij
(
qj(t)

)
,

r∑
i=1

mi
(
q(t)

)
= 1,

r∑
i=1

ṁi
(
q(t)

)
= 0,

where ϒij
(
qj(t)

)
: Uqp ⊂ R → R[0,1] is the membership

function of qj(t) on a compact set Uqp , and mi
(
q(t)

)
is a

differentiable function.
Remark 1: As can be seen from the observer model (3),

an observer gain used in this paper varies exponentially
between two consecutive sampling instants. The advantage of
using the time-varying gain is that the state estimation perfor-
mance is increased by appropriately choosing a parameter, η.

In this paper, using the time-varying observer gain is studied
for the first time to design the sampled-data fuzzy observer.
Remark 2: In the observer model, F(tk ) represents the

sensor failure. F(tk ) is generally a time-varying unknown
matrix, but, following the study [30], this paper assumes that
both the upper and lower bounds of its norm are known.

For F(tk ), the following is assumed to be satisfied.
Assumption 2: The sensor fault is modeled as a

norm-bounded matrix, in the form of

F(tk ) = diag{f1(tk ), f2(tk ), . . . , fl(tk )}

= F0
{
I + F1(tk )

}
,

where F0 is a given known matrix and F1(tk ) is an unknown
matrix satisfying FT1 (tk )F1(tk ) ≤ FT2 F2 with a given
matrix F2. In this case, F0, F1(tk ), and F2 have the following
structure:

F0 = diag{f01, f02, . . . , f0l}, f0a =
(
f La + f

U
a
)
/2,

F1(tk ) = diag{f11, f12, . . . , f1l}, f1a =
{
fa(tk )− f0a

}
/f0a,

F2 = diag{f21, f22, . . . , f2l}, f2a =
(
f Ua −f

L
a
)
/
(
f La +f

U
a
)
,

for a ∈ Il . Physically, f1a(tk ) is an extracted uncertain term
of fa(tk ) and f2a stands for norm bounds of f1a(tk ).
Remark 3: The observer model in (3) contains an

unknown time-varying matrix F(tk ). It models the uncertainty
in the system output due to measurement faults, and we only
know its upper and lower bounds, represented by Assump-
tion 2. This information is necessary only when determining
the observer gain matrix. That is, since the influence of
F(tk ) is physically reflected as a measurement fault of yF (tk ),
the information of F(tk ) is not necessary when implementing
our observer model. Once the observer gain is determined
considering the upper and lower bounds of F(tk ), the follow-
ing dynamics is used to implement the observer model:

˙̂x(t) =
r∑
i=1

mi
(
q(t)

){
Aix̂(t)+ e−η(t−tk )Li

(
ŷ(tk )− yF (tk )

)}
.

From now on, the following shorthand notation is
employed in order to enhance the readability.

Mw(t) :=
r∑
i=1

wi
(
z(t)

)
Mi and Mm(t) :=

r∑
i=1

mi
(
q(t)

)
Mi.

By defining the estimation error vector as x̃(t) := x̂(t) −
x(t), we obtain the following:

˙̃x(t) = ˙̂x(t)− ẋ(t)

= Am(t)x̂(t)+ e−η(t−tk )Lm(t)F(tk )C
{
x̂(tk )− x(tk )

}
−Aw(t)x(t)− Bw(t)ω(t)

= Am(t)x̃(t)+ e−η(t−tk )Lm(t)F(tk )Cx̃(tk )

+1A(t)x(t)− Bw(t)ω(t), (4)

where 1A(t) := Am(t)− Aw(t).
Remark 4: In many cases, premise variables of a T–S fuzzy

system consist of its state variables. Thus, an observer gen-
erally does not share the same membership function with a

68490 VOLUME 8, 2020



H. S. Kim, K. Lee: Design of a Fault Tolerant Sampled-Data Fuzzy Observer With Exponential

system. This membership function mismatching is expressed
as 1A(t) in this paper. In the remainder of the paper, we use
λ1 to minimize the effect of 1(t) on the state estimation
performance.

In addition, we define the following additional vector:

ε(t) = eηt x̃(t),

and its time derivative can be obtained as follows:

ε̇(t) = ηeηt x̃(t)+ eηt ˙̃x(t)

=
{
Am(t)+ ηI

}
eηt x̃(t)+ Lm(t)F(tk )Ceηtk x̃(tk )

+1A(t)eηtx(t)− Bw(t)eηtω(t)

= Ām(t)ε(t)+ Lm(t)F(tk )Cε(tk )

+1A(t)xη(t)+ Bw(t)ωη(t), (5)

where Ām(t) := Am(t) + ηI ; xη(t) := eηtx(t); ωη(t) :=
−eηtω(t).

Moreover, the objective of this paper is to solve the follow-
ing problem.
Problem 1: For given scalars h ≥ tk+1 − tk , η ∈ R>0,

and α ∈ [−η, 0), find an observer gain matrix Li with i ∈ Ir
of (3) that satisfies the following criteria:

1) The equilibrium of (4) is exponentially asymptotically
stabilized with decay rate of η+α, when ωη(t) = 0 and
xη(t) = 0.

2) When α = 0 and x̃(0) = 0, the following H∞ criterion
is fulfilled:∫ t

0
εT (s)ε(s)ds− γ 2

∫ t

0
W T (s)W (s)ds ≤ 0, (6)

where γ > 0 is a given scalar; W (s) =

col{ωη(s), xη(s)}.

Before closing this section, we provide the following
lemma required when developing the main results.
Lemma 1: [31] For any s ∈ [tk , t], t ∈ [tk , tk+1) with

k > 0, a symmetric matrix 4ij with (i, j) ∈ Ir × Ir , and a
given scalar δi, if normalized membership functions satisfy
|mi
(
q(t)

)
− mi

(
q(s)

)
| ≤ δi, then,

r∑
i=1

r∑
j=1

mi
(
q(t)

)
mj
(
q(s)

)
4ij � 0

holds if there exist positive definite matrices Rij and Nij, and
any matrices Xij = XTji and Xi(j+r) = XTj(i+r) with (i, j) ∈
Ir × Ir , such that the following LMIs hold:

Mij +Mji � Xij + Xji, (7)

4ij − 2Mij −

r∑
k=1

δk
(
M+ik +M

+

kj

)
� Xi(j+r) + X(j+r)i,

(8)[
Y11 Y12
∗ Y11

]
� 0, (9)

where Mij = Rij − Nij; M
+

ij = Rij + Nij;

Y11 =

X11 · · · X1r
...

. . .
...

Xr1 · · · Xrr

 ;
Y12 =

X1(r+1) · · · X1(2r)
...

. . .
...

Xr(r+1) · · · Xr(2r)

 .

III. MAIN RESULTS
This section provides a sufficient condition solving
Problem 1 based on the following LKF. We modified the
time-dependent LKF given in [28] to be less conservative by
fuzzifying the LKF as follows:

V (t) = V1(t)+ V2(t)+ V3(t), (10)

where

V1(t) = e2αtεT (t)Pm(t)ε(t),

V2(t) = (tk+1 − t)
∫ t

tk
e2αsε̇T (s)Um(s)ε̇(s)ds,

V3(t) = (tk+1 − t)e2αt
[
ε(t)
ε(tk )

]T [E11 E12
∗ E22

] [
ε(t)
ε(tk )

]
,

in which α ∈ (−η, 0] is a given scalar, Pi ∈ Rn×n and
Ui ∈ Rn×n are positive definite matrices to be determined,
and E11 =

(
E1 + ET1

)
/2, E12 = −E1 + E2, E22 = −E2 −

ET2 +
(
E1 + ET1

)
/2, and E1 ∈ Rn×n and E2 ∈ Rn×n are any

matrices to be determined.
In the time-derivative of (10), there exists ṁi

(
q(t)

)
. To han-

dle this nonlinearity, we declare the following assumption
which is commonly used in existing literatures:
Assumption 3: For a given positive scalar ϕi, the time

derivative of membership function is assumed to satisfy the
following condition: ∣∣ṁi(q(t))∣∣ ≤ ϕi. (11)

Next, the following lemma provides a condition of guaran-
teeing (10) to be an appropriate Lyapunov candidate.
Lemma 2: The proposed LKF (10) is positive definite if

there exists a positive definite matrix U ∈ Rn×n such that
the following hold for i ∈ Ir :[

Pi + U + hE11 −U + hE12
∗ U + hE22

]
� 0, (12)

Ui − U � 0. (13)

Proof: First, considering that V1(t) =
t−tk+tk+1−t
tk+1−tk

V1(t)
and Pm(t) � 0, we can rewrite V1(t) as

V1(t) =
t − tk
hk

V1(t)+
tk+1 − t
hk

V1(t)

≥
t − tk
h

V1(t)+
tk+1 − t

h
V1(t). (14)
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Next, if we assume that (13) holds, the following is
obvious:

r∑
i=1

mi(s)
(
Ui − U

)
=

r∑
i=1

mi(s)Ui − U � 0. (15)

Thus, considering α ∈ [−η, 0) and the above, we get

V2(t) ≥ (tk+1 − t)
∫ t

tk
e2αsε̇T (s)U ε̇(s)ds

≥ (tk+1 − t)e2αt
∫ t

tk
ε̇T (s)U ε̇(s)ds. (16)

Now, applying the well-known Jensen’s inequality to the
last term of the above inequality, we have

V2(t) ≥
tk+1 − t
t − tk

e2αt
{∫ t

tk
ε̇(s)ds

}T
U
{∫ t

tk
ε̇(s)ds

}
≥
tk+1 − t

h
e2αt

[
ε(t)
ε(tk )

]T [U −U
∗ U

] [
ε(t)
ε(tk )

]
. (17)

Now, combining V3(t) with (14) and (17) implies that

V (t) ≥
t − tk
h

e2αtεT (t)Pm(t)ε(t)

+
tk+1 − t

h
e2αt

[
ε(t)
ε(tk )

]T
×

[
Pm(t)+ U + hE11 −U + hE12

∗ U + hE22

] [
ε(t)
ε(tk )

]
,

from which we can conclude that LMIs (12) and (13) guar-
antee that V (t) ≥ 0. �
The following lemma is useful to relax the conservative-

ness by introducing some null terms.
Lemma 3: For a positive definite matrix Ui ∈ Rn×n,

if there exist a positive definite matrix Hi ∈ R3n×3n, and any
matrices W1i ∈ Rn×n, W2i ∈ Rn×n, and W3i ∈ Rn×n with
i ∈ Ir such that (7)–(9) hold with

4ij =

[
Hi ∗

W T
i Uj

]
, (18)

then the following inequality is always satisfied

−

∫ t

tk
ε̇T (s)Um(s)ε̇(s)ds ≤ (t − tk )χT (t)Hm(t)χ (t)

+2χT (t)Wm(t)
{
ε(t)− ε(tk )

}
,

(19)

where χ (t) = col{ε(t), ε̇(t), ε(tk )}; Wm(t) = col{W1m(t),
W2m(t),W3m(t)}.

Proof: It is obvious that the following holds:

0 �

[
0 Wm(t)U

−1/2
m (s)

0 U1/2
m (s)

][
0 Wm(t)U

−1/2
m (s)

0 U1/2
m (s)

]T
=

[
Wm(t)U−1m (s)W T

m (t) Wm(t)
∗ Um(s)

]
.

Multiplying col{χ (t), ε̇(s)}T and col{χ (t), ε̇(s)} left- and
right-hand sides, respectively, and integrating the above from
s = tk to s = t , we have

0 ≤
∫ t

tk

[
χ (t)
ε̇(s)

]T [Wm(t)U−1m (s)W T
m (t) Wm(t)

∗ Um(s)

] [
χ (t)
ε̇(s)

]
ds

=

∫ t

tk
χT (t)Wm(t)U−1m (s)W T

m (t)χ (t)ds

+2
∫ t

tk
χT (t)Wm(t)ε̇(s)ds

+

∫ t

tk
ε̇T (s)Um(s)ε̇(s)ds. (20)

Now, assuming that there exists Hm(t) ∈ R3n×3n such that,
for s ∈ [tk , t],

Hm(t)−Wm(t)U−1m (s)W T
m (t) � 0,

and by applying the Schur complements, we have

0 ≺
[
Hm(t) ∗

W T
m (t) Um(s)

]
=

r∑
i=1

r∑
j=1

mi
(
q(t)

)
mj
(
q(s)

) [ Hi ∗

W T
i Uj

]

=

r∑
i=1

r∑
j=1

mi
(
q(t)

)
mj
(
q(s)

)
4ij,

where 4ij :=

[
Hi ∗
W T
i Uj

]
, then, from Lemma 1, we know

that the above matrix inequality guaranteed by the LMIs
of (7)–(9).
Then, we can rewrite (20) as follows:

0 ≤
∫ t

tk
χT (t)Hm(t)χ (t)ds+ 2

∫ t

tk
χT (t)Wm(t)ε̇(s)ds

+

∫ t

tk
ε̇T (s)Um(s)ε̇(s)ds

= (t − tk )χT (t)Hm(t)χ (t)+ 2χT (t)Wm(t)
{
ε(t)− ε(tk )

}
+

∫ t

tk
ε̇T (s)Um(s)ε̇(s)ds,

from which we can conclude that (19) holds. �
Remark 5: It is worth mentioning that, due to Um(s) of

V2(t), conventional matrix inequalities for handling an inte-
gral term cannot be used directly to derive the proposed
observer design condition. In other words, if Um(s) of (20)
was a simple matrix U, then the first term of (20) becomes∫ t

tk
χT (t)Wm(t)U−1W T

m (t)χ (t)ds

= (t − tk )χT (t)Wm(t)U−1W T
m (t)χ (t),

which can be found in the conventional approaches. Thus,
the advantage of this lemma is to derive the condition for
an integral term with a fuzzified matrix Um(t). Moreover,
Lemma 3 allows the additional slack variables in the observer
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design condition, which relaxes the conservativeness of a
sufficient condition, resulting in improved state estimation
performance.

Summarizing the above, we propose the following theorem
that provides a solution to Problem 1.
Theorem 1: For given scalars h > 0, η > 0, α ∈ [−η, 0),

β > 0, σ > 0, λB, λ1, ϕi > 0, and δi > 0 with i ∈ Ir ,
the error dynamics (5) satisfies the conditions of Problem 1,
if there exist positive definite matrices Pi, Ui, Hi, U , Rij,
Nij, a symmetric matrix Z , and any matrices W1i, W2i, W3i,
L̄i, M, E1, E2, Xij = XTji , Xi(j+r) = XTj(i+r) of appropriate
dimensions, such that the LMIs (7)–(9), (12)–(13),

Pi + Z ,� 0 (21)

91i :=

[
81i + h82i ∗

�i −3−1

]
≺ 0, (22)

92i :=

[
81i + hHi ∗

�i −3−1

]
≺ 0, (23)

simultaneously hold with

4ij =

[
Hi ∗

W T
i Uj

]
,

where Wi = col{W1i,W2i,W3i};

8li =


φl11,i ∗ ∗

φl21,i φl22,i ∗

φl31,i φl32,i φl33,i

 with l ∈ {1, 2}; (24)

φ111,i = 2αPi + Pϕ − E11 + sym
{
W1i +MT Āi

}
+ I ;

φ121,i = Pi +W2i −M + βMT Āi;

φ122,i = −β
(
M +MT )

;

φ131,i = −W
T
1i +W3i − ET12 + C

TFT0 L̄i;

φ132,i = −W
T
2i + βC

TFT0 L̄i;

φ133,i = −W3i −W T
3i − E22;

φ211,i = 2αE11;

φ221,i = ET11; φ
2
22,i = Ui;

φ231,i = 2αET12; φ
2
32,i = ET12; φ

2
33,i = 2αE22;

�i =

 M βM 0
M βM 0

σFT0 L̄i βσFT0 L̄i σ−1F2C

 ;

3−1 =


γ 2

λB
I 0 0

0
γ 2

λ1
I 0

0 0 I

 ; Pϕ =
r∑
i=1

ϕi
(
Pi + Z

)
.

In addition, the observer gain is obtained by Li = M−T L̄Ti .
Proof: First, the time derivative of V1(t) is as follows:

V̇1(t) = 2e2αtεT (t)Pm(t)ε̇(t)+ 2αe2αtεT (t)Pm(t)ε(t)

+e2αtεT (t)Ṗm(t)ε(t), (25)

where Ṗm(t) =
∑r

i=1 ṁi
(
q(t)

)
Pi.

Moreover, it is obvious from the property of a membership
function that, for any symmetric matrix Z ∈ Rn×n, the fol-
lowing holds

r∑
i=1

ṁi
(
q(t)

)
Z = 0.

Then, assuming that (11) and (21) hold, we have

Ṗm(t) =
r∑
i=1

ṁi
(
q(t)

)(
Pi + Z

)
≤

r∑
i=1

ϕi
(
Pi + Z

)
. (26)

Considering (26), we can rewrite (25) as follows:

V̇1(t) ≤ 2e2αtεT (t)Pm(t)ε̇(t)+ 2αe2αtεT (t)Pm(t)ε(t)
+e2αtεT (t)Pϕε(t), (27)

where Pϕ =
∑r

i=1 ϕi
(
Pi + Z

)
.

Next, V̇2(t) becomes

V̇2(t) = (tk+1 − t)e2αt ε̇T (t)Um(t)ε̇(t)

−

∫ t

tk
e2αsε̇T (s)Um(s)ε̇(s)ds

≤ (tk+1 − t)e2αt ε̇T (t)Um(t)ε̇(t)

−e2αt
∫ t

tk
ε̇T (s)Um(s)ε̇(s)ds, (28)

because α ∈ (−η, 0].
Assuming that (7)–(9) hold with (18), from (19) of

Lemma 3, we can majorize the last term of (28) as follows:

V̇2(t) ≤ (tk+1 − t)e2αt ε̇T (t)Um(t)ε̇(t)
+(t − tk )e2αtχT (t)Hm(t)χ (t)
+2e2αtχT (t)Wm(t)

{
ε(t)− ε(tk )

}
. (29)

In addition, the time derivative of V3(t) becomes

V̇3(t) = 2(tk+1 − t)e2αt
[
ε(t)
ε(tk )

]T [
E11 E12
∗ E22

] [
ε̇(t)
0

]
+(tk+1 − t)2αe2αt

[
ε(t)
ε(tk )

]T [
E11 E12
∗ E22

] [
ε(t)
ε(tk )

]
−e2αt

[
ε(t)
ε(tk )

]T [
E11 E12
∗ E22

] [
ε(t)
ε(tk )

]
. (30)

On the other hand, following Assumption 2, the closed-
loop of the system (5) becomes

ε̇(t) = Ām(t)ε(t)+ Lm(t)F0Cε(tk )
+Lm(t)F0F1(tk )Cε(tk )
+1A(t)xη(t)+ Bw(t)ωη(t),

from which we know that the following always holds for any
matrix M ∈ Rn×n and a given positive scalar β:

0 = 2e2αt
{
Mε(t)+ βM ε̇(t)

}T
×

{
− ε̇(t)+ Ām(t)ε(t)+ Lm(t)F0Cε(tk )

+Lm(t)F0F1(tk )Cε(tk )
+1A(t)xη(t)+ Bw(t)ωη(t)

}
= 21(t)+22(t)+23(t), (31)
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where

21(t) = 2e2αt
{
Mε(t)+ βM ε̇(t)

}T
×

{
− ε̇(t)+ Ām(t)ε(t)+ Lm(t)F0Cε(tk )

}
,

22(t) = 2e2αt
{
Mε(t)+ βM ε̇(t)

}T
×

{
Lm(t)F0F1(tk )Cε(tk )

}
,

23(t) = 2e2αt
{
Mε(t)+ βM ε̇(t)

}T
×

{
1A(t)xη(t)+ Bw(t)ωη(t)

}
.

By defining the column vectorχ (t) = col{ε(t), ε̇(t), ε(tk )},
21(t) can be rewritten as

21(t) = e2αtχT (t)2̂1m(t)χ (t), (32)

where

2̂1m(t) =

 sym{ĀTm(t)M} ∗ ∗

−M + βMT Ām(t) −β(M +MT ) ∗

CTFT0 L
T
m(t)M βCTFT0 L

T
m(t)M 0

 .
Moreover, we can rewrite 22(t) as follows:

22(t) = 2e2αt
[
ε(t)
ε̇(t)

]T [ MTLm(t)F0
βMTLm(t)F0

]
F1(tk )Cε(tk ).

(33)

Applying the well-known matrix inequality of

XTY + Y TX ≤ σXTX + σ−1Y TY , (34)

where X and Y are matrices, and σ is a given scalar, (33)
becomes

22(t) ≤ e2αt
{
σ

[
ε(t)
ε̇(t)

]T [ MTLm(t)F0
βMTLm(t)F0

]
×

[
MTLm(t)F0
βMTLm(t)F0

]T [
ε(t)
ε̇(t)

]
+σ−1εT (tk )CTFT1 (tk )F1(tk )Cε(tk )

}

≤ e2αt
{ ε(t)ε̇(t)

ε(tk )

T
 σ

1
2MTLm(t)F0

σ
1
2 βMTLm(t)F0
σ−

1
2CTFT2



×

 σ
1
2MTLm(t)F0

σ
1
2 βMTLm(t)F0
σ−

1
2CTFT2


T  ε(t)ε̇(t)

ε(tk )

}, (35)

here we employed the condition FT1 (tk )F1(tk ) ≤ F
T
2 F2 given

in Assumption 2.
Similarly, by applying the inequality (34) to23(t), we have

23(t) = 2e2αt
[
ε(t)
ε̇(t)

]T [ MT

βMT

][
1T
A (t)

BTw(t)

]T [
xη(t)
ωη(t)

]
≤ e2αt

{[
ε(t)
ε̇(t)

]T [ MT MT

βMT βMT

]

×

[
ρ1I 0
0 ρ2I

] [
M βM
M βM

] [
ε(t)
ε̇(t)

]
+ρ−11 xTη (t)1

T
A (t)1A(t)xη(t)

+ρ−12 ωTη (t)B
T
w(t)Bw(t)ωη(t)

}
, (36)

where ρ1 and ρ2 are given positive scalars.
Summarizing the result of (31) with (32), (35), and (36),

we have

0 = 21(t)+22(t)+23(t)

≤ e2αt
[
χT (t)

{
2̂1m(t)+�T

m(t)3�m(t)
}
χ (t)

+ρ−11 xTη (t)1
T
A (t)1A(t)xη(t)

+ρ−12 ωTη (t)B
T
w(t)Bw(t)ωη(t)

]
, (37)

where 3 = diag{ρ1I , ρ2I , I };

�m(t) =

 M βM 0
M βM 0

σ
1
2FT0 L

T
m(t)M σ

1
2 βFT0 L

T
m(t)M σ−

1
2F2C

 .
To guarantee the H∞ performance criterion (6), adding

e2αt
{
εT (t)ε(t)− γ 2W T (t)W (t)

}
to V̇ (t) and summariz-

ing (27), (29), (30), and (37) yield

V̇ (t)+ e2αt
{
εT (t)ε(t)− γ 2W T (t)W (t)

}
≤ e2αt

[
2εT (t)Pm(t)ε̇(t)+ 2αεT (t)Pm(t)ε(t)+ εT (t)Pϕε(t)

+2χT (t)Wm(t)
{
ε(t)− ε(tk )

}
+ εT (t)Iε(t)

−

[
ε(t)
ε(tk )

]T [E11 E12
∗ E22

] [
ε(t)
ε(tk )

]
+χT (t)

{
2̂1m(t)+�T

m(t)3�m(t)
}
χ (t)

+xTη (t)
{
ρ−11 1T

A (t)1A(t)− γ 2 I
}
xη(t)

+ωTη (t)
{
ρ−12 BTw(t)Bw(t)− γ

2 I
}
ωη(t)

]
+(tk+1 − t)e2αt

{
2
[
ε(t)
ε(tk )

]T [E11 E12
∗ E22

] [
ε̇(t)
0

]
+2α

[
ε(t)
ε(tk )

]T [E11 E12
∗ E22

] [
ε(t)
ε(tk )

]
+ε̇T (t)Um(t)ε̇(t)

}
+(t − tk )e2αtχT (t)Hm(t)χ (t)

= e2αtχT (t)
{
81m(t)+�T

m(t)3�m(t)
}
χ (t)

+e2αt (tk+1 − t)χT (t)82m(t)χ (t)

+e2αt (t − tk )χT (t)Hm(t)χ (t)

+e2αtxTη (t)
{
ρ−11 1T

A (t)1A(t)− γ 2 I
}
xη(t)

+e2αtωTη (t)
{
ρ−12 BTw(t)Bw(t)− γ

2 I
}
ωη(t),

where 81m(t) and 82m(t) are defined in (24).
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From the above, we know that V̇ (t) + e2αt
{
εT (t)ε(t) −

γ 2W T (t)W (t)
}
≤ 0 for t ∈ [tk , tk+1) is guaranteed by the

following conditions:

e2αtχT (t)
{
81m(t)+�T

m(t)3�m(t)

+(tk+1 − t)82m(t)+ (t − tk )Hm(t)
}
χ (t) ≤ 0 (38)

and

e2αtxTη (t)
{
ρ−11 1T

A (t)1A(t)− γ 2I
}
xη(t) = 0, (39)

e2αtωTη (t)
{
ρ−12 BTw(t)Bw(t)− γ

2I
}
ωη(t) = 0. (40)

The conditions (39) and (40) are satisfied when ρ−11 =
γ 2

λ1

and ρ−12 =
γ 2

λB
. Moreover, we can rewrite (38) as follows:

(38) ≤ e2αt
tk+1 − t

h
χT (t)

{
81m(t)+�T

m(t)3�m(t)

+h82m(t)
}
χ (t)+ e2αt

t − tk
h

χT (t)
{
81m(t)

+�T
m(t)3�m(t)+ hHm(t)

}
χ (t) ≤ 0,

which is guaranteed by the following inequalities:

81m(t)+�T
m(t)3�m(t)+ h82m(t) ≺ 0, (41)

81m(t)+�T
m(t)3�m(t)+ hHm(t) ≺ 0. (42)

Finally, by applying the Schur complements on (41)
and (42), we have

r∑
i=1

mi
(
q(t)

)
9li ≺ 0 with l ∈ I2,

where

91i=

[
81i+h82i ∗

�i −3−1

]
;92i=

[
81i+hHi ∗

�i −3−1

]
,

which is guaranteed by the LMIs (22) and (23).
So far, we have derived the sufficient condition for guar-

anteeing V̇ (t)+ e2αt
{
εT (t)ε(t)− γ 2W T (t)W (t)

}
≤ 0. From

now on, we will prove whether the derived condition solves
Problem 1.

First, integrating V̇ (t)+e2αt
{
εT (t)ε(t)−γ 2W T (t)W (t)

}
≤

0 yields

V (t)− V (0)+
∫ t

0
e2αs

{
εT (s)ε(s)− γ 2W T (s)W (s)

}
ds ≤ 0.

Considering V (t) ≥ 0 and assuming α = 0 and x̃(0) = 0,
the above becomes∫ t

0
εT (s)ε(s)ds− γ 2

∫ t

0
W T (s)W (s)ds ≤ 0,

from which we know that the second condition of Prob-
lem 1 is satisfied.

Next, if we assume that ωη(t) = 0 and xη(t) = 0, then
W (t) = 0, which means

0 ≥ V̇ (t)+ e2αt
{
εT (t)ε(t)− γ 2W T (t)W (t)

}
= V̇ (t)+ e2αtεT (t)ε(t) ≥ V̇ (t) for t ∈ [tk , tk+1).

Thus, from
∫ t
0 V̇ (s)ds ≤ 0, we have

V (t)− V (0) ≤ 0,

which implies

λmin(Pi)e2αt‖ε(t)‖2=λmin(Pi)e2(η+α)t‖x̃(t)‖
2
≤V (t)≤V (0).

From the above, we know that the following holds

‖x̃(t)‖ ≤

√
V (0)
λmin(Pi)

e−(η+α)t .

Thus, we can say that the first condition of Problem 1 is
also satisfied. Summarizing the above, we conclude that if
there exists a solution of LMIs (7)–(9), (12)–(13), (22)–(23),
then Problem 1 is solved. This completes the proof. �
Remark 6: Recently, sampled-data fuzzy observer design

problem for oscillating systems has been actively studied. The
main distinguishable features of this study are as follows:
First, by using a time-varying observer gain and fuzzified
LKF, improved state estimation performance is obtained.
Secondly, the problem of membership function mismatching
is easily solved using the H∞ condition. Finally, by consid-
ering the sensor fault, robust state estimation performance is
guaranteed even in the presence of sensor faults.

IV. NUMERICAL EXAMPLES
In this section, two numerical examples are provided to show
the validity and superiority of the proposed method. The
first example shows the comparison results of the state esti-
mation performance according to various sampling periods.
In the second example, the robust state estimation perfor-
mance of the proposed method with respect to the sensor fault
is validated.

A. EXAMPLE 1
In this example, the following nonlinear mass-spring system
is employed [33]:

ξ̈ (t) = −0.01ξ (t)− 0.67ξ3(t)+ 0.1ω(t),

y(tk ) = ξ (tk ).

By choosing the state and premise variables as x(t) =
col{x1(t), x2(t)} = col{ξ (t), ξ̇ (t)} and z(t) = x21 (t), respec-
tively, we constructed the T–S fuzzy model as follows:

ẋ(t) =
2∑
i=1

wi
(
z(t)

){
Aix(t)+ Biω(t)

}
,

y(tk ) = Cx(tk )

where w1
(
z(t)

)
= 1− z(t); w2

(
z(t)

)
= 1− w1

(
z(t)

)
;

A1 =
[

0 1
−0.01 0

]
; A2 =

[
0 1
−0.68 0

]
;

B1 = B2 =
[
0.1
0

]
; C =

[
1 0

]
.

Next, the normalized membership function of the
sampled-data fuzzy observer is chosen asm1

(
q(t)

)
= 1−q(t)

VOLUME 8, 2020 68495



H. S. Kim, K. Lee: Design of a Fault Tolerant Sampled-Data Fuzzy Observer With Exponential

FIGURE 1. The time responses of x̃1(t): Theorem 1 with η = 2 (solid), [16]
(dashed), and [17] (dash-dotted).

and m2
(
q(t)

)
= 1 − m1

(
q(t)

)
with q(t) = x̂21 (t). In addition,

the external disturbance is chosen asω(t) = 0.1e−0.5t sin(3t),
and the sensor fault is modeled as follows:

F(tk ) =
(
f U1 − f

L
1 )

sin(20t)+ 1
2

+ f L1 ,

where f U1 = 0.7 and f L1 = 0.2.
Assuming the maximum allowable sampling period as

h = 0.4 and setting the parameters as (β, σ, ϕi, δi) =
(1, 0.1, 1, 0.5), the following observer gains are obtained by
solving the corresponding LMIs of Theorem 1:

L1 =
[
−3.6663
−2.2303

]
, L2 =

[
−3.5819
−1.5105

]
.

Moreover, the conventional approaches were employed to
compare the performance. For the same maximum allowable
sampling periods, solving the corresponding LMIs of each
method provides the following observer gains:

L1 =
[
1.4996
0.3445

]
, L2 =

[
1.5302
−0.2204

]
, (43)

and

L1 =
[
1.7175
0.9020

]
, L2 =

[
1.7175
0.2377

]
, (44)

where (43) and (44) are the results of [16] and [17],
respectively.

For the initial conditions of x(0) = col{1, 0} and x̂(0) =
col{0,−1}, Figs. 1 and 2 show the time responses of the
estimation error x̃(t) = x(t)− x̂(t) of each method. As can be
seen from the figures, the observer designed by the proposed
method provides better performance than others.

The following H∞ performance along with various max-
imum sampling periods is also measured under the initial
condition of x(0) = x̂(0) = col{1, 0}.

γ ∗ =

√∫ 10
0 εT (t)ε(t)dt√∫ 10

0 {ω
T (t)ω(t)+ xT (t)x(t)}dt

.

FIGURE 2. The time responses of x̃2(t): Theorem 1 with η = 2 (solid), [16]
(dashed), and [17] (dash-dotted).

TABLE 1. Comparison of the H∞ performance. Each performance value is
scaled as 100× γ ∗, and ‘‘INF’’ means infeasible solution.

The result is summarized in Table 1. As can be seen from
the result, the proposed method provides better robust state
estimation performance in the presence of disturbance and
sensor defects compared to the existing methods. In addi-
tion, the proposed method provides a feasible solution at
largest sampling periods in this example. The main reason is
that Theorem 1 is numerically relaxed because it is derived
based on the novel time-dependent fuzzified LKF. That
means, numerically relaxed condition provides smaller γ .
In addition, considering the sensor fault and immeasurable
premise variable also helps improve the estimation perfor-
mance. Moreover, The larger η, the better the estimation
performance, but the maximum allowable h decreases.

B. EXAMPLE 2
This example shows the robustness of the proposed method
with respect to the sensor fault. Consider the Van der Pol
oscillator of the following form [34]:

ζ̈ (t)− µ
(
1− ζ 2(t)

)
ζ̇ (t)+ ζ (t) = ω(t),

y(tk ) = ζ (tk ),

where ζ (t) ∈ [−Mζ ,Mζ ] with Mζ = 2.5; µ = 1; ω(t) =
0.1e−0.5t sin(3t).
As done in Example 1, by choosing the state and premise

variables as x(t) = col{x1(t), x2(t)} = col{ζ (t), ζ̇ (t)} and
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FIGURE 3. The state responses of x1(t) and x̃1(t): x1(t) (solid), x̂1(t) of
the proposed method (dashed), x̂1(t) of [17] (dash-dotted).

FIGURE 4. The state responses of x2(t) and x̃2(t): x2(t) (solid), x̂2(t) of
the proposed method (dashed), x̂2(t) of [17] (dash-dotted).

z(t) = x1(t), the following T–S fuzzy model can be obtained:

ẋ(t) =
2∑
i=1

wi
(
z(t)

){
Aix(t)+ Biω(t)

}
,

y(tk ) = Cx(tk )

where w1
(
z(t)

)
= z2(t)/M2

ζ ; w2
(
z(t)

)
= 1− w1

(
z(t)

)
;

A1 =
[
0 1
−1 µ

(
1−M2

ζ

)] ; A2 = [ 0 1
−1 µ

]
;

B1 = B2 =
[
0
1

]
; C =

[
1 0

]
.

In this example, we assume that there exists a severe sensor
fault which is modeled as

F(tk ) =
(
f U1 − f

L
1 )

sin(200t)+ 1
2

+ f L1 ,

where f U1 = 0.1 and f L1 = 0. This means that only maximum
10% amount of its true value is measured.

Now, using the same parameters with those in Exam-
ple 1 and solving the corresponding LMIs of Theorem 1,
we obtained the following observer gain matrix at h = 0.1:

L1 =
[
−67.6503
−98.2711

]
, L2 =

[
−69.6390
−117.7402

]
,

where η = 2 is used. On the other hand, by solving the LMI
conditions given in [17] at the same sampling period, we have

L1 =
[

8.6710
−22.8237

]
, L2 =

[
8.6710
29.3268

]
.

When the initial conditions are x(0) = col{1, 0} and
x̂(0) = col{0,−1}, the state responses of the system and
sampled-data fuzzy observer are shown in Figs. 3 and 4.
As can be seen from the figures, the sampled-data fuzzy
observer designed by the proposed method gives better
state estimation performance even in the severe sensor fault
circumstance compared to the existing method. Therefore,
we can conclude that the proposed sensor fault compensation
method is valid.

V. CONCLUSION
In this paper, we proposed a method to design a sampled-data
fuzzy observer with time-varying gains for estimating state
variables of a nonlinear system under the sensor fault con-
sideration. To do this, a nonlinear system with immeasurable
premise variables was represented by a T–S fuzzy model.
H∞ performance criterion was defined to handle both the
membership function mismatching problem and the mini-
mization of the state estimation error. A sufficient condition
to ensure exponential stability and H∞ criterion was derived
in terms of LMIs. The fuzzified LKF and the novel matrix
inequality were proposed to relax the conservativeness of the
derived LMI-based sufficient condition. Finally, the simu-
lation examples were given to show the superiority of the
proposed method.
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