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ABSTRACT Electric energy consumption forecasting enables distribution system operators to perform
efficient energy management by flexibly engaging energy consumers under the intelligent demand-response
program in the smart grid (SG). With this motivation, in this paper, a fast and accurate hybrid electrical
energy forecasting (FA-HELF) framework is developed. The proposed framework integrates two modules
with support vector machine (SVM) based forecaster. These modules are data pre-processing and feature
engineering, and modified enhanced differential evolution (mEDE) based optimizer. First, feature selection
algorithms like random forests and relief-F are combined to devise a hybrid feature selection algorithm
to alleviate redundancy. Secondly, for feature extraction, a radial basis Kernel-based principal component
analysis algorithm is employed to eliminate the dimensionality reduction problem. Finally, to conduct
accurate and fast electrical energy consumption forecasting, the mEDE based optimizer is integrated with
the SVM based forecaster. The resulting FA-HELF framework is tested on publicly available independent
system operator New England (ISO-NE) control area hourly load data. The results demonstrate that the
FA-HELF framework is robust and shows significant improvements when compared to other benchmark
frameworks in terms of accuracy and convergence speed.

INDEX TERMS Electrical energy consumption forecasting, energy management, smart grid, grey correla-
tion analysis, differential evolution, radial basis kernel-based principal component analysis, support vector
machine.

I. INTRODUCTION
The electrical power system is a network that includes
two types of agents: power agents (generation, transmis-
sion, and distribution) and consumer agents, where both the
agents attempt to maximize benefits and minimize expenses.
The emergence of advanced metering infrastructure (AMI)
has renovated the legacy power grid with smart grids
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(SGs) [1]–[3]. This renovation has created a platform for both
agents to forecast electrical energy consumption for deci-
sion making in the SG. Thus, electrical energy consumption
forecasting is an indispensable task in planning, operation,
and energy management of the SG. Generically, electrical
energy consumption forecasting has four types based on
time horizon: (i) very short-term forecasting, (ii) short-term
forecasting, (iii) medium-term forecasting, and (iv) long-term
forecasting. The forecast time horizon for these classes ranges
from one minute up to one hour, more than an hour up to a
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week, more than a week up to a year, and more than a year,
respectively.

The first three-term electrical energy consumption
predictions are favorable for the operation and energy man-
agement of the SG. However, long-term forecasting is ben-
eficial for the infrastructure planning and development of
the SG. Thus, it is essential to acquire accurate load fore-
casting because incorrect forecasting may result in improper
operation, planning, and energy management, which leads
to imprudent reservoirs, excessive generators, and additional
operating costs. Moreover, optimistic electrical energy con-
sumption forecast may cause risk to the power grid or lead to
unnecessary energy purchases from operators who have fore-
casted energy consumption accurately by paying high costs.
A few recent papers have highlighted the problem of elec-
trical energy consumption forecasting in [4]–[6]. However,
some authors focused on net electrical energy consumption
forecasting and very few authors focused on sub-metered
electrical energy consumption forecasting. Therefore, elec-
tric energy consumption forecasting issues remain open for
solutions. Realizing the importance of the problem, authors
have developed a variety of electrical energy forecasting
models during the past few years. Recently, a model based on
enhanced deep neural network (EDNN) is developed to pre-
dict week and year ahead electrical energy consumption [7].
In [8], a framework based on a multi-task regressor is pro-
posed to predict electrical energy consumption based on
the recorded energy consumption data by the smart meters.
Sideratos et al. [9] proposed a load prediction model based on
a hybrid DNN (HDNN). The proposed HDNN based model
utilizes key parameters of ANN and deep learning models to
resolve the forecasting issues. Though these papers are a good
start for studying electrical energy consumption forecasting
models, the frameworks used in literature are condemned for
issues like impotent learning, handcrafted features, inaccu-
rate appraisal, insufficient guiding significance, and limited
learning capacity.

Thus, a fast and accurate hybrid electrical energy consump-
tion forecasting (FA-HELF) framework is developed in this
work to solve issues related to electrical energy consumption
forecasting in real-time for efficient energymanagement. The
proposed FA-HELF framework is a hybrid model having
three modules: (i) feature engineering, (ii) forecaster, and
(iii) optimizer. The main features and contributions of this
research are described as follows:

1) A non-linear integrated forecasting framework is
designed that is capable of handling the complex real
situation and is implementable in the energy manage-
ment of the SG.

2) To develop a novel feature engineering framework,
a hybrid feature selector technique is proposed by
fusing two algorithms: relief-F and random forests
techniques, to monitor and control the feature selec-
tion process. Then, a radial basis Kernel-based prin-
cipal component analysis (KPCA) is proposed for

feature extraction to resolve the dimensionality reduc-
tion issue. Finally, the optimizer module based on
modified enhanced differential evolution (mEDE)
algorithm is integrated with the forecaster module
based on SVM to improve the accuracy by optimizing
the hyperparameters.

3) To develop an optimization framework, a novel algo-
rithm namely mEDE is proposed by devising mod-
ifications in the EDE algorithm to enhance forecast
accuracy and convergence speed for efficient energy
management.

4) The proposed FA-HELF framework is tested on hourly-
load data of the ISO New England (ISO-NE) control
area. The experiments validate that the proposed FA-
HELF framework outperforms other existing frame-
works.

The remainder of the paper is structured as follows: First,
the recent and relevant background study of electric load
forecasting is discussed in section II. In section III, the pro-
posed FA-HELF framework is introduced and explained. The
simulation results and discussion are presented in section IV.
Finally, in section V, the paper is concluded along with future
research directions.

II. RELATED LITERATURE STUDY
In this section, the existing recent and relevant research on
electrical energy consumption forecasting for efficient energy
management in the SG is discussed. Various electrical energy
consumption forecasting strategies like statistical methods,
machine learning methods, time series models, dynamic sys-
tems, and hybrid forecasting models are presented. Some of
them are explained below.

A hybrid model is presented in [10] for load forecasting,
which employs the combination of extreme learning machine
(ELM), wavelet transform (WT), and least square regression
(LSR), to improve the forecast accuracy. An ensemble strat-
egy based on WT is proposed to avoid the trivial process
of utilization of the complementary information of wavelet
parameters and wavelet parameter selection to forecast accu-
racy. This model is also extended to electricity price fore-
casting by altering the input variables. However, the criterion
to select decomposition levels and mother wavelet is not
precisely defined. Besides this, the objectives are achieved at
the cost of increased computation time. In [11], a framework
for time-series load forecasting based on random forests and
ensemble of ELM is proposed. The training sample sets
are generated through a bootstrap sampling technique for
random forests-based ELM ensemble model to handle multi-
regime time series forecasting. However, accurate, stable, and
efficient performance is achieved at the cost of high execu-
tion time. Authors developed a subsampled support vector
regression ensemble (SSVRE) framework in [12] to solve
the prediction problem. The accuracy is improved by support
vector regression (SVR) and the learning process is enhanced
by a subset of small sized subsamples. The proposed

VOLUME 8, 2020 96211



G. Hafeez et al.: Hybrid Approach for Energy Consumption Forecasting With a New Feature Engineering

framework is validated on publicly available datasets of New
South Wales and Jiangxi Province. However, some forecast-
ers in the ensemble are more accurate and the final output
should be the average of the single outputs. An integrated
framework of wavelet neural network (WNN), empirical
mode decomposition (EMD), autoregressive integrated mov-
ing average (ARIMA), and fruit fly optimization algorithm
(FFOA) is developed in [13] to predict future load. However,
the accurate load forecasting is influenced by social and
natural parameters that make the prediction process cum-
bersome, time-consuming, and slow. An enhanced Gaussian
process mixture (EGPM) is presented in [14] to solve the
load forecasting problem in the most effective manner. The
efficacy of the model is evaluated by comparing with bench-
mark schemes like Gaussian process mixture (GPM), radial
basis function neural network, and SVM classifier, in terms
of forecast accuracy. The simulation results indicate that
EGPM outperforms existing methods in accuracy. However,
the accuracy is enhanced at the cost of increased compilation
time. In [15], a hybrid model of EMD, general regression
neural network, and FFOA are proposed for load forecasting
having minimal redundancy and maximum relevancy. How-
ever, it is combersome to forecast due to various influencing
parameters that lead to high volatility and computational
complexity. A load forecasting model is presented in [16]
for efficient energy management. The hybrid model is an
integrated framework of least square SVM, auto-correlation,
and grey wolf optimization algorithm. However, efficient
energy management is performed at the cost of high system
complexity.

In [17], a hybrid short-term electric load forecasting frame-
work based on ANN is proposed. The forecasting is achieved
by training the multi-layer neural network using the genetic
algorithm (GA), general regression network, and Elman neu-
ral network. Accurate results are achieved by validating
the system model on real data of Victoria and New South
Wales states of Australia. In [18], authors focused on fea-
tures selection based on genetic strategy and forecasting on
the ELM. The forecasting model is validated on the load
dataset of the Australian electricity market operator (AEMO).
The simulation results validated that the forecasting model
reduced the error and improved forecast accuracy. How-
ever, the ELM degree of freedom reduces with the increase
in network complexity that leads to the problem of model
overfitting. The work in [19] is based on multi-scale mod-
eling for accurate demand forecasting ranging from short-
term to medium-term time horizon. The emphasis of the
authors is more on data analysis. Moreover, both seasonal
and non-seasonal cycles are detected using autoregressive and
moving average methods. The proposed model’s accuracy is
assessed based on the Akaike-Bayesian criterion. The accu-
racy is, however, enhanced while the rate of convergence is
compromised.

A deep learning approach is presented in [20] for the
household load forecasting. The uncertainty in the household
is learned using deep belief recurrent neural network (RNN)

model for accurate load forecasting. However, the increasing
number of layers in the deep model, data, and volume diver-
sitymay sometimes lead to the problem of overfitting. In [21],
a data-driven framework based on copula model and DNN
is proposed for load forecasting. The data is pre-processed
by Box-Cox transformation and the parameters are tuned
using the copula model for accurate load forecasting. The
proposedmodel is tested on the power load data of both Texas
and Arkansas in the United States. The proposed model per-
forms better than classical neural networks and ELM based
models.

A load forecasting framework based on artificial intelli-
gence (AI) and DNN is described in [22] to improve the
electric load prediction process for the South African dis-
tribution network. The proposed model outperforms both
optimally tuned ELM and adaptive neuro-fuzzy inference
system (ANFIS) based models. However, the accuracy of
the forecasting process for the distribution power system is
increased by including the effect of temperature, which in
turn results in slow convergence. In [23], an intelligent hybrid
model based on Kalman filtering (KF), WNN, and ANN
using clustering techniques is presented to forecast the day
and week ahead load of the commercial sector of Egypt and
Canada. However, the accuracy is achieved at the cost of
increased model complexity.

It can be confidently concluded from the literature that
tremendous progress has been made in the field of electric
load forecasting for energy management. However, the exist-
ing methods are weak in processing large data and it is hard to
tune control parameters, which results in high computational
complexity and inability to quickly converge because the
redundancy, irrelevancy, and dimensional reduction are not
averted. Moreover, the aforementioned literature does not
cater for both forecast accuracy and convergence rate simul-
taneously. To solve such problems, a fast and accurate frame-
work is the need of the day. Thus, in [24], SVM and gradient
descent algorithm-based framework is proposed. However,
this framework introduces much computational complexity
and is unable to converge. Some authors focus on feature
selection algorithms and traditional classifier decision trees
and artificial neural networks [25]. However, decision trees
face the problem of overfitting, which means that a decision
tree performs well in training but poorly in prediction, and the
artificial neural network has limited generalization capability
and has difficulty in controlling its convergence. In [26],
the authors proposed hybrid feature selection, extraction and
classification-based framework for load forecasting. How-
ever, this method has high system complexity and is unable
to converge.

In this context, a novel hybrid forecasting FA-HELF frame-
work is designed in this study to forecast the convergence rate
and accuracy simultaneously. The objective of this framework
is to provide fast and accurate forecasting for efficient energy
management to fulfill energy needs of the society. The recent
and relevant work discussed in this section is summarized in
Table 1.
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TABLE 1. A summary of the recent and relevant work in terms of methodologies, proposed approach, forecasting horizon, datasets, objectives, and
limitations.
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FIGURE 1. Proposed schematic framework for fast and accurate electrical energy consumption forecasting with new feature
engineering and optimization modules.

III. PROPOSED HYBRID FRAMEWORK WITH NEW
FEATURE ENGINEERING AND OPTIMIZATION MODULES
The proposed FA-HELF framework has three modules: data
pre-processing and feature engineering module, SVM based
forecaster, and mEDE based optimizer, as depicted in Fig-
ure 1. This work is an extension of our earlier work pub-
lished in a conference [27]. The feature engineering part is
based on Grey correlation analysis (GCA), and radial basis
kernel principal component analysis (KPCA). The forecaster
module is based on SVM. The optimizer module is based
on the proposed mEDE algorithm. The overall step by step
procedure of the proposed framework is depicted in Figure 2,
and a brief discussion is given below:

A. DATA PRE-PROCESSING AND FEATURE ENGINEERING
MODULE
Data from the ISO-NE control area is fed to the data
pre-processing and feature engineering module, which is
composed of two phases: (i) pre-processing, and (ii) feature
engineering, as shown in Figure 2. The brief description of (i)
and (ii) is as follows:

1) DATA PRE-PROCESSING
The first phase is the data pre-processing. In the pre-
processing phase, data cleansing action is conducted on the
dataset to recover defected, erroneous, and missing data by
taking the average of the previous day’s load. Then, the
cleansed data is forwarded to the normalization phase to
pre-prepare the data within limits of the activation func-
tion. After normalization, the normalized data is structured
in descending order via a structuring action. Finally, the
obtained results are normalized to move towards desired
energy consumption forecasting. The prepared and cleansed
data is fed into the feature engineering phase, as depicted in
Figure 2.

2) FEATURE ENGINEERING
The second phase is feature engineering. In this phase, the
abstractive and key features are selected and extracted from
the prepared data, and redundant and irrelevant features are
discarded, as depicted in Figure 2. The desired features from
the dataset are selected and extracted through GCA and radial
basis KPCA, respectively. To control feature selection, the
feature selector is based on GCA, which combines relief-F
and random forests algorithms to calculate the importance
of the features. Furthermore, the feature selector decides
based on feature importance whether to reserve or discard a
feature. The radial basis KPCA based feature extractor uses
the Kernel function to deal with high dimensional non-linear
data because the PCA is not suitable for this dilemma. The
purpose of feature extraction is to reduce redundant features.
A brief demonstration of the feature engineering phase is
given below:

1) Feature selector:
The feature selection process is based on GCA, which
is developed by combining relief-F and random forests
and is controlled by combined controlling threshold σ .
The GCA roughly selects a feature space where the
most relevant and desired features are kept and irrele-
vant features are discarded based on feature importance
and feature selection controlling threshold σ .
The electric load data matrix is represented byD and is
defined as follows:

D =


d11 d12 d13 · · · d1n
d21 d22 d23 · · · d23
...

...
... . .

. . . .
...

dm1 dm2 d13 · · · dmn

 (1)

The columns denote the feature index and rows rep-
resent the time-stamps. Furthermore, dmn is the mth
component of data, which is nth hour ahead of electrical
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FIGURE 2. Step by step working flow chart of the proposed schematic framework for fast and accurate electrical
energy consumption forecasting. Red dotted box shows data pre-processing and feature engineering module,
green dotted box shows SVM based forecaster module, and the blue dotted box represents mEDE algorithm-based
optimization module.

energy consumption pattern that is to be forecasted.
Equation 1 can also be written in the time sequence
form as:

D =


t1
t2
...

tn

, (2)

where,

tj = [dj1 dj2 dj3 · · · djn] j ∈ [1,m] . (3)

The different features have various degrees of impact
on forecasted electrical energy consumption patterns,
and the GCA calculates the importance of each fea-
ture and its influence on electrical energy consump-
tion forecasting. The GCA determines the correlation
between each feature and the final electrical energy

consumption pattern to effectively control the feature
selection process. The GCA via correlation determines
the closeness between data signals. Closer the two data
signals, greater is the correlation and vice versa. Thus,
GCAmeasures the closeness between two data signals.
Since each feature has different physical meaning and
different dimension in a framework, when the GCA is
carried out, non-dimensional data is normalized either
via their average value or the maximum value. The
original data sequence is normalized as follows:

χ∗i (j) =
χi (j)−minχi (j)

maxχi (j)−minχi (j)
(4)

where χ0 (j) , i ∈ [1, n] and χi (j) = αij, i ∈ [1, m]
are the two sequences, n is the count of features, and
m is the time sequence length. The Grey correlation
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coefficient, after normalization, is calculated as:

Cg
(
χ∗0 (j) , χ

∗
i (j)

)
=

1min+ ρ1max

1oi (j)+ ρ1max
, ρ ∈ (0, 1)

1oi (j) =
∣∣χ∗0 (j)− χ∗i (j) ∣∣ ,

1max = maxi,j
∣∣χ∗0 (j)− χ∗i (j) ∣∣ ,

1min = mini,j
∣∣χ∗0 (j)− χ∗i (j) ∣∣ , (5)

where ρ represents a distinguishing coefficient, which
is set as 0.50 by [28]. The grade of Grey correlation is
determined as follows:

1min = mini,j
∣∣χ∗0 (j)− χ∗i (j) ∣∣ ,

Gi
(
χ∗0 , χ

∗
i
)
=

∑m
j=1 Cg

(
χ∗0 (j) , χ

∗
i (j)

)
m

(6)

The low correlated features are dropped and the
remaining selected features are sorted in descending
order and the time sequence becomes as follows:

ti = [dj1 dj2 dj3 · · · djn−δ], (7)

where δ is the dropped features and ti is the time
sequence.
After GCA, the data sequence is passed through feature
selectors. At this stage, the data sequence is processed
by two evaluators: relief-F evaluator κ , and random
forests evaluator γ , respectively. The purpose of eval-
uators is to evaluate the importance of each feature
to select desired features. The feature evaluation and
selection processes are shown in Algorithm 1. The first
evaluator is the random forests evaluator that moves on
boot-strap bagging samples [29]. The bagged samples
are divided into training samples and out of bag sam-
ples. For the first evaluator γ , all weights are initialized
to zero, and the training of random forests is initiated.
Then, the feature’s importance is determined by the
out of bag data with noise. For the second evaluator κ ,
weights are updated on the concept of distance among
near hits and misses. The two evaluators (γ and κ) for-
ward the determined feature importance to the selector
to perform feature selection based on the controlling
threshold.
In Algorithm 1, r [n] represents the random forests hav-
ing n number of decision trees. The ωF [τj] and ωr [τj]
represent feature importance that is calculated by relief-
F and random forests, respectively. The parameters are
updated as follows:

ωF [τj] = ωF [τj]−

∑j
i=1 diff (D, d

∗, Hi)

m ∗ j

+

∑
C 6=class(χ) diff (D, d

∗, Mi(C))

m ∗ j
, (8)

where in class Ci, d∗ represents randomly selected
item, and function diff (D, r1, r2) calculates differ-
ence D between r1 and r2. Mathematical definition of

the difference function is as follows:

diff =


0 values are different
1 values are same
Difference between attributes is
normalized to be within [0 1]

(9)

The features selection process is based on importance
ωF and ωr , respectively. Both are normalized as fol-
lows:

_
ω
r
=

ωr

max (ωr )

_
ω
F
=

ωF

max
(
ωF
) (10)

The features that have combined importance value
greater than σ are considered as key features, while
those features that have combined importance value
less than σ are considered as irrelevant features. The
key features are kept and irrelevant features are dis-
carded. This process is mathematically modelled by
Equation 11.

τj =

{
keep ωr [τj]+ ωF [τj] > σ

discard ωr [τj]+ ωF [τj] ≤ σ
(11)

The selected features are sent to the feature extraction
phase based on a radial basis KPCA to remove redun-
dancy among the selected features.

2) Feature extractor:
In the second phase, the feature extraction operation is
performed, which is based on radial basis KPCA. The
purpose of this operation is to remove the redundant
information to resolve dimensionality reduction issue.
The output of the feature selector is given as an input
to the radial basis KPCA based feature extractor in
order to generate dimensionally reduced matrix having
desired and most relevant features, which can be mod-
elled as:

S = (s1, s2, s3, . . . , sN )T , (12)

where si is the ith variable related to the electric load.
The correlation of features and eigenvalues is computed
as:

λe = V f ∗e, λ ≥ 0 & e ∈ f ∗, (13)

where λ represents the eignevalue, V denotes covari-
ance matrix of S, and f ∗ denotes the feature space.
Moreover, V f ∗e is calculated through Equation 13:

V f ∗e =
1
N

N∑
i=1

〈ϕ (si) , e〉ϕ (si) ,

N∑
k=1

ϕ (sk) = 0, (14)

where ϕ denotes input data mapping and feature space,
and 〈s, y〉 represents the product of s and y. Equation 13
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becomes Equation 15 by devising the above modifica-
tions:

λ 〈ϕ (sk) , e〉 =
〈
ϕ (sk) ,V f ∗e

〉
, (15)

where e for λ = 0 can be determined as:

e =
N∑
i=1

βiϕ (si), (16)

where βi represents coefficients that correspond to si.
Now, the Kernel function defined in [30] is used as:

Kij =
〈
ϕ (si) , ϕ

(
sj
)〉
∀ i, j ∈ [1, N ] (17)

Equations 15 and 16 are combined, and the combined
form is defined as follows:

λ

N∑
i=1

βiKi =
1
N

N∑
i=1

βi

N∑
j=1

KkiKij, (18)

where βi represents coefficients that correspond to si
and β = [β1, β2, . . . , βN ]T , then Equation 15 can be
rewritten as:

λNKβ = K 2β (19)

The eigenvectors β and λ are selected to perform
dimensionality reduction via normalization. Therefore,
we have: 〈

ei, ej
〉
= 1 ∀ i, j ∈ [1, N ] . (20)

The resultant Equation 21 can be obtained by substitut-
ing Equation 16 in Equation 20, which is as follows:〈

N∑
i=1

βki ϕ (si),
N∑
j=1

βkj ϕ
(
sj
)〉

= 1

=

N∑
i=1

N∑
j=1

βki β
k
j
〈
ϕ (si) , ϕ

(
sj
)〉

=

N∑
i=1

N∑
j=1

βki β
k
j Kij

= 〈βk , Kβk 〉

= λk 〈βk , βk 〉 (21)

The principal component extraction can be determined
in the following manner:

pk = 〈ek , ϕ (s)〉 =
N∑
i=1

βki 〈ϕ (si) , ϕ (s)〉, (22)

where p shows the principal component. The Kernel
functions have the following generic forms:

Linear form : K (s, y) = 〈s, y〉

Activation basis form : K (s, y)

= tanh
(
α0〈s, y〉d + α1

)

Radial basis form :

K (s, y) = exp
(
−θ‖s− y‖2

)
(23)

The feature extraction phase is shown in Algorithm 1. After
the feature engineering phase, the selected and extracted fea-
tures matrix is fed as an input to the forecaster module based
on SVM to forecast electrical energy consumption pattern.

B. SVM BASED FORECASTER
The data is cleaned after the data pre-processing and fea-
ture engineering phases, and has no redundant and irrelevant
features anymore. This module achieves desired electrical
energy consumption forecasting through the cleaned and pro-
cessed data. Various machine learning techniques exist in
the literature for electrical energy consumption forecasting.
The SVM, among the machine learning models, is chosen
as a forecaster for electrical energy consumption forecast-
ing due to its robust and efficient performance to produce
accurate results with less computational time. In this section,
we formulate and investigate the classification problem. The
SVM based forecaster is depicted in Figure 2 and the detailed
description of the problem is as follows:

1) PROBLEM FORMULATION
The classification problem is mathematically modeled as:

f (s, p) =
D∑
i=1

piχi (s)+ ∂, (24)

where p∞i (i = 1, 2, 3, . . .) are the parameters of the forecaster
to be determined, D is the dimensional space, and ∂ depends
on data distribution and parameters of the classifier. The
objective of SVM is to define a hyperplane in D-dimensional
feature space that differentiates the data points. In this work,
the hyperplane is defined in Equation 24. After that, the
regularized risk function is defined as:

RF (p) =

D∑
i=1

∣∣Lai − f (s, p)∣∣ς + σp2
D

, (25)

where σ represents feature selection controlling threshold, ς
denotes insensitive loss function parameter, and Lai represents
the target electrical energy consumption pattern. The mini-
mization of this regularized risk function is required to obtain
the parameter p. Robust error function can be computed as
follows:

s =

{
0 if

∣∣Lai − f (s, p)∣∣ < ς∣∣Lai − f (s, p)∣∣ otherwise.
(26)

In Equation 26, a function is used to minimize Equation 25
and can be modeled as:

f
(
s, α, α∗

)
=

N∑
i=1

(
α∗ − α

)
K∗ (s, si)+ ∂, (27)
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where α∗ ≥ 0 for all values of i. K∗ (s, y) is the Kernel
function for SVM that shows dot product in the feature space
f ∗ of radial basis KPCA as:

K∗ (s, y) =
D∑
i=1

χi (s)χi (y) (28)

The Kernel function makes χi feature not needed to be
calculated in an infinite feature space. The α and α∗ can be
achieved by maximizing the quadratic form as:

R
(
α∗, α

)
= −ς

N∑
i=1

(
α∗i + αi

)
+

N∑
i=1

Lai
(
α∗i − αi

)
−

1
2

N∑
i,j=1

(
α∗i + αi

) (
α∗i − αi

)
K∗ (si, yi) . (29)

The SVM based forecasting process is indicated in Algo-
rithm 1. The forecasted energy consumption pattern is fed
into the optimizer module to improve the accuracy by further
minimizing the error.

C. MODIFIED ENHANCED DIFFERENTIAL EVOLUTION
ALGORITHM BASED OPTIMIZER
The goal of this module is to further improve the forecast
accuracy by minimizing regularized risk function. Since the
returned value of the regularized risk function from SVM
based forecaster is minimum as per its capabilities, therefore,
the optimizer module is integrated with the forecaster based
on SVM to further minimize the regularized risk function.
Thus, the optimization module takes the regularized risk
function minimization as an objective function. But this func-
tion is related to the hyper parameters like Kernel parameters
ξ , cost penalty ϑ , and insensitive loss function parameters
ς . However, optimizing these hyperparameters for fast, accu-
rate, and efficient load forecasting is still a crucial issue. In
this view, scholars have used various methods like gradient
descent algorithm, cross validation, and back-propagation
algorithm to optimize hyperparameters [31]. However, these
methods have high computational complexity and are unable
to converge.

Therefore, DE among the optimization algorithms is cho-
sen due to two reasons: (i) it avoids premature convergence,
and (ii) it has optimal search capbility. Authors in [32] used
an improved version of DE (EDE), which is proposed in [33].
The work done in [32] is enhanced in terms of accuracy of the
trial vector generation and the convergence rate. Therefore,
mEDE is used with SVM model to optimally tune and select
control parameters, as shown in Figure 2. The SVM with
mEDE is depicted in Figure 3. A brief discussion is given
below:

In [32], the trial vector V for ith individual in t generation
is represented as follows:

Vt (i, j) =

{
ut (i, j) if rand(j) ≤ FF (Ut (i))
xt (i, j) if rand(j) > FF (Ut (i), )

(30)

FIGURE 3. Support vector machine with modified enhanced differential
evolution algorithm.

where ut (i, j) is the mutant vector, and and xt (i, j) is the
parent vector. In Equation 30, FF () represents the fitness
function ranging between 0 and 1, and rand() represents the
random number that lies between 0 and 1. Based on Xt (i) and
Yt (i), the next generation Xt+1(i) offspring is generated as:

Vt+1 (i, j) =
{
Vt (i, j) if RF (Vt (i)) ≤ FF (xt (i))
xt (i, j) otherwise.

(31)

From the above Equations 30 and 31, it is obvious that the
selection of next generation t + 1 offspring depends on trial
vector of the previous generation that relies on rand() and
FF() functions. The EDE algorithm in [32] updates load
values by comparing random number rand() with fitness
FF(). This random updating of load is a big puzzle. Thus, this
issue is resolved by removing the dependence of offspring
selection on the randomly generated number. The process
of updating load values is devised by comparing the fitness
function of the candidate load value with the previous load
value. Thus, the new load values will become optimal and
will contribute to the improvement of the forecast accuracy.
The devised modifications in Equation 30 are as follows:

Vt (i, j) =


ut (i, j) if

Xt (i)
Xt (imax)

≤ FF (Ut (i))

xt (i, j) if
Xt (i)

Xt (imax)
> FF (Ut (i))

(32)

In this view, the fitness function of parent and mutant
vectors is defined in [32] as:

FF (Ut (i)) =
1

RF (Ut (i))
1

RF (Ut (i))
+

1
RF (Xt (i))

(33)

FF (Xt (i)) =
1

RF (Xt (i))
1

RF (Xt (i))
+

1
RF (Ut (i))

(34)

In fitness functions of Equations 33 and 34, it is assumed
that each mathematical operator, i.e., division and addition,
requires 1 unit of time to execute. Since Equations 33 and 34
will take 5 units of time in each iteration to execute, therefore,
according to [32], the total iterations for EDE algorithm are
100. During each iteration, one fitness function is calculated
by EDE in 500 units of time and two fitness functions are
computed in 1000 units of time. Thus, to alleviate the execu-
tion time and improve the convergence speed, the modifica-
tions in the fitness functions in Equations 33 and 34 are as
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FIGURE 4. Five-year historical hourly load data of independent system
operator New England control area with year index.

follows:

FF (Ut (i)) =
RF (Xt (i))

RF (Ut (i))+ RF (Xt (i))
(35)

FF (Xt (i)) =
RF (Ut (i))

RF (Xt (i))+ RF (Ut (i))
(36)

Using Equations 35 and 36, the algorithm takes 400 units of
time to calculate two fitness functions in 100 iterations. In this
way, the convergence speed of the EDE algorithm used in [32]
is enhanced. The pseudo-code of the proposed framework is
presented in detail in Algorithm 1.

IV. SIMULATION RESULTS AND DISCUSSION
To evaluate the validity and applicability of the proposed
FA-HELF framework, extensive simulations are performed
using MATLAB. For this evaluation, the hourly load data of
the ISO-NE control area is used. The used dataset includes
5-year (from 2008 to 2013) historical load data with hour
resolution, and is publicly available at [34]. The hourly load
data is split into three datasets: training, testing, and vali-
dation, as depicted in Figure 4. The 80% load data is for
training, and the remaining 20% is kept for testing and vali-
dation purposes, respectively. For validation, the FA-HELF
framework is compared with benchmark frameworks like
F-RBF-CNN [9], SDPSO-ELM [35], and SSA-SVM-CS [36]
in terms of convergence speed and accuracy. These frame-
works are selected because of their architectural resemblance
with the proposed FA-HELF framework, which is needed for
a fair comparison. The simulation parameters are listed in
Table 2 and are kept the same for the proposed and benchmark
schemes. The detailed description of the simulation results is
presented as follows:

In feature engineering, the first GCA is applied to the
selected abstractive features from the hourly load data of the
ISO-NE control area during 01-01-2008 to 31-12-2013 time
horizon by calculating the correlation between features and
the target load. The purpose is to remove irrelevant features.
As the correlation threshold grade (σ ) is set to 0.5 by [28],

TABLE 2. Parameters used in the simulations for the proposed FA-HELF
framework and benchmark frameworks like SSA-SVM-CS F-RBF-CNN, and
SDPSO-ELM.

FIGURE 5. Performance evaluation of KPCA with different Kernel
functions and PCA.

the features having a value less than this threshold σ are
discarded and the features having a value greater than σ are
reserved. The importance value of the reserved features is
evaluated through two evaluators, γ and κ , as described in
Algorithm 1. We observed that with the increase of feature
selection threshold σ , large features are dropped, which leads
to the best training speed and worst forecast accuracy.

Then, the radial basis KPCA in feature engineering is
used to extract principal components and eliminate redundant
information within the reserved features. The comparison of
KPCA, PCA, and different Kernels in terms of cumulative
contribution is depicted in Figure 5. The radial basis KPCA
can extract principal components and the cumulative contri-
bution approaches 95%, as depicted in Figure 6. Thus, among
the different Kernels, radial basis function is chosen as the
Kernel for KPCA because radial basis KPCA distributes data
points along coordinate axes to extract principal components,
which contributes in the accurate load forecasting.

A learning curve of error vs the number of epochs for
SVM based forecaster is depicted in Figure 7, which enables
us to evaluate whether the selected model is learning or
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Algorithm 1 Pseudo-Code of the Proposed FA-HELF Framework for Energy Consumption Forecasting

Importinputs : ωr [τj] = 0, ωF [τj] = 0,D[], andr[n] Output :LFi = LF1 , L
F
2 , L

F
3 , . . . ,L

F
n

begin
Restore the defective and missing values by data cleansing phase
Normalize the data w.r.t. its maximum value by data normalization phase
Change the data structure by data structuring phase
Parameters initialization: set all weights equal to zero and read data from D = []
First evaluator γ : Evaluation based on first evaluator γ
begin

for k = 1 : m do do
for i = 1 : n do do

Determine errOOB1i using OOB dataset of decision tree [i]
Add noise randomly to OOB dataset on feature τk
Determine errOOB2i using OOB dataset of decision tree [i]

end

Determine the importance of the feature ωr [τj]←

n∑
i=1

errOOB2i−errOOB1i

n
end

end
Second evaluator κ: Evaluation based on second evaluator κ
begin

for i = 1 : m do do
Randomly choose an item in class Ci
Findout k nearest hits item Hj(Ci)
For each class Cj 6= Ci
Findout k nearest hits itemMj(Ci)

end
for i = 1 : m do do

Update ωF [τi] using Equation 8
end
Feature selector: Select features based on ωF and ωr

begin
Normalize ωF and ωr using Equation 10
Perform feature selection using Equation 11

end
end
Feature extractor
begin

Perform feature extraction based on KPCA using Equations 11-23
end
Forecaster
begin

Perform electrical energy consumption forecasting using SVM based forecaster using Equations 24-29
end
Optimizer
begin

Perform optimization on regularization risk function based on mEDE to optimally tune parameters using
Equations 30-36

end
Return fast and accurate results

end

memorizing the data. At the start, when the number of epochs
is zero, the error is maximum, indicating that the SVM based
forecaster is not well trained. When the number of epochs
increases, the error decreases, indicating that the SVM based

forecaster is training. During this training course, a point is
reached where the error is not decreased any further with
the increase in epochs. That point is known as saturation
point and the SVM based forecaster is well trained by that
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FIGURE 6. Radial basis KPCA in terms of cumulative contribution.

FIGURE 7. Proposed model learning curve on training and testing data
samples for 100 number of iterations.

time. The simulation results of the well-trained network for
hourly electrical energy consumption forecasting, weekly
electrical energy consumption forecasting, and monthly elec-
trical energy consumption forecasting are discussed at the
same time.

The performance evaluation of FA-HELF framework and
the benchmark schemes such as F-RBF-CNN [9], SDPSO-
ELM [35], and SSA-SVM-CS [36] in comparison with actual
electrical energy consumption pattern with an hour time
horizon is shown in Figure 8. The statistical analysis of
the proposed FA-HELF framework and benchmark frame-
works in terms of mean absolute percentage error (MAPE)
is listed in Figure 3. The proposed FA-HELF framework
based forecasted electrical energy consumption pattern is
closely related to the target electrical energy consumption
pattern, which demonstrates that significant improvement in
forecast accuracy is obtained when the optimization module
and feature engineering module are integrated with the fore-
caster module based on SVM. The SSA-SVM-CS framework
outperforms both F-RBF-CNN and SDPSO-ELM in terms of
MAPE. Moreover, F-RBF-CNN outperforms SDPSO-ELM
in terms ofMAPE. The superior performance of the proposed

TABLE 3. Evaluation of the proposed FA-HELF framework and the
benchmark frameworks like SSA-SVM-CS, F-RBF-CNN, and SDPSO-ELM in
terms of MAPE (%) for the 28 May 2013 with hour resolution.

FA-HELF framework is due to the integration of feature engi-
neering and optimization module with the forecaster module
based on SVM. Feature engineering avoids irrelevancy and
redundancy, and the optimization module helps to minimize
the error by optimizing hyperparameters.

Table 4 illustrates statistical evaluation of forecasted
electrical energy consumption and target electrical energy
consumption in terms of accuracy, where FA-HELF and
benchmark frameworks: F-RBF-CNN [9], SDPSO-ELM [35],
and SSA-SVM-CS [36], are chosen for analysis. The
table shows that the average MAPE for a specific day
(28 May 2013) is significantly reduced in case of the
proposed FA-HELF framework. The MAPE of the pro-
posed FA-HELF framework, SDPSO-ELM, F-RBF-CNN,
and SSA-SVM-CS, is 0.410%, 1.655%, 0.988%, and 0.899%,
respectively. Hence, FA-HELF has improved accuracy of
75.22%, 58.50%, and 54.39% in comparison to the bench-
mark frameworks SDPSO-ELM, F-RBF-CNN, and SSA-
SVM-CS, respectively.

Figure 9 illustrates the evaluation of target electrical
energy consumption vs forecasted electrical energy consump-
tion for the proposed FA-HELF framework and benchmark
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TABLE 4. Evaluation of accuracy in terms of MAPE of the proposed framework FA-HELF and benchmark frameworks like SSA-SVM-CS, F-RBF-CNN, and
SDPSO-ELM by taking target electrical energy consumption as a reference.

FIGURE 8. Hourly electrical energy consumption forecasting on May 28,
2013 of ISO-NE control area. The cyan-line represents the target energy
consumption pattern, the red, blue, black, and green, represent FA-HELF,
SDPSO-ELM, SSA-SVM-CS, and F-RBF-CNN frameworks based forecasting,
respectively.

frameworks for the week time horizon of 12/22/2013 to
12/29/2013. The week ahead results provide electrical energy
consumption forecasting for different days including work-
ing days, holidays, and weekends. Results demonstrate
that the proposed FA-HELF framework enhanced the fore-
cast accuracy by 76.80%, 58.56%, and 55.39% as com-
pared to SDPSO-ELM, F-RBF-CNN, and SSA-SVM-CS,
respectively.

The forecasted electrical energy consumption vs target
electrical energy consumption evaluation for the month ahead
time horizon (11/01/2013 to 11/30/2013) is illustrated in
Figure 10. The monthly forecasted results demonstrate the
significant enhancement in forecast accuracy. This improve-
ment in forecast accuracy is due to the integration of both
prior feature engineering and post mEDE algorithm based
modules with SVM based forecaster. The simulation results
show that the FA-HELF framework improved the fore-
cast accuracy by 77.65%, 58.66%, and 57.39% as com-
pared to SDPSO-ELM, F-RBF-CNN, and SSA-SVM-CS,
respectively.

The accuracy results in terms of MAPE of the proposed
FA-HELF framework and benchmark models like F-RBF-
CNN, SSA-SVM-CS, and SDPSO-ELM are for different
months of the year 2013, as listed in Table 5. The simulation
results in Table 5 demonstrate that the proposed FA-HELF
framework and benchmark models like SDPSO-ELM,

TABLE 5. Evaluation of the proposed FA-HELF framework and the
benchmark frameworks like F-RBF-CNN, SSA-SVM-CS, and SDPSO-ELM, in
terms of MAPE (%) for the year 2013 with monthly time horizon.

F-RBF-CNN, and SSA-SVM-CS have average MAPE of
0.41, 2.12, 1.79, and 1.44, respectively.

The performance analysis of FA-HELF and benchmark
frameworks like F-RBF-CNN [9], SDPSO-ELM [35], and
SSA-SVM-CS [36] in terms of computational time is
depicted in Figure 11. The individual models, ELM, CNN,
and SVM, without the integration of both feature engineering
and optimization modules have low computational time and
worst error performance. However, when both feature engi-
neering and optimization modules are integrated with these
individual models, the computational time is increased and
the error is reduced due to the tradeoff between accuracy and
convergence rate. The statistical evaluations of the proposed
FA-HELF framework and benchmark frameworks in terms
of forecast errors and computational time are listed in Table
6. The average values of computational speed and forecast
error for both individual (ELM, CNN, and SVM) models and
hybrid (F-RBF-CNN, SDPSO-ELM, SSA-SVM-CS, and FA-
HELF) models for daily, weekly, and monthly time horizon
are listed in Table 6. The first row, second row, and third-
row show daily, weekly, and monthly evaluations of models
(both individual and hybrid), respectively, in terms of com-
putational speed and forecast error. The computational speed
of individual models without the integration of both feature
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FIGURE 9. Week ahead (12/22/2013 to 12/29/2013) electrical energy consumption forecasting of the
ISO-NE control area. The cyan-line shows the target energy consumption profile, the red, blue, black,
and green, represent FA-HELF, SDPSO-ELM, SSA-SVM-CS, and F-RBF-CNN frameworks based
forecasting, respectively.

FIGURE 10. Month ahead (11/01/2013 to 11/30/2013) electric energy consumption forecasting on
the ISO-NE control area. The cyan-line shows the target electrical energy consumption profile, the
red, blue, black, and green, represent FA-HELF, SDPSO-ELM, SSA-SVM-CS, and F-RBF-CNN frameworks
based forecasting, respectively.

engineering and optimization modules (ELM, CNN, and
SVM) and hybrid models with the integration of both feature
engineering and optimization modules (SSA-SVM-CS, F-
RBF-CNN, SDPSO-ELM, and FA-HELF) is computed on
a Core(TM)-i3-3110M, CPU@2.40 GHz with 8 GB RAM
system. The individual models, ELM, CNN, and SVM, have
the lowest computational time of 170 sec, 185 sec, and 115
sec, respectively, while the hybrid models have increased
computational time of 242, 512, 355, and 285 secs for
SDPSO-ELM, F-RBF-CNN, SSA-SVM-CS, and FA-HELF
frameworks, respectively. The increase in computational
time is encountered as the optimizer module or the feature
engineering module, or both modules are integrated with
the individual forecaster models. Moreover, this increment
in time is due to the trade-off between convergence speed
and accuracy, thus achieving more accuracy at the cost of

surplus computational time. The proposed FA-HELF
framework reduces the computational time by devising
modifications in the EDE optimization algorithm (see
Equations: 35-36).

Thus, the feature engineering module rectifies the feature
space by removing redundant and irrelevant features and the
optimization module based on the mEDE algorithm tunes
the control parameters of the SVM, which ensures accurate
electrical energy consumption forecasting.

Robustness evaluation of the proposed FA-HELF
framework and benchmark frameworks like SDPSO-ELM,
F-RBF-CNN, and SSA-SVM-CS is depicted in Figure 12.
The evaluation is conducted by adding error (noise) to
each feature and observing the accuracy of each scheme.
The proposed FA-HELF framework is more robust than the
benchmarks frameworks like SSA-SVM-CS, F-RBF-CNN,
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TABLE 6. Evaluation of actual and forecasted electrical energy consumption in terms of MAPE and computational time of individual frameworks (ELM,
CNN, and SVM) and hybrid frameworks like SSA-SVM-CS, SDPSO-ELM, F-RBF-CNN, and FA-HELF for day ahead, week ahead, and month ahead time
horizon.

FIGURE 11. Comparative evaluation of the proposed and benchmark
frameworks with and without integration of feature engineering and
optimization modules.

FIGURE 12. Comparative evaluation of the proposed and benchmark
frameworks in terms of robustness.

and SDPSO-ELM as illustrated in Figure 12, because the
noise within features has little influence on accuracy, and
therefore, less important and irrelevant features are dropped
during the feature engineering phase. Thus, the proposed FA-
HELF framework is also robust against noise in the features.

V. CONCLUSION AND FUTURE WORK
In this work, a non-linear framework (FA-HELF) is pro-
posed to perform efficient and accurate energy consumption

forecasting for energy management in smart grid. The pro-
posed framework combines random forests and relief-F with
GCA to choose the most appropriate features, and uses radial
basis KPCA for the extraction of features to overcome the
dimensionality reduction problem. The selected and extracted
features provide the most relevant information about elec-
trical energy consumption to train SVM based forecaster.
In addition, the mEDE optimization algorithm is used in
the proposed framework to optimize the hyperparameters for
improving the forecast accuracy along with minimizing the
computational time.

To analyze the validity of FA-HELF framework, load data
with hour resolution of the ISO-NE control area is used.
We can draw the following conclusions based on our results
and evaluation: (i) GCA and radial basis KPCA feeds the
most relevant and desired features to the SVM based fore-
caster and removes the redundant and irrelevant features
from the input data to improve the forecasting performance;
(ii) although feature engineering assists in the improve-
ment of forecast accuracy, mEDE optimization algorithm
contributes in the improvement of both convergence rate
and forecast accuracy; (iii) the proposed FA-HELF frame-
work is better as compared to the benchmark frameworks
like SDPSO-ELM, F-RBF-CNN, and SSA-SVM-CS. Simu-
lation results show that the developed framework is robust,
fast, and powerful to forecast electrical energy consump-
tion for efficient energy management. Thus, it is believed
that the proposed FA-HELF framework is scalable and reli-
able and can be applied in real-life for efficient energy
management.

In future, some other advanced heuristic techniques for
suitable parameter selection can be integrated with SVM
based forecaster for fast and accurate electrical energy con-
sumption forecasting. Moreover, the advanced heuristic tech-
niques can be integrated with advanced deep learning models
and the work can be extended to medium-term and long-term
electrical energy consumption forecasting.
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