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ABSTRACT Timely and efficient analysis of big data collected from various gateways installed in a smart
city is an intractable problem and requires immediate priority. Given the stochastic and massive nature of
big data, the existing literature often relies on artificial intelligence techniques based on information theory.
As a new approach, this paper presents a knowledge extraction method based on an analysis of Seoul Metro’s
’untraceable’ ridership big data. Without identification information, the untraceable ridership data only
shows the hourly accumulation of station entry and exit information. To reconstruct the missing information
in the data set, this study proposes a fluid dynamics model and adopts a heuristic genetic algorithm based on
optimization theory as the problem solver. The result of our model presents the distribution of the elapsed
time defined on an hourly basis taken until a passenger returns to the station they departed from. To validate
our model, we acquired subway ridership data with passengers’ identification with permission from Seoul
Metro. This paper presents two novel aspects of subway ridership, namely the dependency on departure
time and the discrepancy between weekend and weekday traffic. Our analytical approach contributes to
solving the problem of extracting hidden knowledge from big collection of data missing critical information,
e.g., constantly and autonomously gathered data fragments from numerous gateways in smart cities.

INDEX TERMS Inverse problem, genetic algorithm (GA), optimization, wave decomposition, harmony
search algorithm, mass conservation law, data mining, outdoor duration time, Seoul metro subway ridership.

I. INTRODUCTION
A subway system is one of the most important infrastructures
of a smart city and subway operations generate big data con-
tinuously and massively from the numerous sensor-equipped
gateways. Most of the existing research regarding subways
has focused on analyzing the number of passengers using a
particular subway station or subway line. Through this type of
analysis, policy data on the facilities and staffing of subway
stations or subway lines can be derived. As the concept of
the smart city spreads and efforts to implement it increase,
there is a growing need for research that goes beyond existing
trends [1], [2]. The ultimate goal of smart city implementation
is to improve the quality of life of the citizens living in such
cities [3]. To this end, as Lytas et al. insist, big data analysis
requires a different perspective [4].

Despite the potential value of big data, we often face diffi-
cult challenges to extract meaningful patterns from big data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Miltiadis Lytras .

The goal of this paper is to propose an effective analytical
approach to the problem by analyzing the ’untraceable’ big
data collected from Seoul Metro, South Korea. Seoul is the
capital of South Korea and is the country’s center of politics,
economy, culture, and education. It can be stated with cer-
tainty that Seoul is a representative mega city. The population
of Seoul was 9, 776, 000 as of 2017. Most of the mega cities
suffer from traffic congestion, and Seoul is no exception. The
resulting traffic congestions are one of the factors that reduce
the quality of life of residents living in mega cities. Residents
in a mega city may often use the subway to depart and arrive
on time. In this regard, the average daily passenger load of
Seoul Metro was 7, 793, 000 as of 2017 [5]. Passengers who
use the Seoul Metro tag their tickets every time they enter
and exit through subway ticket gates. These tags are stored in
a boarding database and produce big data.

As an attempt to develop an analytical approach to finding
the hidden patterns from big data, we tapped into the Seoul
Metro’s untraceable big data with permission. The untrace-
able dataset has no identification information regarding
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passengers who enter and exit the stations. The ridership data
only contains passengers’ hourly cumulative entry and exit
counts. Containing 1.8 billion passenger entry/exit records,
the database we accessed contains approximately 2 million
lines of entry and exit data during a year’s period, from
Mar. 2016 to Feb. 2017.Without passenger identification (ID)
records, the data contains no information regarding how long
it takes for a specific passenger to return back to the station
if the passenger uses the same station for entry and exit.

The goal of this paper is to develop an effective analytical
approach to extract hidden knowledge from Seoul Metro’s
untraceable big data. To accomplish this goal, this study
adopted a fluid dynamics model, applied an optimization
solver, and generated a heat map that predicts the lifestyles
of residents who use the subway. Through these analytical
approaches, this study attempts to find a way to determine
how long a passenger using a particular subway station is
active elsewhere before returning to the subway station. If we
can determine this, we can predict the lifestyles of users living
or working in the area around a specific subway station. For
example, when people return after 2 − −2 hours to the sub-
way on a weekday, they are likely ’shopping’ or performing
’leisure’ activities rather than working at an office. In this
manner, by finding amethodology for predicting the lifestyles
of subway station users, which is expected to be the main
public transportation of smart cities, it is possible to develop
policies that can improve the quality of life of smart city
citizens.

Toward this purpose, the paper proceeds as follows.
The second section reviews related existing studies. The
third section presents a theoretical perspective based on a
mathematical model that can analyze subway usage data for
one year. The fourth section describes an analytical method
and presents a software tool that can analyze one-year data
based on the defined mathematical model. The fifth section
performs the computations to solve the problems. The sixth
section presents test results and performs validation. The
seventh section presents discussions regarding the analysis
results and concludes the paper.

II. RELATED STUDIES
Related research to our work is categorized into six groups:
smart city, subway system, daily routine analysis, human
activity recognition, unveiling of new associations from large
datasets, and heuristic GA-based harmony search.

Margarita [1] conferred a new definition of a smart city.
Visvizi and Lytras [2], Lytras and Visvizi [3], Lytras [4],
and Lytras et al. [10] proposed policy making considerations,
provided a roadmap toward the evolution of big data, and
raised the issue of ‘‘normative bias’’ problems related to smart
city research. Xiaolei et al. [11] demonstrated a data-mining
procedure using transit data for Beijing, China. Christina and
Konstantinos [12] argued in favor of combining optimization
models with data originating from information technology
services (ITS). Rosario et al. [13] reviewed the advancement
of emergent technologies, and their implementations and

applications with respect to smart power grids and cities.
Andrè Luis et al. [14] identified the most important drivers
for smart cities from the perspectives provided by profes-
sionals from four broad areas of expertise: applied social
sciences, engineering, exact and Earth sciences, and human
sciences. Joshua et al. [15] insisted that cities cannot com-
plete the evolution into smart cities on their own without
support from national governments. Murad et al. [16] pro-
posed energy-aware communication systems for the Inter-
net of Things (IoT) environment. Lee et al. [17] proposed
a conceptual framework for building smart cities to con-
duct comparative case studies by integrating six different
perspectives.

Yang et al. [18] considered the optimization problem for
timetables in subway systems. Subway passenger flow
forecasting models were presented for peak-hour flow by
Pan et al. [19], for special event occurrences by Ni et al. [20],
and for the Beijing subway using spatiotemporal correlations
by Wang and Cai [21]. Machine learning methods were
adopted for various subway passenger flow prediction mod-
els: Wang et al. [22] used the radial basis function (RBF) and
a support vector machine (SVM), and Sun et al. [23] applied
wavelet-SVM to the Beijing subway system. A stochastic
approach using a Markov chain Monte Carlo (McMC) model
for the route-use patterns of metro passengers was pre-
sented by Lee and Sohn [24]. A Bayesian approach taken by
Sun et al. [25] is noteworthy. Passenger distributions on sub-
way platforms were studied using ant colony optimization by
Yang et al. [26].
With the prevalent use of displacement sensing devices that

include geo-positioning systems (GPS) and smart cards, daily
route analysis has attracted attention, particularly in terms
of marketing and public transportation policy. For example,
Tao et al. [27], Liu et al. [28], and Flognfeldt [29] presented
methods for traffic pattern analysis for the bus, taxi, and
tourism industries, respectively, and Li et al. [30] presented
a morning commute route analysis regarding public trans-
portation. With the growth of research interest, large-scale
public transportation datasets have become available to sup-
port research activities, including the datasets provided by
Hodge [31] and Karg and Kirsch [32].

Compared to macro-level route analysis as in the above-
mentioned studies, low-level human activity recognition
using mobile sensors has attracted considerable attention.
Kazu et al. [33] summarized early stage theories and pre-
sented an analytic perspective of trip chaining behavior in
Osaka, Japan. Padmaja et al. [34] examined reality mining
with respect to human behavior analysis, whereas Blanke
and Schiele [35] suggested a discriminative classifier for
daily routine activities such as working and commuting, and
Nikola et al. [36] adopted the inference rule to predict causal
relationships between situations and actions. Recently, aggre-
gation with ambience sensing toward activities of daily living
(ADL), particularly as it relates to nursing homes, has become
amajor research topic [37]–[41]. A public dataset for this type
of study has been made available [42], [43].
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The recent trend of using data-mining techniques in
combination with machine learning was thoroughly intro-
duced by Witten et al. in [44]. Yadav et al. [7] adopted
algorithms to handle both structured and unstructured big
data, and Wu and Theodoratos [6] employed an incremen-
tal frequency computation method to extract non-redundant
maximal homomorphic patterns. Chen et al. [45] applied a
data-mining algorithm to IoT to extract hidden information
from data, and David et al. [46] introduced a mathematical
measure, namely, maximal information-based nonparametric
exploration statistics, to identify and classify novel relation-
ships in large datasets. Finally, researchers at Princeton Uni-
versity [47] applied data-mining to explore hidden patterns
between a knowledge machine (KM) and its performance.

A harmony search (HS) is a stochastic-genetic-algorithm-
based technique that we adopted in this study to solve an opti-
mization problem. Its application area was recently expanded
by Geem et al. [48], Geem [49], Mahdavi et al. [50], Omran
and Mahdavi [51], and Geem and Sim [52]. Criticism regard-
ing the method was raised by Chen et al. [45]. For the past
three decades, heuristic genetic algorithms (Gas) have served
as advanced tools for large scale optimization problems
and specialize in escaping from local extrema [53]–[56].
Recently, GAs have drawn attention in various academic and
industrial fields as a new paradigm for convolutional neural
network (CNN)-based deep learning techniques because of
their hyper-parameter optimization capability [28], [57].

III. THEORETICAL PERSPECTIVE
Extraction of hidden patterns subtly buried in big data has
been a central topic in various advanced prediction scientific
fields [6]–[8] Our main interest is on how to infer new infor-
mation by modeling the inverse problem from a large-scale
legacy relational database. The inverse problem in math-
ematical science has three components: observational data
(dobs), an underlying natural law (F), and model parameters
of interest (P). It finds the model parameters p ∈ P, which
produce the observational data dobs :

dobs = F(p), (1)

where F and p denote the underlying natural law and
model parameters [9], respectively. For example, consider the
Earth’s gravitational field based on the density of subsurface
rocks. Denote this density as dobs, the observational result of
local gravity. Newton’s law of gravity is well known and is
given as

dobs =
G · p
r2

, (2)

where dobs is a measure of local gravity, G is the universal
gravity constant, p is the local mass of the rock in the subsur-
face, and r is the distance from the mass to the observation
point. Consider the case in which measurements are obtained
from two locations: d1 and d2. We then have two unknown
masses: p1 and p2. We denote rij as the distance between the

i-th observation point and the j-th mass.

[
dobs1
dobs2

]
=


G

r211

G

r212
G

r221

G

r222

[ p1p2
]

(3)

The solution for the linear system defined by Eq.3 is
straightforward.

Ep = F−1Edobs (4)

In this manner, the unknown property of the underground
rock can be identified by the observed data dobs through the
natural law of gravity.

We presented a simple working example for applying
the inverse problem to evaluate a parameter of interest.
In this study, our relational database table includes seven
field columns: date, subway line ID, station ID, station name,
hour, hourly cumulative entry counts, and hourly cumulative
exit counts. Let us assume that all the passengers take round
trips and they must return to the station from which they
departed, i.e., depart at station A, exit at station B, after
spending several hours elsewhere, enter station B, and exit
at station A. The assumption seems unrealistically strong.
However, we can validate that it is actually acceptable, which
is summarized later, in the (§.VI Results) section using a
ground truth dataset. Briefly speaking, over 58% of ridership
data are round trips, and approximately 93% of the round trips
satisfy the above assumption. From the ridership database,
we construct a new database. A unit data structure of the
new database is ‘‘passenger transit’’, which is defined as a
round trip by a passenger (satisfying the assumption above),
which consists of two tuples: times of entry and exit, both at
station s.

T sp (d) := (Ti|s) (Te|s) (5)

Here, p, s, d , Ti, and Te denote a passenger, station ID, date,
time of entry, and time of exit, respectively. The ridership data
for a specific date and station s, Rs(d), is then expressed as

Rs(d) =
∑
p

T sp (d). (6)

Thus, the total ridership data during the years 2016 and 2017
corresponds to

R(2016, 2017) =
∑
d

∑
s

∑
p

T sp (d), (7)

where 2016 and 2017 indicate the years. However, a round
trip instead of a single trip must be recorded, which is
explained later. For the round trip of a passenger, the data
structure is a tuple of passenger transit defined as(
T S0p (d)|T S1p (d)

)
:= ((Ti|s0) (Te|s0) |(Ti|s1) (Te|s1)) , (8)

where the first element of the tuple is the transit record
for traveling from station S0 to station S1, and the second
element is the reverse. Taking the ridership data of the Seoul
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Metro subway, R, as the observational data, our ultimate
goal is to reconstruct Tp(d) for each passenger’s trip record.
However, this requires too many parameters, including the
personal identification of each passenger of the Seoul metro
subway, which is not feasible. Instead, we delimit our study
to reconstruct the average distribution of the outdoor duration
time (ODT) of passengers in terms of E

〈
T sp
〉
p
, which is the

ensemble average of transit records in terms of passengers.
The measure of a passenger’s ODT is defined by the differ-
ence between the exit and entry times of T S0p (d). Consider
the following episode: a passenger enters station A at the
hour hiA, is transported to station B, exits station B at the
hour heB, engages in personal activities outside the subway
station, enters stationB at the hour hiB, is transported to station
A, and exits from station A at the hour heA. The measure of
ODT is defined as

ODT := heA − h
i
A (9)

Here, we address the following question: is it feasible
to estimate this ODT measure from the observational data?
The immediate problem is that our observational data do not
include a passenger’s ID. How can we identify a passenger
who has entered station A in the morning and returns back
to the same station in the evening without knowing their ID?
Our solution to the question is to adopt the inverse problem
by applying the conservation law of mass to traffic.

IV. DATA AND MODEL DESCRIPTION
Consider a simple example to understand how to (par-
tially) reconstruct the unavailable information. The Seoul
Metro subway system collects transit records of passengers,
as shown in Table 1. A passenger with ID-001 enters station
A at 07:00 and exits station B at 7:30. After 10 hours pass,
the passenger with ID-001 enters station B at 17:00 and exits
stationA at 17:30. On the other hand, a passenger with ID-002
makes a round trip from station A to station C during the
period between 08:00 and 18:30. For the sake of argument,
assume that this raw data is inaccessible; alternatively, only
ridership data logged at each station (see Table 2) is available.

TABLE 1. List of subway transit records. Each record contains two logs:
station name, and time of entry and exit. According to the list, we can
infer that the passenger with ID-001 made a round trip between A and B,
and the one with ID-002 made a round trip between A and C.

At each subway station, hourly cumulative counts of pas-
sengers at the entry and the exit are recorded. The transit
records shown in Table 1 are reflected as ridership data
at the three stations A, B, and C, as shown in Table 2.

TABLE 2. Subway ridership data logged at each station. The raw data is
the list of transit records shown in Table 1.

From the ridership data of ‘‘STATION A’’ shown on the left
in Table 2, it can be observed that two passengers made round
trips from station A, but it is not feasible to identify which
passenger returned at 17:00 to station A (did the passenger
enter at 07:00 or 08:00), because passenger ID information
is unavailable when producing ridership data. There are two
possible scenarios for the transit records of the passengers,
as presented in Table 3.

TABLE 3. Two possible passenger transit scenarios.

In scenario 1, the passenger departed at 07:00 from station
A and returned at 17:00 (after 10 hours) and the second
passenger departed at 08:00 returned at 18:00 (also after
10 hours). In scenario 2, the former departed at 07:00 and
returned at 18:00 (after 11 hours) and the latter departed at
08:00 and returned at 17:00 (after 9 hours). The two scenarios
are equally probable if there is no further information avail-
able. Here is where the main idea of the conservation law of
mass is applied. The transit records at station B and C (as
shown in Table 4) imply that scenario 1 matches 100% while
scenario 2 represents a mismatch.

TABLE 4. Transit records at station B and C. These can be obtained from
Table 2.

We have demonstrated our underlying idea for solving the
inverse problem by applying the mass conservation law using
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a simple example. Owing to the simplicity of the example,
we did not introduce our optimization solver. Our full scale
model with optimization is described below.

As presented in Appendix, the subway map of Seoul
city shows that the subway system has nine lines with 291
stations. The sizes of the station datasets are summarized
in Table 5. The total number of records in the database is
approximately 291× 365× 24 = 2, 549, 160.

TABLE 5. Data summary of Seoul metro subway.

Figure 1 presents a snapshot of the raw data obtained
from the Department of Transportation (DOT) of Seoul City,
showing that the type of database is relational and that the
records consist of seven columns of parameters. The first row
can be interpreted as follows: At hour 0 on April 1, 2016,
52 passengers entered and 276 exited the gates at the station.
For demonstration purposes, we selected the YAKSU station
on Line 3, which is located in a residential area near the Han
River in Seoul City. YAKSU is a station located in a typical
residential area (courtesy of D.O.T of Seoul city, R.O.Korea).

FIGURE 1. Snapshot of raw data (hourly logs) on entering and exiting
passengers at YAKSU station on April 1,2016. The total entries and exits
are 17,807 and 16,898, respectively.

We adopt the conservation law of mass based on a fairly
strong assumption that a passenger will return to a particular
station. As seen in Figure 1, the numbers of entries and exits
at the YAKSU station for April 1, 2016 were 17, 807 and
16, 898, respectively. The two numbers are weakly equal at
the 95% confidence level.

Figure 2 provides the frequency graphical representation
of entry and exit data recorded in Table 5. For convenience of
presentation, the blue and red curves indicate entry and exit

FIGURE 2. Frequency representation of entry and exit data. The X axis
indicates hours (from 00:00 to 23:00) and the Y axis is the number of
passengers.

data, respectively. Both of the colored curves show peaks in
the morning and evening. The graph also reveals that the blue
curve indicates a higher frequency level from 06:00 to 16:00,
whereas the red curve indicates that the higher frequency is
from 17:00 until 02:00. This seems to indicate that passen-
gers leave in the early morning from home and return after
spending a certain number of hours outside of the subway.

Each of the colored frequencies can be decomposed into
a series of unitary functions. We propose a unitary function
that is a combination of two delta functions [58].

U (τ,4T ) := δt (τ ; i)+ δt+4T (τ ; e) (10)

Here, δ is the Dirac-Delta function and the second arguments
i and e indicate entries and exits, respectively. It is reasonable
to state that the frequency data are observational data from the
conservation law ofmass. This implies that the frequency data
can be decomposed using the unitary function of Eq.10. The
unitaryU (t) value is designed to fit the data shown in Table 5,
where the table consists of two columns: ’entry’ and ’exit’.
Using U (τ,4T ), δT (τ ; i), we can fit the blue graph (entry
data) and δT+4T (τ ; e) is used to fit the red graph (exit data)
from Figure 2.

FIGURE 3. Illustration of Eq.10 shows definition of a unitary function U as
the combination of two Dirac-delta functions, δτ and δτ+4T ; the first term
is for entry ridership and the second is for exit ridership, respectively.

Figure 3 explains the Dirac-Delta representation of Eq. 10
by illustrating the temporal procedure of a round-trip
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passenger: a passenger enters subway station A at hour T1,
exits subway station B at T2, re-enters station B at T3 after
some time, and returns to station A at T4. As a result, the pas-
senger spends 4TA(= T4 − T1) hours before returning to
station A. The blue peak signal bar at the left and the red one
at the right illustrate the two Dirac-delta functions defined
in Eq.10. At T1, the entry ridership count of station A is
increased by 1, and at T4, the exit ridership count of station
A is increased by 1. On the other hand, from the perspective
of station B, this round trip can be interpreted another way:
a passenger enters subway station B at time T3 and returns at
time T2 the next morning after spending4TB(= 24−T3+T2)
hours elsewhere.

The summation of U (τ,4T ) for all the passengers will
match the columns for entry and exit data. Consider the
following formula.

9(s, d) =
∑
d∈D

∑
s∈S

23∑
4T=0

23∑
τ=0

aτ,4T · U(τ ,4T ) (11)

Here, D and S denote the date and station, respectively, and
aτ,4T is constant. It is straightforward that 9(s, d) matches
the ridership table data by its definition if (s, d) indicates a
single station and single date, respectively. However, if we
expand the range of (s, d) to all stations and all avail-
able dates, then 9(s, d) is an overdetermined system con-
sisting of several linear equations with 24 × 24 unknown
parameters(aτ,4T ). Eq.11 is a typical optimization problem.
We introduce the following proposition to prove the solvabil-
ity of our formula.
Proposition 1: For any given period of dates and a certain

set of stations, it is feasible to calculate aτ,4T for 9(s, d),
which satisfies the following constraint equation:

argmin
(
aτ,4T

)
{|9 − R|}, (12)

where 9 is defined in Eq.11, R is ridership data, and τ,
4T = 0, 1, . . . , 23.

Proof: Daily ridership at a given station is expressed by
two discrete functions as follows:

f = {f [0], f [1], . . . , f [23]}, for entry data

g = {g[0], g[1], . . . , g[23]}, for exit data

where f and g represent the blue and red curves shown
in Figure 2, respectively. Daily ridership for a specified group
of stations (S) and for a given period of dates is expressed as
follows:

F(S,D) = {f | station ∈ S and date ∈ D}

G(S,D) = {g| station ∈ S and date ∈ D}

We denote R(S,D) := {F(S,D),G(S,D)}, where R cor-
responds to the Seoul Metro subway ridership data during
March, 2016 to Feb. 2017. We constructed a computational
optimization model as described by Eq.12 and adopted a
heuristic GA algorithm for a computation simulation of
Eq.12, which is described in detail in the next section.

First, we explain the property of the conservation law of
mass by integrating it with the wave decomposition method
as follows.

Here, we present a wave decomposition process using the
elementary functionU (τ,4T ) (see Figure 3 and Eq.12) from
raw ridership log data. One round trip of a passenger, from A
to B and back from B to A, adds a ridership of up to four in
the following manner: add 1 to the entry log at A, exit log
at B, entry log at B, and exit log at A. The entry log time at A
was T1 and the exit log time at A after the passenger returned
was T4 = T1 + 4TA. The ridership changes involved in this
trip episode can be represented by the elementary function
U (τ,4T ) defined in Eq.11. In this manner, the two columns
of entry and exit data can be written as 24×24 summations of

23∑
τ=0

23∑
4T=0

aτ,4T · U (τ,4T ).

The aτ,4T values denote 24× 24 matrix elements, which are
illustrated in Figure 4.

FIGURE 4. Table decomposition. The entry and exit tables are
decomposed by entry time based on outdoor duration length. In the
right-side table, αij represents the number of passengers who entered at
the i -th hour and exited at the (i + j )-th hour through a gate of station A.

A Further description of decomposition follows. As seen
in Figure 4, a number f0 of passengers entered station A
between 00:00 and 01:00, and returned to exit A after spend-
ing a few hours outside the station. Their exit records must
be added to one of the {g0, . . . , g23}. Among the passengers,
a certain number, α0,0, came back within 1 hour (by 01:00),
α0,1 within 2 hours (by 02:00), and later than 02:00, · · · , and
finally a certain number, α0,23, returned within 24 hours. It is
natural to think that the number f0 was decomposed into α’s,
where f0 =

∑23
j=0 α0 j. Similarly, fi =

∑23
j=0 αij for each hour

i = 0,· · · ,23. The decomposed table can be considered as a
24×24 matrix. In this manner, daily ridership of a station
is transformed into a matrix. Note that the table at the right
represents ridership for a specific station and date. In general,
the values of the elements, αij, are variables representing the
station and date, that is, αij(d, s).

Eq.13 seems to apply an unrealistically strong assumption
for construction of the conservation model. We validate that
this assumption is acceptable at the end of §VI based on
results using ground truth data.

F :=
23∑
i=0

fi =
23∑
i=0

gi =: G (13)
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Under the assumption of F = G, the matrix representation[
αij
]
for the wave decomposition of ridership is straightfor-

ward. Furthermore we introduce a normalized matrix� from
the decomposed table

[
αij
]
.

� =

 ω0,0 · · · ω0,23
...

. . .
...

ω23,0 · · · ω23,23

 (14)

Here,

ωi,j =
αi,j∑

n
∑

m αm,n
.

Therefore the coefficient value αi,j from � corresponds to
Eq.15 below.

αij = F · ωij (15)

We claim that the matrix � can thus represent the character-
istics of daily ridership. �

V. COMPUTATIONS
The coefficient of unitary function U (τ,4T ), appearing as
aτ,4T in Eq.11 actually corresponds to αij in Eq.15, where
τ = i and 4T = j. Therefore, solving Eq.12 is equivalent
to finding �. To compute the matrix �, our approach is to
employ an approximation solver for the probabilistic opti-
mization formula of Eq.12. The degree of freedom of the
problem is non-trivial; it is 24× 24(= 576). The high degree
of freedom of the parameter space led us to choose an iterative
method using a heuristic GA-based method.

FIGURE 5. Harmony search algorithm adopted in this study, which
consists of four components: 1) engine initialization, 2) harmony vector
generation, 3) evaluation of fitting error, and 4) update solution. Among
the four components, the third (i.e., evaluation of the fitting error) is the
specific problem, whereas the others are general operations.

Among various heuristic GA-based methods, we adopted
the harmony search algorithm designed to solve global opti-
mization problems [48]–[52]. Figure 5 provides an overview
of the algorithm applied in this study. The algorithm consists
of four parts: initialization of the engine, generation of the
harmony vector, evaluation of the fitting error, and generating
an updated harmony vector. At the step of generating a (new)
harmony vector, we first created a 24 × 24 dimensional
random vector with a range of [0, 1], and then normalized

the vector to fit scales with the matrix �. Of the four compo-
nents, evaluation of the fitting error was the specific problem,
whereas the others were general operations. In this study,
the third component, namely, the evaluation of the fitting
error, is computed by the formula defined in Eq.12.

TABLE 6. Summary of terms and parameter settings for harmony search
engine.

As previously mentioned, the third component (error fit-
ting) is the only problem-specific operation. A pseudo-code
for the fitting function is provided in Table 6. The fitting error
evaluation reads the raw subway ridership data to assess the
total daily passengers and applies Eq.14 to build matrix �.
In this manner, the discrepancy between the real raw data
and synthetic data generated from� is estimated by the least
squares measure.

Once the fitting error is estimated, the harmony search
engine compares the history of fitting errors to determine
whether the newly generated harmony vector is improved.
If improved, the harmony vector is updated by the new vector.

We focused on describing the harmony search algorithm
as an optimization solver used in this study to generate the
best fitting �ij. Several typical parameters required for the
harmony search engine are summarized in Table 6.

As seen in the table, NVAR was set to 24 × 24 because
we take elements of� as stochastic variables to fit. Harmony
memory size (HMS) was set to 2, 400, a rather large number,
because wemust consider a large degree of freedom (24×24).
The number of maximum iterations for the stopping criterion
was also set as a large number, namely, 100, 000, 000. The
internal settings were typically as follows: pitch adjusting rate
(PAR) = 0.4, bandwidth (BW) = 0.2, and harmony memory
consideration rate (HMCR) = 0.9. Figure 6 presents a graph
of the fitting errors calculated by the optimization solver
adopted in this study at each iteration step. In real simulations,
MaxIter is set as 100, 000, 000, a stopping criterion of the
iterative solver, but for the figure we limited the range to
300, 000 for visualization purposes.

In Figure 6, the blue curve indicates the fitting error at each
iteration step calculated by the GA-based heuristic search
algorithm, and the red curve is the best fitting error produced
by the harmony search algorithm. The error value indicates
discrepancies between the observed and simulated ridership.
The fitting error is evaluated as

ε :=
‖9(s, d)− Rs(d)‖
n(S) · n(days)

, (16)
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Algorithm 1 Pseudo-Code for Fitness Function of Harmony
Search Algorithm: Fitness(xNrm)
Require: xNrm: 24x24 normalized vector generated by HS random

generator.
Require: mapDate2Station2Data: a dictionary object constructed
from the raw data in form of ridership per station per day. date→
station→ data.
# allocation
# build probability tables
# data type: array~\hbox{[24]}

xpdfInHourly← array of 0, indexed from 0 to 23
xpdfOutHourly← array of 0, indexed from 0 to 23

# initialization

row← 0
for row < 24 do

# ’row’ indicates the entry hour
# ’countInPdf’ denotes # of passengers at the hour

countInPdf← 0
col←0
for col < 24 do

# ’col’ indicates the exit hour

inc← xNrm[row * 24 + col]
countInPdf += inc
xpdfOutHourly[(col+row)%24] += inc
col← col + 1

end for
row← row + 1

end for
# initialize ’fit’

fit← 0
# loop a Map(key, value)
# mapDate2Station2Data,
# where key -> date and value -> map<station, data>
#
# for each day

for all date in mapDate2Station2Data.key do
# assign ’station to data’ for the date selected

mapStation2Data← mapDate2Station2Data[date]
# iterate through stations

for all station in mapStation2Data.key do
# obtain the ridership data at the station

dataList← entrySt.getValue();
# last element of ridership is the total counts

cardinal← dataList.fileDataInp[23];
for k < 24 do

# hourly IN passengers

dif ← dataList.fileDataInFreq[k] - xPdfInHourly[k] *
cardinal;
fit← fit + (dif * dif);
k← k + 1

end for
k← 0
for k < 24 do

# hourly OUT passengers

dif← dataList.fileDataOutFreq[k] - xPdfOutHourly[k] *
cardinal;
fit← fit + (dif * dif);
k← k + 1

end for
end for

end for
# return mean squared error

return
√
fit

FIGURE 6. Convergence curve of iterative optimization solver adopted in
this study. Table 6 describes the selection of parameters. The X -axis
indicates the iteration number and the Y -axis indicates the fitting error
value denoted by ε, as defined in Eq. 16.

where9 denotes the simulated value as defined in Eq.12, T is
the observation data as defined in Eq. 5, S indicates the set
of subway stations as also defined in 5, and ε is the average
discrepancy at a station per day between the observation data
and the simulation result. The red graph shows that stability
is achieved at approximately 80, 000 iteration steps.

VI. RESULTS
In this section, we present the simulation results of our
computational model using Eq.12 applied to a real dataset,
the Seoul metro subway ridership database for the period of
Mar. 2016 to Feb. 2017.

Considering � as an output matrix (of size 24 × 24)
obtained from the wave decomposition of daily ridership data
at a specific station and date, the total of all R’s generated
from raw data is 291 × 365 (= 106, 215) for all stations
and dates. Then, the harmony search algorithm is adopted to
generate and find the best fitting� to satisfy the optimization
problem formulated in Eq.12. The matrix �, which is the
main output of our model, is obtained over a very long period,
specifically, 108, 865.6 seconds (approximately 30 hours),
or an average of 100, 000, 000 iterations, before a stopping
criterion is satisfied.

A result of the simulation is provided in Figure 7. The
rows and columns of the matrix in the figure indicate the
return time 4T and entry hour (τ ), respectively. The matrix
� is presented in the form of a heat map for visualization
purposes. As seen in Eq.14, the range of values for wij ∈ �
is [0, 1]. The color map varies from 0 ([0, 255, 0]; green
color) to 1 ([255, 0, 0]; red color), where red cells imply high
probability.

From Figure 7, we can observe that the reddish regions are
clustered into two areas. The left area explains a passenger’s
original routine: Ain → Bex → out→ Bin → Aex, where A
and B denote subway stations. The right part reflects a pas-
senger’s mirror routine: Bin → Aex → home→ Ain → Bex,
from the point of view of stationB. Henceforth, if we consider
4T in the left part as the ODT of a passenger, then we can
interpret the right area as the home duration time (HDT) of a
passenger. For simplicity of presentation, however, we omit
the similar comprehensive analysis of HDT.
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FIGURE 7. Heat map representation of decomposition matrix � of a
station specified as the ’home station’ (in this study, it is the YAKSU
station. Columns indicate entry time to the home station and rows specify
the elapsed hours before returning to the home station. The value of each
matrix element indicates the probability of returning to the home station
after j hours. The heat map values are clustered into the two regions
denoted by red circles.

From Figure 7, we can further observe the correlative
property between the consecutive row vectors of matrix �.
The j+ 1-th row looks similar to the j-th row after moving it
one step in the left direction, i.e.,�(j, i) = �(j+ 1, i− 1) for
i = 1, 2, .., 23. Therefore, Figure 8 is constructed to check the
correlation. In the left part of the figure, the X axis indicates
the row order (i.e., jmeans the j-th row) and the Y axis repre-
sents the correlation coefficient value.We are interested in the
step-size, where CORR40,CORR41,CORR42 indicate a
0-step, 1-step, and 2-step move to the left, respectively. The
blue curve illustrates the correlation between two consecutive
rows without any move (i.e., CORR40), the amber curve
shows the correlation coefficient between two consecutive
rows for a forward transition to the left by one step of the latter
row (i.e., CORR41), and the gray curve shows the value for a
two-step forward transition of the latter row (i.e., CORR42).
In the right part of the figure, the change represents the
movement of column vectors of� instead of row vectors. The
transition to the left used for the row vectors is replaced with
an upward movement for the column vectors.

FIGURE 8. The left side shows row-vector correlations and the right
shows column-vector correlations of matrix �. The X axis indicates the
order of rows and columns for the top and the bottom, respectively. The
Y axis indicates the correlation coefficient. Descriptions of the CORR40,
CORR41, and CORR42 notations are explained in the text body.

As seen in Figure 8, the amber colored graphs show the
best correlativity for both row and column vectors. This can
be interpreted as

ωi,j = ωi+1,j−1.

In other words, the probability representing a passenger who
departed at 08:00 and returned at 18:00 (i.e., ω8,10) equals
to ω9,9, which is the probability of a passenger departing at
09:00 and returning at 18:00) after 9 hours duration time.
This implies that the passenger ODT has strong dependency
on entry time. In short, an earlier departure implies a longer
duration time.

We have discussed the dependency of the entry hour to the
subway station on the ODT. We next consider the depen-
dency of days of the week. As clearly shown in Figure 9,
which compares Sunday and Monday ridership, the weekday
ridership shows the three clustered red regions, whereas the
weekend shows only two. In contrast to the weekend heat
map, in the Monday heat map, low ridership is apparent
between the 10th and 15th hours. It is reasonable to state that
subway passengers go to work in the morning hours before
the 9th hour, thus indicating the difference between Sunday
and Monday ridership.

FIGURE 9. Heat maps of entry time vs. ODT (outdoor duration time) of
passengers. The top and the bottom refer to � for Sunday and Monday,
respectively. The shapes of the red clustered regions are different.

We take the example of Monday for weekdays in the
previous paragraph. For the other days, Figure 17 provides
a weekday heat map representation of � and specifically
reveals the three red clustered regions that weekdays have in
common.

Although it is useful to show discrepancies visually,
the heat-map itself lacks statistical details. We present a
column-wise projection profile of the heat maps in Figure 10.
The figure illustrates the average times passengers remain
away from home before returning to the station from which
they departed. The graphs reveal the differences between the
maximum frequency between Sunday andMonday ridership;
a 2 hourODT is Sunday’smaximum,whereas a 12 hourODT
is Monday’s. The dotted line is the 1-step moving average,
which reveals that passengers stay away from home for a
shorter period on Sunday than on Monday.

We have proposed our model in terms of the conservation
law and stochastic optimization theory, and have presented
the results based on the big ridership data of the Seoul Metro
subway system. As mentioned briefly, the model requires an
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FIGURE 10. Projection profile of � for comparison of average ODT
(outdoor duration time) graphs obtained by the column sum (average) of
� in Figure 9. Sunday and Monday graphs are blue and red, respectively.
X axis indicates ODT in hours. Y axis is the column average of �. The
dotted line is the 1-step moving average, which shows that the ODT of
Sunday is shorter than the ODT of Monday within the time region [0,12].

FIGURE 11. Snap shot of transit record list with traffic card IDs (covered
over) for Seoul Metro subway system.

assumption that all passengers take round trips and that they
return to the station from which they departed earlier, which
is a strong assumption. Aside from the ridership data, Seoul
Metro subway system also manages transit records contain-
ing traffic card information. A snapshot of the database is
presented in Figure 10. This data is strictly prohibited to the
public because it contains private information including card
number. We were only allowed to obtain 1 week’s data (from
April 1st to April 7th in 2016) which amounted to 7 GB in
CSV file format, and had to return the data to the authority
after a two-week research period.

TABLE 7. Descriptive statistical analysis for the data illustrated
in Figure 11. Single rider indicates a passenger whose card appears only
once in the list of transit records for a day. Round trip means a passenger
whose card appears twice. Multiple rider denotes a passenger whose
card appears more than three times.

The data consisted of 54, 364, 693 transit records, where
each record indicates a single ride (entry and exit) by a pas-
senger. For each day, we applied matching of traffic card IDs
and present the output in Table 7. The results show that only
58% of passengers take round trips, and 18% are single riders

who are not regular users of Seoul Metro. Approximately
23% of users are multiple riders, who take more than three
trips per day. We could not identify what is these population.

The objective of this analysis is to identify the rate per-
centage of passengers who return to the station from which
they departed, namely PRR (passengers’ return rates). Table 8
summarizes the results. The overall PRR are 54.28% on aver-
age, and of this percentage, round trip passengers represent
93.04% on average.

TABLE 8. Return rates of passengers (PRR) using Seoul Metro subway. The
’Overall’ column indicates the average return rate, and the ’Round Trip’
column indicates the return rate among passengers taking round trips.

Our model would not be a good fit for overall passengers
owing to a lack of the mass conservation property (almost
half of the passengers do not return to the same station).
However if we set the constraint conditions on the round trip
passengers, then our model is well defined.

FIGURE 12. Distribution of passengers’ return rates at the stations. X -axis
denotes PRR and Y -axis indicates frequency density. The size of bins is 5.

Figure 12 presents the frequency histogram of PRR (with
bin size of 5) at the stations. The range of PRR is 33% to 79%.
There are 12 stations having PRR less than 45% which can
be characterized as follows: 2 stations of them are airports
(Gimpo and Inchon); 5 of them are popular outdoor camping
places; 3 of them are is famous street market places especially
for the foreign traveller; and 2 of them are university stations
located at suburban.
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A. VALIDATION
Ourmodel9 extractsODT at each hour from hourly accumu-
lated ridership data without transit record details. Mathemati-
cal stability of9 basing on the optimization model described
in proposition 1 is guaranteed by the property of conservation
law of mass (Eq.6). System stability on the input parameters
(Rsd ) is also guaranteed by a heuristic GA based HS algorithm
as shown in Figure 6.

On the other hand, validation of the experimental results is
achieved by matching with the ground-truth data. Our main
experimental result ODT representing the matrix � is the
target of validation. Denote �9 and �G as ODT matrices
by our model simulation and the ground-truth, respectively.
L1,L2, andL∞ of |�9 − �G

| are not good measures for
comparison of the two normalized matrices due to high
degree of freedom (24× 24 number of elements). The higher
degree of freedom tends to the higher R2. Instead, average
ODT (average sum of 24 counts of hourly ODT) is used for
validation. The average ODT, a 24 dimensional vector, is a
column sum of � as seen at the left panel in Figure 8.

We explain the details of the validation process with an
example case of the YAKSU station, and present the statis-
tics of all stations. Figure 13 illustrates comparison of the
two averaged ODTs from the simulation (9) and from the
ground-truth (R).

FIGURE 13. Illustration of daily ODT comparison between
simulation (amber) and ground-truth (blue). X -axis indicates ODT in
elapsed hour and Y -axis denotes frequency in percentage. The typical
’R-squared’ value is used as a measure of discrepancy.

Figure 14 illustrates scatter plots of the points of curves
in Figure 13. For a point P = (px , py) in Figure 14,
px and py are ODT of ground-truth and simulated, respec-
tively. The four different tones of gray colors indicate four
different data sets compared. The lightest color plots are from
the same data used in Figure 14. Inclination of the linear trend
line and formation of the scattered points show correlativity
between the ground-truth and the simulated.

For the discrepancy analysis, we applied the linear regres-
sion test to obtain ’R-squared’ value. An exemplary summary
output is presented below, where, in the call ’lm(formula =
odt_g_n odt_s_n)’, odt_g_n and odt_s_n denote the average
ODT obtained from the ground truth and from the simula-
tion, respectively. In the summary output, residual standard

FIGURE 14. Illustration of daily ODT comparison between simulation and
ground-truth. For a point P = (px ,py ) in the graph, px indicates ground
truth value and py denotes simulated value from the curve in Figure 13.

error (RSE) is 0.6887, ’R-squared’ is 0.5829, p-value is
0.0002273, and F-statistic is 22.26 with 16 DF (degree of
freedom). Those numbers indicate that the responses depend
strongly on the observations.

From the summary output of ’lm’, we selected ’Residual
standard error’ (RSE) and ’Adjusted R-squared’ (R2) as val-
idation measures for all the 291 stations. RSE measures the
average amount that the response deviates from the ground-
truth. R2 is proportion of variance: 0 means a regression
does not explain the variance of the response variable, and 1
explains the variance (e.g., in the above example, 55% of the
variance found in ground-truth (odt_g_n) can be explained
by the variable of simulated outputs (odt_s_n). Figure 15
presents the probability distribution of R2 and RSE over the
stations (up).

The snippet (’QQ ranges of RSE and R-squared’) below
is summary of the simple statistics of RSE and R2 of 291
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FIGURE 15. Distribution of R2 and RSE over 291 stations. X -axis indicates
R2 (a) and RSE (b) values and Y -axis denotes normalized density. The
sizes of bin are .05 for the both graphs.

stations. There are no strict criteria on the threshold values
of RSE and R2. From the point of view of RSE, the amount
0.9789 (the third quartile value) for the mean square sum
of residual errors is small enough to be a threshold. For
RSE, we normalized the two ODTs and used 22 data points
(excluding the first and the 24 − th hour duration time).
On the other hand, from the point of view fromR2, the amount
0.4049 (the first quartile value) is high enough to be a thresh-
old. 40% of variance in response variable can be explained by
the variance in ground-truth data. Consequently, the simula-
tion outputs of our model,ODT, are validated for at least 75%
of the stations. Ourmodel did not producemeaningful outputs
from some of the stations having non-regular passenger’s
transit records.

Figure 16 shows the heat map representation of the 24×24
matrix for � defined in Eq. 14. This figure is compared with
Figure 9, the output of the simulation for YAKSU station in

FIGURE 16. Heat map representation of ODT matrix for � extracted from
ground truth data at YAKSU station on April 1, 2016.

FIGURE 17. Heat map representation of � in terms of day of the week.
From top to bottom, the five panels represent Monday to Friday, in order.

April. 1. 2016. Owing to lack of passengers (a single day
data), ωij ∈ � in the figure shows low granularity, but overall
shape of the heatmap is similar to our simulation outputs
at Figure 7.
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FIGURE 18.

VII. DISCUSSIONS AND CONCLUSION
Efficient and effective subway systems play a crucial role
in the development of smart cities, as they are expected to
constitute the major transportation systems of mega cities.
With the rapid development of sensing technologies, subway
systems generate big data, which is useful for the stable
operation and effective management of subway stations. The
unstructured and disorderly nature of big data, however, often
obstructs effective information processing that can provide

useful insights and identify meaningful patterns. To address
the problem, this paper aimed at proposing an effective ana-
lytical approach based on the ’untraceable’ big data collected
from SeoulMetro. The untraceable data in this paper does not
contain sufficient information to identify specific passengers’
entry to and exit from stations and provides only the informa-
tion regarding hourly cumulative entry and exit counts.

To extract hidden meaningful knowledge from the untrace-
able data, this paper adopted the inverse problem approach,
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used a fluid dynamics model and GA-based optimization
solver, and generated heat maps that predict the lifestyles
of residents. The results presented in this paper partially
reconstructed the missing information (i.e., passenger ID)
and estimated the general ODT patterns of passengers. The
distribution of the elapsed time defined on an hourly basis
taken until a passenger returns back to their station of origin
was presented. The analysis results can help us to identify the
lifestyles of passengers living in a specific area or around a
specific subway station. The analysis of untraceable ridership
data yielded the following findings:

1) Ridership data could be decomposed into a matrix �,
indicating that hourly cumulative entry and exit num-
bers were decomposed into passenger enter and exit
times.

2) a cell of �, ωij, could be interpreted as departure time
at i-th hour and either ODT or HDT of passenger.

3) An earlier departure meant a longer stay away from
home.

4) Weekday ridership had three clustered high probability
regions, whereas weekend ridership had two regions.

5) Low ridership was observed between the 10th and 15th
hours on weekdays.

6) The maximum probabilities of ODT were 2 hours on
Sunday and 12 hours on weekdays.

7) Passengers stay away from their homes for a shorter
period on Sunday than on a weekday.

8) The difference in ridership between weekdays and the
weekend was mainly caused by passengers going to
work in the morning hours before the 9th hour on
weekdays.

It is noteworthy that the findings above resemble typical
outputs for subway traffic flow research if the input data
contains all the necessary information including individual
passenger’s transit records. However, this is not the case for
the input data in this study. Thus, successful extraction of the
missing information is essential.

Development of sensing technology for subway systems
generates big data with huge potential, but we must overcome
the complexity problems created by big data. Our analyti-
cal approaches present effective solutions to the problems
associated with untraceable ridership subway data by helping
to identify hidden patterns regarding the lifestyles of pas-
sengers. Our analytical approach and models contribute to
solving the problem of extracting hidden knowledge from big
data, especially when the data is missing critical information.
Furthermore, the analytical models used to identify passenger
lifestyles from the data can assist policy makers and subway
operators in improving system performance, thus making
smart cities smarter.

Finally, we present the limitation of the present study and
our plans for future works below. In this study we presented
a tangible case of applying a knowledge extraction paradigm
using subway ridership in Seoul Metro, Korea, which lacked
critical information, namely passenger IDs. Our work was
partially successful in recovering the missing information

(passenger ID) and could estimate the pattern of the ODT
of passengers in s statistical convergence sense. A more
detailed level of information reconstruction by developing
more knowledge extractionmethods would be our next objec-
tive. We presented the simulation results of ridership at the
YAKSU station alone. By extending the target stations to all
subway stations using the same model described herein, sub-
way stations can be characterized in terms of passenger transit
patterns. Improving the optimization solver specialized to big
data is also an area of future work.

APPENDIX. SEOUL METROPOLITAN SUBWAY MAP
See Figure 18.

ACKNOWLEDGMENT
The authors would like to thank Yoon Jeong Lee, a govern-
ment officer at Seoul Metropolitan Government, for provid-
ing the passenger transit record data of Seoul Metropolitan
Subway.

REFERENCES
[1] M. Angelidou, ‘‘Smart cities: A conjuncture of four forces,’’Cities, vol. 47,

pp. 95–106, Sep. 2015.
[2] A. Visvizi and M. D. Lytras, ‘‘Rescaling and refocusing smart cities

research: From mega cities to smart villages,’’ J. Sci. Technol. Policy
Manage., vol. 9, no. 2, pp. 134–145, Jul. 2018.

[3] M. Lytras and A. Visvizi, ‘‘Who uses smart city services and what to
make of it: Toward interdisciplinary smart cities research,’’ Sustainability,
vol. 10, no. 6, p. 1998, Jun. 2018.

[4] A. Visvizi, M. D. Lytras, E. Damiani, and H. Mathkour, ‘‘Policy making
for smart cities: Innovation and social inclusive economic growth for
sustainability,’’ J. Sci. Technol. Policy Manage., vol. 9, no. 2, pp. 126–133,
Jul. 2018.

[5] The Seoul Research Database. [Online]. Available: http://data.si.
re.kr/statistics-seoul

[6] X. Wu and D. Theodoratos, ‘‘Homomorphic pattern mining from a single
large data tree,’’ Data Sci. Eng., vol. 1, no. 4, pp. 203–218, Jan. 2017.

[7] C. Yadav, S. Wang, and M. Kumar, ‘‘Algorithm and approaches to handle
large data—A survey,’’ Int. J. Comput. Sci. Netw., vol. 2, Jul. 2013.

[8] M. P. Derde and D. L. Massart, ‘‘Extraction of information from large data
sets by pattern recognition,’’ Anal. Chem., vol. 313, no. 6, pp. 484–495,
Jan. 1982.

[9] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PA, USA: SIAM, 2005, pp. 1–9.

[10] M. Lytras, V. Raghavan, and E. Damiani, ‘‘Big data and data analytics
research: From metaphors to value space for collective wisdom in human
decision making and smart machines,’’ Int. J. Semantic Web Inf. Syst.,
vol. 13, no. 1, pp. 1–10, 2017.

[11] M. Xiaolei, W. Yao-Jan, W. Yinhai, C. Feng, and L. Jianfeng, ‘‘Mining
smart card data for transit riders’ travel patterns,’’ Transp. Res. C, Emerg.
Technol., vol. 36, pp. 1–12, Jul. 2013.

[12] C. Iliopoulou and K. Kepaptsoglou, ‘‘Combining ITS and optimization in
public transportation planning: State of the art and future research paths,’’
Eur. Transp. Res. Rev., vol. 11, no. 1, Dec. 2019, Art. no. 27.

[13] R. Morello, S. C. Mukhopadhyay, Z. Liu, D. Slomovitz, and
S. R. Samantaray, ‘‘Advances on sensing technologies for smart cities and
power grids: A review,’’ IEEE Sensors J., vol. 17, no. 23, pp. 7596–7610,
Dec. 2017.

[14] A. A. Guedes, J. C. Alvarenga, M. dos Santos Sgarbi Goulart,
M. R. Y. Rodriguez, and C. P. Soares, ‘‘Smart cities: The main drivers for
increasing the intelligence of cities,’’ Sustainability, vol. 10, no. 9, p. 3121,
2018.

[15] N. Joshua, C. Daniel, and B. Matt, ‘‘How national governments can help
smart cities succeed,’’ Center Data Innov., Tech. Rep., 2017.

[16] M. Khan, M. Babar, S. H. Ahmed, S. C. Shah, and K. Han, ‘‘Smart city
designing and planning based on big data analytics,’’ Sustain. Cities Soc.,
vol. 35, pp. 271–279, Nov. 2017.

VOLUME 8, 2020 69309



H. Shin: Analysis of Subway Passenger Flow

[17] J. H. Lee,M. G. Hancock, andM.-C. Hu, ‘‘Towards an effective framework
for building smart cities: Lessons from Seoul and San Francisco,’’ Technol.
Forecasting Social Change, vol. 89, pp. 80–99, Nov. 2014.

[18] X. Yang, B. Ning, X. Li, and T. Tang, ‘‘A two-objective timetable optimiza-
tion model in subway systems,’’ IEEE Trans. Intell. Transp. Syst., vol. 15,
no. 5, pp. 1913–1921, Oct. 2014.

[19] P. Pan, H. Wang, L. Li, Y. Wang, and Y. Jin, ‘‘Peak-hour subway passenger
flow forecasting: A tensor based approach,’’ in Proc. 21st Int. Conf. Intell.
Transp. Syst. (ITSC), Nov. 2018, pp. 3730–3735.

[20] M. Ni, Q. He, and J. Gao, ‘‘Forecasting the subway passenger flow under
event occurrences with social media,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 6, pp. 1623–1632, Jun. 2017.

[21] Z. Wang and X. Cai, ‘‘Research on passenger flow prediction of beijing
subway based on spatiotemporal correlation analysis,’’ in Proc. IEEE
4th Int. Conf. Cloud Comput. Big Data Anal. (ICCCBDA), Apr. 2019,
pp. 279–283.

[22] P. Wang, C. Wu, and X. Gao, ‘‘Research on subway passenger flow com-
bination prediction model based on RBF neural networks and LSSVM,’’
in Proc. Chin. Control Decis. Conf. (CCDC), May 2016, pp. 6064–6068.

[23] Y. Sun, B. Leng, and W. Guan, ‘‘A novel wavelet-SVM short-time passen-
ger flow prediction in beijing subway system,’’ Neurocomputing, vol. 166,
pp. 109–121, Oct. 2015.

[24] M. Lee and K. Sohn, ‘‘Inferring the route-use patterns of metro passengers
based only on travel-time data within a Bayesian framework using a
reversible-jumpMarkov chainMonte Carlo (MCMC) simulation,’’ Transp.
Res. B, Methodol., vol. 81, pp. 1–17, Nov. 2015.

[25] L. Sun, Y. Lu, J. G. Jin, D.-H. Lee, and K. W. Axhausen, ‘‘An integrated
Bayesian approach for passenger flow assignment in metro networks,’’
Transp. Res. C, Emerg. Technol., vol. 52, pp. 116–131, Mar. 2015.

[26] X. Yang, H. Dong, and X. Yao, ‘‘Passenger distribution modelling at the
subway platform based on ant colony optimization algorithm,’’ Simul.
Model. Pract. Theory, vol. 77, pp. 228–244, Sep. 2017.

[27] S. Tao, D. Rohde, and J. Corcoran, ‘‘Examining the spatial–temporal
dynamics of bus passenger travel behaviour using smart card data and the
flow-comap,’’ J. Transp. Geogr., vol. 41, pp. 21–36, Dec. 2014.

[28] P. Liu, M. D. El Basha, Y. Li, Y. Xiao, P. C. Sanelli, and R. Fang,
‘‘Deep evolutionary networks with expedited genetic algorithms for medi-
cal image denoising,’’Med. Image Anal., vol. 54, pp. 306–315, May 2019.

[29] T. Flognfeldt, ‘‘The tourist route system–models of travelling pat-
terns,’’ Tourist Route Syst.-Models Travelling Patterns, vol. 1, pp. 35–58,
Oct. 2005.

[30] H. Li, R. Guensler, and J. Ogle, ‘‘Analysis of morning commute route
choice patterns using global positioning system-based vehicle activ-
ity data,’’ Transp. Res. Rec., J. Transp. Res. Board, vol. 1926, no. 1,
pp. 162–170, Jan. 2005.

[31] T. Hodge, Public Transportation’s Role in Responding to Climate Change.
Darby, PA, USA: Diane Publishing, 2010.

[32] M. Karg and A. Kirsch, ‘‘A human morning routine dataset,’’ in Proc. Int.
Conf. Auton. Agents Multi-Agent Syst., May 2014, pp. 1351–1352.

[33] N. Kazu, K. Katzsunao, and K. Ryuichi, ‘‘Empirical analysis of trip
chaining behavior,’’ Transp. Res. Rec., vol. 203, no. 1203, pp. 48–59, 1988.

[34] B. Padmaja, V. V. R. Prasad, and K. V. N. Sunitha, ‘‘Use of reality mining
dataset for human behavior analysis—A survey,’’ in Proc. Int. Conf. Inf.
Syst. Eng. (ICISE), Apr. 2016, pp. 38–42.

[35] U. Blanke and B. Schiele, ‘‘Daily routine recognition through activity
spotting,’’ in Proc. Int. Symp. Location Context Awareness, May 2009,
pp. 192–206.

[36] N. Banovic, T. Buzali, F. Chevalier, J. Mankoff, and A. K. Dey, ‘‘Modeling
and understanding human routine behavior,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., May 2016, pp. 248–260.

[37] C. Julien, G. Lefebvre, F. Ramparany, and J. L. Crowley, ‘‘Human activity
recognition using place-based decision fusion in smart homes,’’ in Proc.
Int. Interdiscipl. Conf. Modeling Using Context, Jan. 2018, pp. 137–150.

[38] R. Carlos, J. C. Augusto, and D. Shapiro, ‘‘Ambient intelligence—The next
step for artificial intelligence,’’ IEEE Intell. Syst., vol. 23, no. 2, pp. 15–18,
Mar./Apr. 2008.

[39] R. Ortiz, J. Luis, A. Ghio, X. Parra, D. Anguita, J. Cabestany, andA. Catala,
‘‘Human activity and motion disorder recognition: Towards smarter inter-
active cognitive environments,’’ in Proc. ESANN, 2013, pp. 1–10.

[40] E. Spissu, I. Meloni, and B. Sanjust, ‘‘Behavioral analysis of choice of
daily route with data from global positioning system,’’ Transp. Res. Rec.,
J. Transp. Res. Board, vol. 2230, no. 1, pp. 96–103, Jan. 2011.

[41] R. Attila, D. Stricker, and G. Hendeby, ‘‘Towards robust activity recogni-
tion for everyday life: Methods and evaluation,’’ in Proc. Int. Conf. Pervas.
Comput. Technol. Healthcare, 2013, pp. 25–32.

[42] A. Hande, H. Ertan, O. D. Incel, and C. Ersoy, ‘‘ARAS human activity
datasets in multiple homes with multiple residents,’’ in Proc. Int. Conf.
Pervas. Comput. Technol. Healthcare, May 2013, pp. 232–235.

[43] L. Yu, C. Kang, S. Gao, Y. Xiao, and Y. Tian, ‘‘Understanding intra-urban
trip patterns from taxi trajectory data,’’ J. Geograph. Syst., vol. 14, no. 4,
pp. 463–483, Oct. 2012.

[44] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques. SanMateo, CA, USA:Morgan Kaufmann,
2016.

[45] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, ‘‘Data
mining for the Internet of Things: Literature review and challenges,’’ Int.
J. Distrib. Sensor Netw., vol. 11, no. 8, Aug. 2015, Art. no. 431047.

[46] R. David N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean,
P. J. Turnbaugh, E. S. Lander, M.Mitzenmacher, and P. C. Sabeti, ‘‘Detect-
ing novel associations in large data sets,’’ Science, vol. 334, no. 6062,
pp. 1518–1524, Dec. 2011.

[47] Princeton University, Engineering School. (Dec. 2, 2013).
Forget the Needle, Consider the Haystack. [Online]. Availiable:
https://www.princeton.edu/news/2013/10/28/forget-needle-
considerhaystack-uncovering-hidden-structures-massive-data

[48] Z. W. Geem, J. H. Kim, and G. V. Loganathan, ‘‘A new heuristic optimiza-
tion algorithm: harmony search,’’ Simulation, vol. 76, no. 2, pp. 60–68,
Feb. 2001.

[49] Z. W. Geem, ‘‘Improved harmony search from ensemble of music play-
ers,’’ in Proc. Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst., Oct. 2006,
pp. 86–93.

[50] M. Mahdavi, M. Fesanghary, and E. Damangir, ‘‘An improved harmony
search algorithm for solving optimization problems,’’ Appl. Math. Com-
put., vol. 188, no. 2, pp. 1567–1579, May 2007.

[51] M. G. H. Omran and M. Mahdavi, ‘‘Global-best harmony search,’’ Appl.
Math. Comput., vol. 198, no. 2, pp. 643–656, May 2008.

[52] Z. W. Geem and K.-B. Sim, ‘‘Parameter-setting-free harmony search algo-
rithm,’’ Appl. Math. Comput., vol. 217, no. 8, pp. 3881–3889, Dec. 2010.

[53] L. Davis, Handbook of Genetic Algorithms. New York, NY,
USA: Van Nostrand Reinhold, 1991.

[54] A. H. Wright, ‘‘Genetic algorithms for real parameter optimization,’’
Found. Genet. Algorithms, vol. 1, pp. 205–218, Jun. 1999.

[55] X. Jiang and C. Xiao, ‘‘Household energy demand management strategy
based on operating power by genetic algorithm,’’ IEEE Access, vol. 7,
pp. 96414–96423, 2019.

[56] A. Iqbal, M. Meraj, M. Tariq, K. A. Lodi, A. I. Maswood, and S. Rahman,
‘‘Experimental investigation and comparative evaluation of standard level
shifted multi-carrier modulation schemes with a constraint GA based
SHE techniques for a seven-level PUC inverter,’’ IEEE Access, vol. 7,
pp. 100605–100617, 2019.

[57] M. Verotti, P. Di Giamberardino, N. P. Belfiore, and O. Giannini,
‘‘A genetic algorithm-based method for the mechanical characterization
of biosamples using a MEMS microgripper: Numerical simulations,’’
J. Mech. Behav. Biomed. Mater., vol. 96, pp. 88–95, Aug. 2019.

[58] Wolfram Wiki. [Online]. Available: http://mathworld.wolfram.com/
DiracDeltaFunction.html

HYUNKYUNG SHIN received the Ph.D. degree
in applied mathematics and statistics from Stony
Brook University, NY, USA, in 2002. She has
been an Associate Professor with the Department
of Financial Mathematics (mathematical science),
Gachon University, South Korea, since 2007. She
currently serves as the Director of the Institute for
Intelligent Transportation Technology. As a chief
researcher of a government research project, she
developed an automation module of an NLP for

analyzing Alzheimer’s disease. She also developed a text recognition soft-
ware through the cooperation of Korean IT industry. Her research interests
include image processing, machine learning, and mathematical education.

69310 VOLUME 8, 2020


