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ABSTRACT Forecasting of fast fluctuated and high-frequency financial data is always a challenging problem
in the field of economics and modelling. In this study, a novel hybrid model with the strength of fractional
order derivative is presented with their dynamical features of deep learning, long-short termmemory (LSTM)
networks, to predict the abrupt stochastic variation of the financial market. Stock market prices are dynamic,
highly sensitive, nonlinear and chaotic. There are different techniques for forecast prices in the time-variant
domain and due to variability and uncertain behavior in stock prices, traditional methods, such as data
mining, statistical approaches, and non-deep neural networks models are not suited for prediction and
generalized forecasting stock prices. While autoregressive fractional integrated moving average (ARFIMA)
model provides a flexible tool for classes of long-memory models. The advancement of machine learning-
based deep non-linear modelling confirms that the hybrid model efficiently extracts profound features and
model non-linear functions. LSTM networks are a special kind of recurrent neural network (RNN) that
map sequences of input observations to output observations with capabilities of long-term dependencies.
A novel ARFIMA-LSTM hybrid recurrent network is presented in which ARFIMA model-based filters
having the linear tendencies better than ARIMA model in the data and passes the residual to the LSTM
model that captures nonlinearity in the residual values with the help of exogenous dependent variables.
The model not only minimizes the volatility problem but also overcome the over fitting problem of neural
networks. The model is evaluated using PSX company data of the stock market based on RMSE, MSE and
MAPE along with a comparison of ARIMA, LSTM model and generalized regression radial basis neural
network (GRNN) ensemble method independently. The forecasting performance indicates the effectiveness
of the proposed AFRIMA-LSTM hybrid model to improve around 80% accuracy on RMSE as compared to
traditional forecasting counterparts.

INDEX TERMS ARIMA model, ARFIMA model, GARCH model, RNN, LSTM model, RMSE, MSE,
MAPE.

I. INTRODUCTION
The fast emergence of digital economics is one of the most
innovative contributions in the modern global economy. With
the development of globalization trades and business con-
tact on financial activities among nations are increasing.
The international trades and financial business are closely

The associate editor coordinating the review of this manuscript and
approving it for publication was Avishek Guha.

connected with stock rates [1]. The rapid development of
digital currencies in the financial market abrupt impact on the
movement of stock price [2]. The forecasting of financial data
depends on the collection frequency of financial market. The
modeling of high-frequency dynamic data of finance has to
become a research focus in the research community.

Forecasting future values of time series has been a major
research area since ago. The application of time series mod-
eling finds its significance in business, stock exchange,
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weather, electricity demand and many other fields [3]. The
accurate forecasting of stock prices can help investors as a
guideline to minimize risk and reducing investment losses
[4]. The scientific way of modeling time series emerged
when Box-Jenkins [5] introduced the methodology for time
series in 1970 in which ARIMA model was introduced to
forecast future behavior. The traditional time series forecast-
ing methods depend mainly on exponential smoothing, Auto
Regression and on Moving Average parameters, including
ARMAmodel, ARIMAmodel [6], GARCHmodel [7]. Peters
[8] noted that the dynamic nature of the stock market which
is mostly non-Gaussian in nature with sharper peaks and fat
tails [9]. In the presence of such evidence, the traditional
methods have their limitation to provide accurate forecasts
based on non-Gaussian data [10]. Sheng and Chen [11] pro-
posed a new Autoregressive Fractional Integrated Moving
Average (ARFIMA)model to analyze the GSL data to predict
future levels and compared accuracy with previously pub-
lished results [12]. The ARFIMA class model presented by
Diebold and Rudebusch [13] provided flexible techniques
to capture a long memory process. A neural network was
used by Gao et al. [14] to predict daily closing prices of
S&P 500 stocks exchange. The ARIMA and neural network
hybridmodels were discussed in Peter Zhang’s literature [15].
Chen et al. [16] predicted stock exchange data of China stock
market using sequential features of LSTM, He used 30 days
long sequential step with 10 learning features in the model. A
comparison of the traditional ARIMAmodel with deep learn-
ing features of LSTM for economics and financial data was
carried out by Siami and Namin [17]. Stock prediction using
LSTM and MLP model was estimated by Khare et al. [18].
Short Hybrid ARIMA-LSTM model was presented by Choi
[19] in which the stock price correlation coefficient was
analyzed by applying LSTM recurrent neural networks. The
effect of currency and foreign exchange on stock market
volatility was studied by Fang [20]. Fractional-order deriva-
tive is a generalized form of integer derivative which is exten-
sively applied for modeling of different real phenomena in
finance, psychology, bioengineering. mechanics and control
theory. The concept fractional-order derivative emerged back
in 1695 with famous correspondence between L’Hopital and
Leibniz about the possibility of fractional-order derivatives.
The first application of fractional order mathematics con-
tributed by Abel [21] in 1823 who solved the autochrome
integral order problem with the fractional derivative of half
order. The application of fractional order differential equa-
tions has introduced new concepts and techniques in financial
market forecasting. Modeling with fractional order with the
Adomian decomposition method was introduced by Song
[22] in an approximation of European price modeling and
China’s financial market. Biologists deducted that biological
organisms also have fractional-order electric conductivity in
their cell membranes [23], which is classified as non-integer
group models. Kumar and Rawat [24] proposed techniques
to estimate coefficients of fractional order differential equa-
tions.

Objective of the study
There are two main objectives of the study:
• To analyze the time-series data and identify the nature

of phenomenon in the sequence of observation and study the
pattern based on fractional differences.
• Forecasting nonlinear time series and predict future val-

ues on the bases of pattern identified.
The innovative contributions of designed hybrid neuro-

computing approach with the exploration of different capa-
bilities are presented in terms of following salient features:
• Provision of flexible tool for classes of long-memory

model.
• The ARFIMA model filters linear tendencies better than

ARIMA model in the hybrid scenarios.
• The proposed model is capable to overcome the over fit-

ting problem of neural networks besidesminimizing volatility
problems.
• Dynamical features capturing the ability of the desired

model ARFIMA-LSTM by the addition of exogenous depen-
dent variables.

The rest of the paper is organized as follows. Section II
describes different definitions of fractional order. section III
describes the statistical analysis of data. Section IV presents
the component model of ARIMA, ARFIMA, and LSTM
and generalized regression radial basis neural network. The
construction of the proposed nonlinear combination model is
described in Section V. Section VI presents the experimental
results and summary of implication based on the real Hybrid
ARFIMA-LSTM time series. Finally, Section VII. is the con-
clusion.

For the convenience of readers, the notations used in this
paper are summarized in Table 1.

II. PRELIMINARIES
Few preliminaries regarding fractional-order derivatives are
presented here along with fractional time series and GRNN.
Definition 1 Grunwald-Letnikov:
Grunwald-Letnikov [25] presented a generalized form of

fractional order using binomial expansion.

aDαt f (t) = lim
h→0

1
hα
∑[(x−2)/h]

j=0
(−1)j

(
a
j

)
f (t− jh), (1)

where
(
a
j

)
is binomial coefficient and a is constant order,

which can express by Euler’s Gamma function defined as
follows: (

a
j

)
=

0(α + 1)
0(j+ 1)0(α − j+ 1)

. (2)

Definition 2 Michele Caputo:
Michele Caputo [26] defined fractional order by applying

the integral equation as follows:

c
aD

α
t f (t) =

1
0(n− α)

∫ t

a

f (n)(ξ )
(t− ξ )α+1−n

dξ, (3)

where α is a real number and n is an integer. Grunwald-
Letnikov definition is identical to Caputo’s definition for
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FIGURE 1. Fractional order representation of function f(x)=x2.

fractional derivative except in case of constant function for
which Caputo derivative is zero, while Riemann-Liouville
derivative of constant is a non-zero value.
Definition 3 Atangana-Baleanu:
The left Atangana-Baleanu [27] definition in term of frac-

tional derivate for the interval 0 < α < 1 in Sobolev space is
defined by:

Tα(h)(x) =
B (α)
1− α

∫ x

0
h′(s)Eα

[
−

α

1− α
(x− s)α

]
ds, (4)

where h ∈ H1(0, 1) in Sobolev space, B(α) > 0 is a function
in normalized form satisfying the condition: B (0) = B (1) =
1 and Eα is Mittag-Leffler function of a single variable.
Definition 4 Riemann-Liouville:
Riemann-Liouville [28] used derivatives instead of integral

order to defined fractional-order derivatives defined as:

c
aD

α
t f (t) =

1
0 (n− α)

dn

dxn

[∫ t

a
(t− ξ )n−α−1f (ξ) dξ

]
. (5)

Fractional derivative by using the definition of Riemann-
Liouville in term of gamma function is defined as

dq

dxq
xm =

0(m+ 1)
0(m− q+ 1)

xm−q, (6)

for m = 2 the equation become

dq

dxq
x2 =

0(2+ 1)
0(2− q+ 1)

x2−q, (7)

by taking fractional derivatives of order 0.75, 0.50, 0.25,
0.1 and 0.01 the geometrical representation of fractional
derivative is shown in Figure 1.

A. FRACTIONAL TIME SERIES
Fractional Time series was developed by Harold Hurst [29]
while calculating optimal dam size for the River Nile, which
was directly linked with a fractional dimension of the dam.
Consider d as periodic time duration over the range R, which
was calculated by differencing of largest and smallest devi-
ation encounter during d time interval which can be repre-
sented as:

RαdH ,

TABLE 1. Notations.

where H is the Hurst exponent varying from zero to one and
the higher value of the Hurst component was represented with
a smaller size of the curve.

B. GENERALIZED REGRESSION RADIAL BASIS NEURAL
NETWORK (GRNN)
Mathematically, GRNN [30] can be represented by the equa-
tion.

Y (x) =

N∑
k=1

wkK (x, xk )

N∑
k=1

K (x, xk )

, (8)

whereY(x) is a prediction for input variable x,wk is activation
weight for the pattern layer and K (x, xk ) is Gaussian radial
basis function formulated as:

K (x, xk ) = e−dk/2σ
2
, (9)

where d is Euclidean distance defined as:

dk = (x − xk )T (x − xk ).
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FIGURE 2. Graphical representation of FFC daily data 2009-2018.

FIGURE 3. The probability distribution of FFC open Price.

C. STATISTICAL DESCRIPTION OF DATA
In this section, the statistical description of Fauji Fertilizer
Company (FFC) open price data [31] is presented. We have
used daily open price pf FFC data from 01 January 2009 to
30 May 2018 with n = 3437 observation. However, for
modeling purposes, we have considered the daily data until
30 April 2018. The remaining data of one month is used to
analyze the forecasting behavior of the proposedmodel. From
the graphical analysis, it is easy to identify a most expressive
increasing trend from 01 January 2009 up to 19October 2012,
then, a sudden declining trend in open price can be noticed
until 05 January 2015 followed by another jump in open
prices till 19 December 2017 after which last descending
trend was noticed till 30 May 2018 as shown in Figure 2.

The highest non-Gaussian variation was noticed in the
interval of 120-300 can be noticed from 2009 to 2018 as
shown in Figure.3.

FFC open price data has shown sharper peaks which rep-
resent high-frequency data of the non-Gaussian distribution
curve as shown in Figure 3.

The probability distribution of data with percentile Gaus-
sian distribution is shown in Figure 4.

The Probability value of the fit is calculated with P value
lesser then 0.005 displaying the non-Gaussian distribution
and making kurtosis in vertical spread.

The seasonal plot of FFC open price with a strong upward
periodic trend with a high degree of automation trading was

FIGURE 4. Percentile Gaussian fit of FFC open price.

FIGURE 5. The seasonal plot of FFC company from 2009-2018.

FIGURE 6. Graph of dependent variables used in the modeling.

noticed in the data as shown in Figure 5. The yearly variation
in June, July and at the end of each year remain high as
compared to the remaining months.

The statistical description of dependent variables used as
exogenous input for the prediction of FFC open price is
presented in Table 2 and Figure 6.

The correlation between oil prices and FFC open price
remains high as compared to other dependent variables. The
relationship between foreign reserves and FFC open price
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TABLE 2. The statistical description of FFC open price & dependent
variable.

perfectly remained very close in the highest variation years
of 2012 and 2016.

III. ARIMA AND ARFIMA MODELS
In this section, we will discuss some basic concepts and
background of both models, i.e., ARIMA and ARFIMA, and
hybridization with LSTM.

A. ARIMA MODEL
The mathematical representation of ARIMA Model was first
introduced by Box and Jekin in his book in 1970 [5], to fore-
cast the future trend representing by the equations as:

xt = c+ ψ1xt−1 + ψ2xt−2 + . . .+ ψpxt−p
− θ1εt−1 − θ2εt−2 − . . .− θqεt−q,

xt = c+
∑P

k=1
ψ1xt−k +

∑q

l=1
θlεt−l, (10)

where ψ (B) = 1−ψ1B− . . .−ψpBp, and θ (B) = 1−θ1B−
. . .− θpBp, are polynomials in B and ψi(i = 1, 2, . . . , p) and
θi (i = 1, 2, . . . , q) are autoregressive and moving average
parameters εi is representing white noise with mean zero
and variance σ 2 and such a time series with white noise not
depending on their previous terms but also depend on other
phenomena and other variables [32].

A process {Xt} with value of t = 1, 2, . . . ,T satisfying

yt = (1− B)d (Xt − µ),

become a long memory process [33] after satisfying the
following condition.

(a) lim
n→∞

(
∑n

k=−n |ρk |) is not finite i.e. ACF process
diverges.

(b) The series {Xt} is fractional differenced series.
ARIMA(p, d, q) model can only capture short-range

dependency with d as integer order, where the Autoregressive
Fractional IntegratedMovingAveragemodel (ARFIMA)was
introduced byGranger and Joyeux [34], applied in long-range
dependent time series.

We have used R software to fit the data with ARIMA and
ARFIMA models. The residual of ARIMA fitted model of

FIGURE 7. ARIMA Residual plot and its ACF and PACF Lag plot of FFC
open price.

FFC open price with ACF lag and Residual plot is shown
in Figure 7.

B. ARFIMA MODEL
ARFIMA (p, d, q) model define d for any real number using
binomial expansion and Gamma function as

(1− B)d
∞∑
j=0

(
d
j

)
(−B)j =

∞∑
j=0

0 (d + 1)
0 (j+ 1) (d+1−j)

(−B)j,

(11)

where −1/2 < d < 1/2.
Shaofei et al [35] and many other authors [36] suggest

the use of Fractional ARIMA instead of an integer one can
improve forecasting. The general form of ARFIMA (p, d, q)
process defined as:

ϕ(B)(1− B)dXt = ψ(B)εt , (12)

where −1/2 < d < 1/2.
The above model widely used for LRD and SRD time

series [37]. In ARFIMA (p, d, q), p is autoregressive order,
q is moving average order and d is differencing in decimal
form. The ARFIMA (p, d, q) process is a generalized form of
ARIMA process, where d form integer value shift in decimal
form in the ARFIMA modeling. Many non-stationary time
series contain nonlinear trend and removing the trend is the
first step of modeling of such time series. Box-Jekins theory
served as a filter point to separate signals from the noise.
In the residual of ARIMAmodel in Figure 7, we may notice a
pattern of fractional correlation that commences with the first
lag. In such a condition, fractional differences are useful to
capture non-linearity by applying binomial expression to esti-
mate ARFIMA(p, d, q) parameters. By applying a fractional
order difference filter, the residual obtain is uncorrelated with
lags of its variables. Mandelbrot [38] suggested the use of
range over standard deviation R/S statistics called ‘‘rescaled
range’’, which used by hydrologist Harold Hurst [39] in
the Hurst exponent. The main concept of R/S analysis is to
analyze rescaled cumulative deviation from the mean. The
first estimation of Range R is given by:

Rn = maxm=1,2,...n
n∑
i=1

(Yj−Y )−minm=1,2,...n
n∑
i=1

(Yj−Y ),
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FIGURE 8. ARFIMA residual of open price FFC Company from
2009-2018 open price.

TABLE 3. Parameter estimation result ARFIMA(1,d,3) for FFC company.

(13)

where Rn is the range of Accumulated deviation defined over
period n of Y. The standard deviation Sn is defined as

Sn = [
∑n

i=1
(Yj − Y )2]1/2, (14)

with the increase in n it holds the equation,

log[Rn/Sn] = logα + H log n. (15)

The above equation reflects linearity in the estimation of
Hurst slope H. In the ARFIMA model the intensity d of
fractional Gaussian noise of the data is estimated with the
maximum likelihood of Hurst Parameter defined as:

d = h− 1/2. (16)

The relationship permits researchers to define certain
boundaries to some limit as follow:

(a) if d=0 the process does not contain long term memory
and is stationary.

(b) if 0<d<1 the process is persistent with long termmem-
ory.

(c) If d=0.5 the process represents a random walk and
unpredictable.

Estimation of d in financial data series is different from 0 and
0.5. Caporale [40] pointed out the presence of long-term
memory in the US Stock Exchange. The parametric estima-
tion of ARFIMA process for the FFC company is shown in
Table 3. ARFIMA Residual plot and its ACF and PACF Lag
plot for the FFC Company are shown in Figure 8. The best
fitted fractional difference is calculated as d=0.499914.

FIGURE 9. Structure of RNN Neural Network.

C. LSTM MODEL
Neural networks are efficient to extract nonlinear features for
long memory data because of its versatility and use of non-
linear activation functions in each layer. Kumarasinghe et al
[41] designed Long Short-Term Memory (LSTM) network
for intelligent prediction of the Colombo Stock Exchange.
To understand the working of LSTM model, consider the
RNN mechanism which is a sequential model that performs
effectively by sequencing time series data as an input vector
and provides vector output by neural network structure in the
model’s cell as shown in Figure 9. The time-series data passed
through a cell in sequential vector, at each step the cell output
value is concatenated with next time step data and the output
value of cell serve as input for the next time step. The process
is repeated until the last time step data, see Figure 10.

Standard LSTM is selectedwith forget gates in the research
to model exogenous variables as an additional input for FFC
open price forecasting. LSTMwas introduced by F. Gers [42]
consisting of interactive neural networks, each representing
forget gate, input gate, input candidate gate, and output gate
as shown in Figure 11. The output value of the forget gate
varies between zero and one. The function representing forget
gate which forgets the cell state from a previous time step that
is not needed and keep the necessary information cell state for
prediction represented as

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
, (17)

the σ function representing activation function often called
sigmoid which enables nonlinear capabilities of the model

σ (X) =
1

1− e−x
. (18)

In the next step, the input gate and input candidate gate
activate together tomake a new cell state Ct which shifts to the
next time step as a renewal cell state. Sigmoid activation func-
tion and hyperbolic tangent function are used as activation
function at input gates and input candidate gate respectively
providing output ii select and new cell stateC ′t represented by
the equations.

it = σ (Wi · [ht−1, xt ]+ bt) ,

C ′t = tanh(Wc[ht−1, xt ]+ bc). (19)

The tanh function is a hyperbolic tangent function that
renders between −1 and 1.

tanh(X ) =
ex − e−x

ex + e−x
. (20)
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FIGURE 10. Graphical abstract of the proposed technique, ARFIMA-LSTEM for modeling of FFC open price.

Augmented Dickey–Fuller (ADF) test is used to trans-
form non-stationary time series to stationary time series.
The LSTM input is residual of open price FFC historical

data modeled by ARFIMA model. We have also used the
dependent variables to model the residual values of FFC data
after filtered by ARFIMA Model.
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FIGURE 11. Hybrid LSTM Neural Network Structure.

FIGURE 12. The architecture of Generalized regression radial basis neural
network.

D. GENERALIZED REGRESSION RADIAL BASIS NEURAL
NETWORK (GRNN)
Generalized regression neural network (GRNN) is used for
approximation of function [43]. It consists of two layers in
which its first layer comprises of a radial basis layer and
the second layer consist of a special linear layer. The archi-
tecture for the GRNN is shown in Figure 12. It is similar to
RBF neural network; the only difference is addition of second
layer. The input vector is represented by P. and bias vector
b1 is set to a column vector. Each neuron in the radial basis
function computes weighted input with bias value which
passes through the second input layer to produce generalized
regression output.

where
R = no of elements in the input vector
Q = no of neurons in each Layer

E. PROPOSED HYBRID ARFIMA-LSTM MODEL
The residual white noise of ARFIMA model is processed in
hybrid LSTMmodel to detect the pattern with the exogenous
variables as an input. The overall graphical abstract of the
proposed technique, ARFIMA-LSTM for modeling of FFC
open price is shown in Figure 10. The noise has passed
through LSTM neural network to model leftover signals with
the help of external variables. Time series data decomposes
into linear and nonlinear components expression as follow:

xt = Lt + Nt , (21)

here Lt represent linearity modeling of data with ARFIMA
model which works decently on linear problems.

εt = xt − Lt , (22)

where εt is the residual left by the ARFIMA Model. The
LSTM model calculated by the equation defined as:

Nt = f (εt) = f (xt − Lt) , (23)

while Nt representing nonlinearity modeling for the period t
of the time series ARFIMA residual and dependent variables
with the hybrid LSTM neural network. The two models are
combined to comprehend both linear and non-linear tenden-
cies of the data. In the predictive model selection, we have
used 30 steps forecast to evaluate the performance of the
model as shown in Figure 13.

LSTMmodel for training, testing and prediction phases are
depicted in the form of the algorithm as follows:

IV. EVALUATION CRITERIA
To evaluate the performance of the proposed nonlinear com-
bination model, mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error
(MAPE) are used defined as follows:

MAE =
1
N

N∑
i=1

∣∣yt − ŷt ∣∣ ,
RMSE =

√√√√ 1
N

N∑
t=1

(yt − ŷt )2,

MAPE =
1
N

N∑
i=1

∣∣∣∣yt − ŷtyt

∣∣∣∣× 100%. (24)

V. EXPERIMENTAL RESULT OF ARFIMA-LSTM
Training and cross-validation in LSTM Model is carried out
using Adam algorithm. 75:25 proportion of data is set as a
training and testing process respectively. Model performance
is measured using mean absolute error (MAE), root mean
square error (RMSE) and mean absolute percentage error
(MAPE) as formulated in Eq 12-. The performance accuracy
of each model is summarized in Table 4, and their forecasting
results are described in Table 5. LSTM model fitting of the
ARFIMA residual model is shown in Figure 14.

Training and Testing error of LSTM Model open price of
FFC data found minimum at 150 epochs as shown in Fig-
ure 15. The hybrid ARFIMA-LSTM achieved the lowest
RMSE of 0.0539 as compared to LSTM, ARFIMA, and
ARIMA models individually. The comparison of results for
different models is shown in Table 5. Graphical comparison
of FFC forecast results using ARIMA, ARFIMA, GRNN,
and hybrid ARFIMA-LSTM is shown in Figure 16 and Error
comparison for the proposed model with its comparison is
shown in Figures 17 and 18.
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FIGURE 13. Hybrid LSTM model of FFC data open price with sequential correlation.

FIGURE 14. LSTM model fitting for ARFIMA residual model FFC open
price,

TABLE 4. The FFC forecast statistics using ARIMA, ARFIMA and hybrid
ARFIMA-LSTM.

In the GRNN modeling, we used two layers, in the
first layer total of 2316 neurons were used to fit regres-
sion with RBFs neural network as shown in Figure 16.
The 3317 observation of daily FFC stock open price
data from 01 January 2009 to 30 April 2018 was
used for training output in Generalized regression radial
basis neural network while the three modeled variable
ARIMA, ARFIMA and ARFIMA-LSTM were used as input

FIGURE 15. Training and Testing error LSTM Model residual of FFC open
price.

FIGURE 16. GRNN architecture for prediction of FFC open Price.

training purpose The remaining 30 values of 03 mod-
eled variables for the month May 2019 was used to
predict FFC open price in Generalized RBFs neural
network.
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Algorithm 1 LSTM Model Training Algorithm
The LSTM prediction algorithm works in the following four main phases:

(a) Preprocessing requirement of Data
(a) Fixation of parameters for the model
(c) Fitting and estimation of the model
(d) Prediction of the Model

Input: Five dependent variable based residual ARFIMA model. N lag steps between
all input and output of the dataset.
Output: train/test prediction data
Phase1: Preprocessing of the data

(e) Normalization of the Residual dataset
(f) Conversion of input/output as 75:25
g) ‘Train.LSTM and Test.LSTM’ = divide (Residual, 0.75)
(h) ‘X.train,y.train’ = ‘split(train.LSTM, N.step)’
(i) ‘X.test,y.test’ = split(test.LSTM, N.step)
(j) Reshape ‘train’ and ‘test’ data

Phase 2: Determination of parameter for the model parameters

(k) Model definition
(l) Add ‘LSTM(units=30,activation).activation’=’relu’,
(m) ‘Input.shape=(N.steps,n.features)’
(n) Add ‘LSTM(units=30,activation).activation’=’relu’)
(o) Add ‘Dense (n.features=2)’

Phase 3: Fitting of Model along with estimation

(p) Repeatition
(q) Forward.propagate model with ‘X.train’
(r) Backward.propagate model with ‘y.train’
(s) Adjust model parameters
(t) MSE, MAE = evaluate.model (‘X.train’, ‘y.train’)
(u) If convergence is observed on MSE:
(v) End else Repeat

Phase 4: Prediction

(w) ‘Train.Pred’ = ‘predict (X.train)’
(x) ‘Test.Pred’ = ‘predict (X.test)’
(y) Return ‘train.Pred’, ‘test.Pred’

TABLE 5. The FFC forecast results using ARIMA, ARFIMA and hybrid ARFIMA-LSTM.

VI. CONCLUSION
In this paper, hybrid ARFIMA-LSTM is presented based on
a combination of the ARFIMA model, and LSTM model
of ARFIMA residual. The hybrid model extracts poten-
tial information from the residual with the help of exoge-
nous dependent variables and achieves better performance

in terms of prediction accuracy by joining both models.
The addition of exogenous input of dependent variables in
hybrid ARFIMA-LSTM improves prediction accuracy as
compared to ARIMA, ARFIMA, and GRNN independently.
Error analysis for all the models is presented in Table 3,
which reflects the proposed model acquires the lowest MAPE
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FIGURE 17. Graphical comparison of FFC forecast results using ARIMA, ARFIMA, GRNN and hybrid ARFIMA-LSTM.

FIGURE 18. Graphical comparison of MAE Error FFC open price forecast.

FIGURE 19. Parametric comparison of MAE Error FFC open price forecast.

of 0.002%. Therefore, it can be concluded that the proposed
hybrid ARFIMA-LSTM model outperforms as compare
to individual models independently. The superior perfor-
mance of the proposed hybrid model significantly proved
the best-parameterized model to enhance the financial series

prediction by increasing the accuracy rate of 80% as com-
pared to traditional models.

The ARFIMA-LSTM looks promising to be investigated
solving the nonlinear stiff mathematical models representing
diversified applications in applied sciences [44]–[50].
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