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ABSTRACT The patterns and evolution of man-made complex networks have been topics of interest in
recent years. Herein, we define appropriate metrics to quantify the correlations between circuit performance
and the complex network characteristics regarding the physical design of circuits. The experimental results
show that circuit performance differs due to the optimization tools, both at placement and routing. The
strength of the correlations with placement design follows the order of average distance, betweenness,
average strength, and the clustering coefficient; the strength of the correlations with layout design follows
the order of betweenness, average strength, average distance, and the clustering coefficient. The correlation
between performance and betweenness has been further strengthened after routing and presents a remarkable
difference in comparison with other characteristic parameters, which indicates its significance to the dynamic
correlation with circuit performance.

INDEX TERMS Weighted complex network, circuit design, correlation, performance, complex network

characteristics.

I. INTRODUCTION

With the enormous progress of semiconductor manufactur-
ing technology, VLSI (very-large-scale integration circuit)
design has achieved rapid development following Moore’s
Law. Billions of components are integrated into a single chip
to improve the performance, which substantially increases the
design complexity simultaneously [1]. The cost, quality and
predictability of IC (integration circuit) design have become
intertwined challenges to the ability of designers to exploit
advances in underlying patterning, device and integration
technologies [2]. The physical design is a crucial stage for
the resulting circuit performance. Conventional optimization
tools may not be efficient enough to solve such problems,
and considerable efforts are devoted to the development of
new methods and algorithms for improving the performance
of EDA tools [3].

As a subject that explains the phenomena and complex-
ity of existing systems, complex networks have experienced
booming interest in recent years. The study of complex
networks spans a multitude of research fields from natural
science to social science [4]-[11]. In recent decades, the-
ories and growth models for explaining phenomena in the
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optimization of complex networks have been established
[12]-[14]. Especially, research on robustness and control-
lability of the network indicate the close correlation to the
properties of complex networks (such as scale-free, small-
world, etc.) [15]-[19].

As a special category of network, man-made networks are
typically designed for distribution of some commodity or
resource. The studied distribution networks include airline
networks [20], [21], railways [22], [23], power grids [12],
[24], electronic circuits [25], etc.

The electronic circuit can be viewed as a network in which
components are considered as vertices and wires between
components are considered as edges. The evolution of elec-
tronic circuits underwent transitions from analog circuits
to digital circuits, then to high integration. Early research
showed that both analog and digital circuits exhibit small
world behaviors [25]. Later, Teuscher et al. demonstrated
that the chip system with small-world characteristics can
adapt to scale growth and presents superior performance and
robustness with respect to regular structured chips [26], [27].
Oshida et al. investigated the network-on-chip (NoC) perfor-
mance with different structures through dynamic flow anal-
ysis. They found that the NoC architecture constructed with
the topology in which hubs mostly connect to lower-degree
nodes achieves short latency and low packet loss ratio [28].

72683


https://orcid.org/0000-0003-2150-303X
https://orcid.org/0000-0003-0026-5423

IEEE Access

T. Nie et al.: Performance and Correlations of Weighted Circuit Networks

Zhan et al. devised a multi-layered design architecture to cap-
ture favorable characteristics of biological mechanisms for
the application of electronic circuit design. This demonstrates
that utilizing biological mechanisms for engineering design
is a promising approach for building intelligent systems [29].
To identify the infringement of intellectual property, Tan et al.
proposed a novel global similarity measurement for physical
circuit designs [30].

In this paper, we analyze the correlations between circuit
performance and the complex network characteristics of the
physical design of integrated circuits, and explore the strength
of the correlations with placement and routing. The transition
of correlations from placement to routing is also studied in
this context.

The paper is organized as follows. It introduces the funda-
mental characteristic related to weighted complex networks
in the second section, conducts experiment schemes and ana-
lyze results in the third section, and concludes in the fourth
section.

Il. WEIGHTED COMPLEX NETWORK

In this section, we introduce a few fundamental concepts used
in the analysis of weighted complex networks. A network
or graph is usually represented by an adjacency matrix A;
element a;; is set to 1 if there exists an edge connecting
vertex I to vertex j, and O otherwise. Similarly, a weighted
network can also be described by a matrix W in which
entry w;; indicates the weight on the edge connecting ver-
tex i and vertex j (w; = O if the nodes i and j are not
connected). In this context, we only consider the case of
symmetric weight, namely, w; = wj;. The weight can be
categorized into dissimilarity weight and similarity weight.
The dissimilarity weight is proportional to the distance,
while the similarity weight is inversely proportional to the
distance.

A. DEGREE AND STRENGTH

In a complex network, the most commonly utilized charac-
teristic parameter is degree, which is defined as the number
k; of neighbors. The average degree of a network < k > is
defined as the average number of degrees of all nodes in the
network, as shown by the following formula:

1 N
<k>=ﬁ;k,~ )
=

In contrast with vertex degree k;, the vertex strength S; used
in the weighted network defines the significant property of the
vertex and is given by the following:

Si= Z wij (2)
JEN;

B. WEIGHTED CLUSTERING
The local structure of unweighted networks can be charac-
terized by the number of times a subgraph appears in the
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network. The clustering coefficient, reflecting the local con-
figuration of triangles, can be considered as a special case
of this approach. Onnela et al. introduced subgraph intensity
as the geometric mean of link weights and coherence as
the ratio of the geometric to the corresponding arithmetic
mean [31]. A natural generalization of clustering coefficient
in the case of weighted networks (the so-called weighted
clustering coefficient) is defined as follows:

1

W=

The average clustering coefficient C = ]l\, Zf\;l Co.i
expresses the statistical level of cohesiveness when measur-
ing the global density of interconnected vertex triplets in the
weighted network.

C. DISTANCE AND BETWEENNESS
The distance d;; between two nodes in unweighted networks
is defined as the minimum number of edges spanning from
node i to node j. Similarly, distance dj; in a weighted network
is represented as the sum of the weights of the shortest paths
between node i and node j.

The average distance L shown in the following formula
represents the average degree of separation between nodes
in the network:

) N N
L= NN-D Z Z d;j 4)

i=1 j=i+1

Betweenness is another important centrality measure based
on shortest paths and is defined as follows:

Nji (i)
Bi = 'Z. Ny )
JHEIF

where Nj; represents the number of shortest paths between
nodes v; and v;, and Nj;(i) represents the number of shortest
paths passing through node v; between node v; and v;. In a
sense, betweenness reflects the influence of a node over the
spread of information through the network.

Ill. EXPERIMENT
A. EXPERIMENT SCHEME
In the experiment, we use a Lenovo workstation platform
with a 2.20 GHz CPU and 16.00GB memory. The operating
system is Red Hat Enterprise Linux 6. A number of EDA tools
are used for comparison. For instance, circuit format conver-
sion tool DATC RDF [32]; placement tools Capol10.0 [33],
Fastplace3 [34], Dragon3.0 [35], MPL6 [36], NTUplace3
[37], and FengShui2.6 [38]; routing tools BoxRoute2.0 [39],
FGR [40], NCTU-GR2.0 [41], and NTHU-Route2.0 [42];
and complex network modeling and analysis tools MATLAB,
PAJEK, and R.

We use the benchmark suite TAU 2017 Benchmark for
the experiment. This benchmark originated for the timing
contest [43]. It includes 17 circuits which will be run and
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TABLE 1. The number of modules and nets in each circuit in TAU 2017
Benchmark.

Number Benchmarks Nets Modules
1 ac97_ctrl 8683 8898
2 aes_core 16055 16185
3 b19_iccad 118612 118637
4 des_perf 95748 96323
5 des_perf_ispd 104413 104553
6 fft_ispd 45860 47844
7 matrix_mult_ispd 176890 178490
8 mgc_edit_dist_iccad 129039 129051
9 mgc_matrix_mult_iccad 176807 178407
10 pei_bridge32 14784 15063
11 systemcaes 7363 7492
12 systemcdes 3296 3361
13 tv80 5306 5338
14 usb_funct 12181 12303
15 usb_phy_ispd 469 488
16 vga_led_iccad 90919 91018
17 wb_dma 3524 3739

[ ]
|

| TAU 2017 Benchmark |

l

| Physical design by multi-tools

l

| Complex network abstraction

|

| Correlation analysis |

FIGURE 1. The experiment scheme.

analyzed by the previously mentioned tools. The number
of nets ranges from 469 to 176,890, and the number of
modules in the benchmark ranges from 488 to 178,490.
The detailed information of the benchmark is listed in
Table 1.

The experiment scheme is outlined in Figure 1. We place
and route circuits in TAU 2017 Benchmark in the phase
of “physical design by multi-tools”, placements and lay-
outs with different performance are obtained due to different
p/1 tools. In the phase of “‘complex network abstraction”,
placements and layouts of the circuits are transformed into
weighted networks to extract characteristics parameters. In
correlation analysis, the Pearson correlation coefficient is
computed to evaluate the correlation between circuit perfor-
mance and characteristic parameters.

1) PHYSICAL DESIGN BY MULTI-TOOLS
In the physical design, circuits in the benchmark are placed
and routed to obtain designs with different performances. The
designs will be used to form complex networks to extract
various characteristics in the next phase.

First, we run the DATC circuit format conversion tool to
convert the benchmark circuit into bookshelf format. Then
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TABLE 2. Kruskal-Wallis test on correlations.

p-value <S> B D C
Placement  2.09 e-12 2.85¢-14 3.06 e-13 1.49 e-13
Routing 1.57 e-05 5.87 e-08 2.35e-07 0.2014

the placement tools (i.e., Capo10.0, Fastplace3, Dragon3.0,
MPL6, NTUplace3, and FengShui2.6) are completed to
obtain placement designs of the circuits. The performances
of the resulting placements may differ from each other due to
the qualities of the tools. In the end, we also run the routing
tools (i.e., BoxRoute2.0, FGR, NCTU-GR2.0, and NTHU-
Route2.0) to obtain different layout designs.

2) COMPLEX NETWORK ABSTRACTION

In this phase, we first convert the formed placement into
the weighted complex network. In each circuit placement,
modules are regarded as nodes, and links between modules
are regarded as edges. The weight of the edge between two
connected nodes is approximated as the half-perimeter wire-
length (HPWL) of the bounding box. The average strength,
betweenness, average distance and clustering coefficient of
the weighted complex network are also extracted by the
analysis tools.

After the placement designs are routed, the structure of
the layout design becomes clear and concrete. The nodes in
the layout design are connected by horizontal and/or vertical
links. Unlike placement, virtual nodes such as vias are added
into the layout design. We use the nodes (include virtual
nodes) and links to form complex networks. The average
strength, betweenness, average distance and clustering coef-
ficient of the weighted complex network are extracted by the
analysis tools.

B. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we introduce the correlation analysis method
and analyze the correlations of both placement design and
layout design.

1) CORRELATION ANALYSIS

In correlation analysis, we use the Pearson correlation coeftfi-
cient to compute the correlation between circuit performance
and characteristic parameters. The coefficient is defined
according to the following formula:

. N Y xiyi — D Xi ) yi
IV~ (Sw) YN Tt - (S0’

where N is the number of total nodes, and x; and y; display
two data series, where one indicates the circuit performance
and another represents the characteristic parameter of the
complex network.

When the correlation coefficient r is larger than 0, the two
data series are positively correlated. In contrast, when r is
smaller than 0, the correlation is negative. When r is equal to
(or approximately) 0, it is uncorrelated.

(6)
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TABLE 3. Correlation between average strength and circuit performance under different placement tools.

benchmark Capo Dragon FastPlace FengShui MPL NTUPlace
<S> HPWL <S> HPWL <S> HPWL <S> HPWL <S> HPWL <S> HPWL
1 617.53 861963  628.00 1030686  762.78 1155152 616.30 1009685  503.57 796871  657.94 930814
2 530.94 1472879  607.59 1544510 701.77 1662166 610.86 1639811 475.44 1353533 584.65 1467712
3 473.27 8827399 499.10 9655616  529.46 10469994 482.96 9143570 404.24 8648192 478.52 8892596
4 1285.40 9040330 1090.00 9632846 1308.20 10765400 943.63 10705096 1403.00 8769532 1256.30 9650262
5 901.15 8043061 893.50 8485085 1148.00 9249793  858.30 8543042 149120 7654281 1104.50 8878770
6 1976.60 13054034 1939.60 12846118 1741.10 12115411 2215.80 14300138 1803.10 12115411 1848.80 12678131
7 1118.30 28463022 1154.80 28797712 1107.30 27241163 1878.20 41443730 1018.20 27178014 1137.20 26989704
8 1793.80 32597907 1753.60 35828582 1761.70 33367328 2553.20 42058959 1431.80 33460996 1792.30 34108207
9 1094.20 28087879 1169.30 28887903 1112.40 27339050 1888.90 41418269 1019.20 27199916 1137.50 27000081
10 508.76 1408642 485.24 1573577  663.05 1829865  606.53 1750255 385.11 1334155 542.39 1484578
11 800.02 1143442 754.70 1175582  887.34 1429369 1188.70 1460214 628.19 1061616  783.28 1161302
12 491.64 361362  486.22 381152 730.15 464669  700.20 428860  415.54 329909  497.22 355832
13 451.52 403401  492.96 467020  641.18 608193  546.52 508939 40791 359326  483.03 415370
14 604.59 1230203 585.14 1323573 625.15 1394876 813.41 1529491 464.43 1139692  683.72 1355674
15 219.31 21907 261.01 27095 336.01 33382 278.13 28256 183.45 17486 243.71 23067
16 2008.40 15037538 1920.70 16478944 2034.60 18153323 261290 18801235 1640.90 15352642 1914.30 15304497
17 698.37 692932  679.00 707314 727.80 825425  937.65 831999  552.24 638884  656.63 701733
correlation 0.68023 0.71861 0.68531 0.78013 0.62986 0.71844
TABLE 4. Correlation analysis between betweenness and performance under different placement tools.
benchmark Capo Dragon FastPlace FengShui MPL NTUPlace
HPWL B HPWL B HPWL B HPWL B HPWL B HPWL
1 75436 861963 72194 1030686 69337 1155152 69752 1009685 73315 796871 74593 930814
2 162509 1472879 162643 1544510 177838 1662166 161670 1639811 145768 1353533 170571 1467712
3 2181120 8827399 2214810 9655616 2002758 10469994 2035326 9143570 1604363 8648192 2019331 8892596
4 1465882 9040330 1393435 9632846 1403353 10765400 1354908 10705096 1391455 8769532 1468980 9650262
5 1511063 8043061 1517384 8485085 1530560 9249793 1890905 8543042 1364227 7654281 1552340 8878770
6 589561 13054034 592620 12846118 541868 12115411 561896 14300138 496082 12115411 586303 12678131
7 3856596 28463022 3384273 28797712 3363263 27241163 3397740 41443730 2870295 27178014 3691230 26989704
8 1357901 32597907 1332811 35828582 1307811 33367328 1332310 42058959 1100093 33460996 1341340 34108207
9 3544064 28087879 3505212 28887903 3455529 27339050 3437196 41418269 2879984 27199916 3633923 27000081
10 138317 1408642 131767 1573577 134932 1829865 135001 1750255 119728 1334155 137162 1484578
11 48565 1143442 46651 1175582 45568 1429369 47477 1460214 40762 1061616 46094 1161302
12 16982 361362 16878 381152 16672 464669 16838 428860 15281 329909 17031 355832
13 30966 403401 31326 467020 29543 608193 31267 508939 27603 359326 30961 415370
14 98329 1230203 98125 1323573 96771 1394876 94801 1529491 87406 1139692 102605 1355674
15 2045 21907 1964 27095 2136 33382 2112 28256 2056 17486 2095 23067
16 904629 15037538 901644 16478944 972423 18153323 944081 18801235 785185 15352642 990981 15304497
17 20496 692932 20132 707314 19131 825425 20282 831999 18743 638884 20372 701733
correlation 0.79586 0.76652 0.78811 0.78120 0.75062 0.75874

2) CORRELATION IN PLACEMENT

In the experiment, we show the characteristic parameters and
circuit performance under different placement tools for TAU
2017 Benchmark. The characteristic parameters and circuit
performance (shown as HPWL) present differences due to
the efficiencies of the tools. The performance of placement
optimized by MPL is the best, followed by Capo, NTUPlace,
Dragon, FastPlace, and FengShui. According to the resulting
placement of each circuit, characteristic parameters of the
corresponding complex network are calculated. The results
are listed in Table 3 to Table 6. The correlations between cir-
cuit performance and characteristic parameters are calculated
and shown in the last lines of the tables.

Table 3 shows values of different average strength <S> and
circuit performance under different placement tools. The cor-
relations between circuit performance and average strength
for different placement tools are 0.68023, 0.71861, 0.68531,
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0.78013, 0.62986, and 0.71844. In Figure 2, the scatters illus-
trate the variation of average strength <S> with HPWL for
different placement tools. It can be observed that lower per-
formance of the placement tool correlates with higher average
strength.

Table 4 shows values of different betweenness B and cir-
cuit performance under different placement tools. The cor-
relations between circuit performance and betweenness for
different placement tools are 0.79586, 0.76652, 0.78811,
0.78120, 0.75062, and 0.75874. In Figure 3, the scatters illus-
trate variations of betweenness B with HPWL of different
placement tools. The data roughly show that lower perfor-
mance of the placement tool correlates with lower between-
ness (except for MPL).

Table 5 shows values of different average distance D and
circuit performance under different placement tools. The cor-
relations between circuit performance and average distance
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TABLE 5. Correlation analysis between average distance and performance under different placement tools.

benchmark Capo Dragon FastPlace FengShui MPL NTUPlace
HPWL D HPWL D HPWL D HPWL D HPWL D HPWL
1 1971.98 861963  1429.97 1030686 2369.05 1155152 1665.02 1009685 1337.53 796871 1750.45 930814
2 1122.15 1472879 122199 1544510 2024.75 1662166 1576.08 1639811 1026.03 1353533 1462.11 1467712
3 275429 8827399 3913.79 9655616 4386.03 10469994 4097.44 9143570 2756.37 8648192 318525 8892596
4 4731.69 9040330 3158.55 9632846 4339.80 10765400 3759.77 10705096 3440.86 8769532 3947.78 9650262
5 2732.58 8043061 2908.44 8485085 4031.44 9249793 3799.22 8543042 287270 7654281 3884.50 8878770
6 357248 13054034 3735.26 12846118 4818.87 12115411 2886.28 14300138 4020.55 12115411 3570.71 12678131
7 5584.80 28463022 5102.61 28797712 5956.05 27241163 4669.19 41443730 5423.96 27178014 5301.78 26989704
8 2503.98 32597907 2645.89 35828582 2798.41 33367328 3732.66 42058959 2491.75 33460996 2960.68 34108207
9 576577 28087879 5245.85 28887903 5943.51 27339050 4575.51 41418269 5430.66 27199916 5381.28 27000081
10 1343.31 1408642 137445 1573577 2238.67 1829865 1799.51 1750255 1207.57 1334155 1759.07 1484578
11 872.39 1143442 878.03 1175582 1213.03 1429369 1197.70 1460214 816.57 1061616  943.75 1161302
12 613.47 361362  631.72 381152  976.41 464669  818.77 428860  544.63 329909  630.79 355832
13 568.43 403401  604.83 467020  856.01 608193  798.47 508939  528.84 359326  610.62 415370
14 1202.20 1230203 1268.06 1323573 1510.97 1394876 1461.32 1529491 1037.22 1139692 1395.08 1355674
15 410.35 21907 437.98 27095 645.99 33382 397.03 28256 313.76 17486 471.38 23067
16 2805.28 15037538 4350.86 16478944 4779.10 18153323 3756.60 18801235 2979.34 15352642 3060.31 15304497
17 913.44 692932  956.22 707314 1226.84 825425  1086.09 831999  775.68 638884  959.50 701733
correlation 0.77501 0.78489 0.73827 0.78911 0.79854 0.77627

TABLE 6. Correlation analysis between clustering coefficient and performance under different placement tools.

benchmark Capo Dragon FastPlace FengShui MPL NTUPlace
HPWL C HPWL C HPWL C HPWL C HPWL C HPWL
1 0.0987 861963  0.1321 1030686  0.1517 1155152 0.0932 1009685  0.0863 796871 0.0875 930814
2 0.0026 1472879  0.0036 1544510  0.0017 1662166  0.0025 1639811  0.0029 1353533 0.0037 1467712
3 0.0559 8827399 0.0616 9655616  0.0931 10469994 0.0595 9143570  0.0493 8648192  0.0576 8892596
4 0.0017 9040330 0.0015 9632846  0.0009 10765400 0.0013 10705096 0.0016 8769532  0.0014 9650262
5 0.0012 8043061 0.0013 8485085 0.0010 9249793  0.0010 8543042 0.0014 7654281 0.0010 8878770
6 0.1454 13054034 0.1554 12846118 0.0910 12115411 0.1297 14300138 0.1826 12115411 0.1423 12678131
7 0.0230 28463022 0.0311 28797712 0.0188 27241163 0.0224 41443730 0.0247 27178014 0.0244 26989704
8 0.0346 32597907 0.0397 35828582 0.0514 33367328 0.0354 42058959 0.0382 33460996 0.0330 34108207
9 0.0234 28087879 0.0302 28887903 0.0178 27339050 0.0225 41418269 0.0253 27199916 0.0244 27000081
10 0.0400 1408642  0.0412 1573577  0.0528 1829865 0.0378 1750255  0.0389 1334155 0.0347 1484578
11 0.1024 1143442 0.1256 1175582  0.1996 1429369  0.0825 1460214  0.1675 1061616  0.1096 1161302
12 0.0019 361362 0.0020 381152 0.0027 464669  0.0015 428860  0.0019 329909  0.0017 355832
13 0.0666 403401  0.0757 467020  0.1206 608193  0.0686 508939  0.0831 359326  0.0691 415370
14 0.1028 1230203  0.1039 1323573 0.1245 1394876  0.1045 1529491  0.0988 1139692  0.0929 1355674
15 0.1070 21907 0.1318 27095 0.1864 33382 0.1054 28256 0.1152 17486 0.1076 23067
16 0.3408 15037538 0.4250 16478944 0.7080 18153323 0.3665 18801235 0.3988 15352642 0.3295 15304497
17 0.0570 692932 0.0547 707314 0.0904 825425  0.0496 831999  0.0376 638884  0.0488 701733
correlation 0.00413 0.02595 0.04227 0.00199 0.02922 0.01134
HPWL - <S> Correlation HPWL - B Correlation = Capo

o s b x,\]l’]!:

;};1500 x ) % — mZS "

v f‘ "y Hagon 20 r

1000 _5 * FastPlace 15 ] e

® NTUPlace 5 ®
N ot

HPWL

4

x 10000000

FIGURE 2. The HPWL-<S> correlation in placement for TAU 2017

Benchmark.

for different placement tools are 0.77501, 0.78489, 0.73827,
0.78911, 0.79854, and 0.77627. In Figure 4, the scatters
illustrate the variation of average distance D with HPWL of
different placement tools. The data roughly show that lower
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0 i 2 3 4 5

HWPI x 10000000

FIGURE 3. The HPWL-B correlation in placement for TAU 2017
Benchmark.

performance of the placement tool correlates with higher
average distance.

Table 6 shows values of different clustering coefficient C
and circuit performance under different placement tools. The
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FIGURE 5. The HPWL-C correlation in placement for TAU 2017
Benchmark.

FIGURE 6. The placement of wb_dma by NTUPlace3.

correlations between circuit performance and clustering coef-
ficient for different placement tools are 0.00413, 0.02595,
0.04227, 0.00199, 0.02922, and 0.01134. In Figure 5, the
scatters illustrate the variation of clustering coefficient
C with HPWL for different placement tools. The data
roughly show that lower performance of the placement
tool correlates with higher clustering coefficient (except for
FengShui).

We show the placement of the wb_dma circuit in Figure 6
and illustrate the three-dimensional weighted complex net-
work of the circuit in Figure 7.

The correlations between circuit performance of place-
ment and characteristic parameters are listed in the last
lines of Table 3 to Table 6. The correlation between cir-
cuit performance and average strength averages 0.70210,
the correlation between circuit performance and between-
ness averages 0.77351, the correlation between circuit
performance and average distance averages 0.77702, and
the correlation between circuit performance and clustering
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FIGURE 8. Correlation comparison for different placement tools.

coefficient is 0.01911. The correlations are illustrated in
Figure 8. The data show that circuit performance has the
strongest correlation with average distance, followed by
betweenness and average strength, and has the weakest cor-
relation with th clustering coefficient.

3) CORRELATION IN LAYOUT

In this section, it shows the characteristic parameters and
circuit performance under different route tools for TAU 2017
Benchmark. The characteristic parameters and circuit perfor-
mance (shown as WL) present differences due to the efficien-
cies of the tools. The layout performance generated by NTHU
is the best, those of NCTU-GR and BoxRouter are nearly
identical and that of FGR is the worst. We convert the layout
design into a complex network and calculate the correspond-
ing characteristic parameters. The correlations between the
circuit performance of the layout and characteristic parame-
ters are calculated and shown in the last lines of Table 7 to
Table 10.

Table 7 shows values of different average strength <S>
and circuit performance under different routing tools. The
correlations between WL and average strength for different
routing tools are 0.50221, 0.54040, 0.48427, and 0.16201.
In Figure 9, the scatters illustrate the variation of average
strength <S> with WL for different route tools. This shows
that lower performance of the routing tool correlates with
higher average strength.

Table 8 shows values of different betweenness B and circuit
performance under different routing tools. The correlations
between WL and betweenness for different routing tools are
0.87639, 0.91437, 0.88974, and 0.96254. In Figure 10, the

VOLUME 8, 2020



T. Nie et al.: Performance and Correlations of Weighted Circuit Networks

IEEE Access

TABLE 7. Correlation analysis between average strength and performance under different routing tools.

benchmark BoxRouter FGR NCTU-GR NTHU
<S> WL <S> WL <S> WL <S> WL

1 7.58 45754 10.44 45594 6.76 44688 6.93 44728
2 19.15 121430 31.41 129339 19.85 124862 18.14 128194
3 30.63 770772 50.62 772523 29.57 758380 26.23 718138
4 12.22 484159 18.47 484307 11.49 485923 11.46 477643
5 14.56 500633 23.08 498642 13.66 497758 13.59 491412
6 9.52 400461 13.29 400809 8.75 400494 8.93 395864
7 16.12 1238533 2491 1272274 15.53 1238411 14.71 1231382
8 22.46 1702299 37.07 1702773 23.18 1811269 13.56 1314700
9 16.50 1227651 25.47 1241819 15.89 1253943 15.04 1241869
10 8.76 71013 12.26 70666 7.80 69948 8.04 70103
11 15.86 62396 2222 65656 14.80 61461 13.54 58239
12 15.35 23324 21.614 24116 14.21 23252 13.38 23180
13 20.88 32934 35.89 34412 2221 32976 22.65 30364
14 13.08 85960 19.69 96117 12.11 86214 11.45 88358
15 5.46 1381 7.55 1353 5.24 1338 5.34 1338
16 21.15 1327184 35.25 1263917 19.90 1457962 11.40 1019340
17 11.71 32020 16.76 30864 10.98 30807 11.15 30817

correlation 0.50221 0.54040 0.48427 0.16201

TABLE 8. Correlation analysis between average betweenness and performance under different routing tools.
benchmark BoxRouter FGR NCTU-GR NTHU
B WL B WL B WL B WL

1 41400 45754 41001 45594 36655 44688 34327 44728
2 68597 121430 60266 129339 56321 124862 60976 128194
3 446864 770772 349096 772523 324789 758380 303465 718138
4 379964 484159 382195 484307 363319 485923 346899 477643
5 361320 500633 331415 498642 323393 497758 317124 491412
6 158120 400461 165050 400809 158200 400494 149384 395864
7 594716 1238533 547009 1272274 498976 1238411 515488 1231382
8 432625 1702299 507777 1702773 422771 1811269 415626 1314700
9 578686 1227651 553575 1241819 507101 1253943 519732 1241869
10 63212 71013 58747 70666 56000 69948 52822 70103
11 21747 62396 22929 65656 17244 61461 16703 58239
12 9186 23324 10164 24116 8429 23252 8636 23180
13 10827 32934 8780 34412 7980 32976 6823 30364
14 43124 85960 41026 96117 34464 86214 36453 88358
15 1556 1381 966 1353 1055 1338 1054 1338
16 361796 1327184 344079 1263917 327186 1457962 415266 1019340
17 12357 32020 10980 30864 10011 30807 9575 30817

correlation 0.87639 0.91437 0.88974 0.96254

scatters illustrate the variation of betweenness B with WL for
different route tools. This roughly shows that lower perfor-
mance of the routing tool correlates with higher betweenness
(except for BoxRouter).

Table 9 shows values of different average distance D
and circuit performance under different routing tools. The
correlations between WL and average distance for different
routing tools are 0.19266, 0.28472, 0.25067, and 0.55930.
In Figure 11, the scatters illustrate the variation of average
distance D with WL for different routing tools. This roughly
shows that lower performance of the routing tool correlates
with lower average distance.

Table 10 shows the values of different clustering coef-
ficient C and circuit performance under different routing
tools. The correlations between WL and clustering coefficient
for different routing tools are 0.46342, -0.33941, 0.44012,
and 0.10439. Notably, the correlation between clustering
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coefficient and circuit performance for FGR is negative. In
Figure 12, the scatters illustrate the variation of clustering
coefficient C with WL for different routing tools. For the
NTHU, NCTU-GR and BoxRouter tools, it shows that higher
performance of the routing tool correlates with lower cluster-
ing coefficient. The FGR tool presents a different style due to
the negative correlation.

It shows the layout of the wb_dma circuit generated
by FGR in Figure 13 and illustrates the three-dimensional
weighted complex network of the circuit in Figure 14.

The correlations between layout circuit performance and
the characteristic parameters are listed in the last lines of
Table 7 to Table 10. The correlation between circuit perfor-
mance and average strength averages 0.42222, the correlation
between circuit performance and betweenness averages
0.91076, the correlation between circuit performance and
average distance averages 0.32184, and the correlation
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TABLE 9. Correlation analysis between average distance and performance under different routing tools.

benchmark BoxRouter FGR NCTU-GR NTHU
D WL D WL D WL D WL
1 7.07 45754 7.14 45594 7.61 44688 7.23 44728
2 4.60 121430 4.37 129339 443 124862 4.74 128194
3 4.35 770772 4.49 772523 4.90 758380 5.40 718138
4 9.04 484159 9.07 484307 9.53 485923 9.21 477643
5 8.87 500633 8.20 498642 8.83 497758 8.59 491412
6 6.03 400461 5.81 400809 6.58 400494 6.34 395864
7 6.57 1238533 6.28 1272274 6.70 1238411 6.83 1231382
8 4.99 1702299 5.51 1702773 5.46 1811269 6.69 1314700
9 6.48 1227651 6.25 1241819 6.75 1253943 6.76 1241869
10 6.90 71013 6.64 70666 7.11 69948 6.66 70103
11 3.56 62396 3.93 65656 3.65 61461 3.88 58239
12 3.61 23324 4.12 24116 4.11 23252 4.08 23180
13 2.70 32934 2.52 34412 2.49 32976 2.39 30364
14 4.87 85960 4.82 96117 5.03 86214 5.08 88358
15 5.82 1381 3.65 1353 4.05 1338 4.06 1338
16 5.24 1327184 5.44 1263917 5.69 1457962 8.43 1019340
17 3.79 32020 3.84 30864 4.10 30807 3.92 30817
correlation 0.19266 0.28472 0.25067 0.55930

TABLE 10. Correlation analysis between clustering coefficient and performance under different routing tools.

benchmark BoxRouter FGR NCTU-GR NTHU
C WL C WL C WL C WL
1 0.0518 45754 0.0066 45594 0.0453 44688 0.0570 44728
2 0.1108 121430 0.0216 129339 0.0898 124862 0.0790 128194
3 0.1729 770772 0.0203 772523 0.1279 758380 0.1040 718138
4 0.0624 484159 0.0088 484307 0.0641 485923 0.0661 477643
5 0.0748 500633 0.0111 498642 0.0708 497758 0.0752 491412
6 0.0654 400461 0.0069 400809 0.0638 400494 0.0682 395864
7 0.1033 1238533 0.0093 1272274 0.0950 1238411 0.0925 1231382
8 0.1330 1702299 0.0092 1702773 0.1155 1811269 0.0685 1314700
9 0.1046 1227651 0.0092 1241819 0.0957 1253943 0.0938 1241869
10 0.0516 71013 0.0059 70666 0.0524 69948 0.0548 70103
11 0.1160 62396 0.0167 65656 0.0961 61461 0.0833 58239
12 0.1091 23324 0.0213 24116 0.0757 23252 0.0640 23180
13 0.1101 32934 0.0205 34412 0.1126 32976 0.1015 30364
14 0.0939 85960 0.0106 96117 0.0791 86214 0.0700 88358
15 0.0184 1381 0.0077 1353 0.0193 1338 0.0223 1338
16 0.1224 1327184 0.0081 1263917 0.0947 1457962 0.0471 1019340
17 0.0703 32020 0.0120 30864 0.0796 30807 0.0718 30817
correlation 0.46342 -0.33941 0.44012 0.10439

WL - <8> Correlation

60 M BoxRouter
FGR

50 . NCTU-GR
NTHU

o 5 10 15 20
WL X 100000

FIGURE 9. The WL-<S> layout correlation for TAU 2017 Benchmark.

between circuit performance and clustering coefficient is
0.16713. The correlations are illustrated in Figure 15. The
data show that layout circuit performance has the strongest
correlation with betweenness, followed by average strength
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FIGURE 10. The WL-B layout correlation for TAU 2017 Benchmark.

and average distance, and has the weakest correlation with
the clustering coefficient.

In Figure 16, we show the transition of correlations
between circuit performance and characteristic parameters
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FIGURE 11. The WL-D layout correlation for TAU 2017 Benchmark.
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FIGURE 12. The WL-C layout correlation for TAU 2017 Benchmark.

FIGURE 13. The layout of wb_dma by FGR.

FIGURE 14. The weighted complex layout network of wb_dma.

from placement to routing. The orange curve presents the
correlation between circuit performance and characteris-
tic parameters in placement, while the blue curve presents
the correlation between circuit performance and character-
istic parameters in route. After routing, the correlations
between circuit performance and average distance and aver-
age strength have been weakened, while the correlations
between circuit performance and betweenness and clustering
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FIGURE 15. Correlation comparison for different routing tools.
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FIGURE 16. Correlation change from placement to routing.

coefficient have been strengthened. Notably, the corre-
lation between circuit performance and betweenness has
been further strengthened after routing, and it presents a
remarkable difference in comparison with other characteristic
parameters.

We had a statistical analysis on the experimental data
using the Kruskal-Wallis test. As shown in Table 2, there are
extreme significant correlations between circuit performance
and characteristic parameters (p-value < 0.0001), except no
significant correlation between circuit performance and clus-
tering coefficient in routing (p-value > 0.05). The conclusion
is consistent with the results shown in Figure 2 - Figure 12.

IV. CONCLUSION

In this paper, we have conducted a study regarding the case of
characteristic parameters and circuit performance under dif-
ferent placement and routing tools. The experimental results
of TAU 2017 Benchmark show that circuit performance
varies due to the efficiencies of the optimization tools. The
qualities of the placement tools ranked from best to worst
are MPL, Capo, NTUPlace, Dragon, FastPlace, and Feng-
Shui; the ranked qualities of the routing tools are NTHU,
NCTU-GR, BoxRouter, and FGR. The strength of the corre-
lations between circuit performance and the complex network
characteristics in placement follows the order of average dis-
tance, betweenness, average strength, and the clustering coef-
ficient; the strength of the correlations with routing follows
the order of betweenness, average strength, average distance,
and the clustering coefficient. We also show the transition
of the correlations from placement to routing. After routing,
the correlations between circuit performance, average dis-
tance and average strength have been weakened, while the
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correlations between circuit performance, betweenness and
the clustering coefficient have been strengthened. Notably,
the correlation between circuit performance and betweenness
has been further strengthened after routing, which presents a
remarkable difference in comparison with other characteristic
parameters.
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