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ABSTRACT The patterns and evolution of man-made complex networks have been topics of interest in
recent years. Herein, we define appropriate metrics to quantify the correlations between circuit performance
and the complex network characteristics regarding the physical design of circuits. The experimental results
show that circuit performance differs due to the optimization tools, both at placement and routing. The
strength of the correlations with placement design follows the order of average distance, betweenness,
average strength, and the clustering coefficient; the strength of the correlations with layout design follows
the order of betweenness, average strength, average distance, and the clustering coefficient. The correlation
between performance and betweenness has been further strengthened after routing and presents a remarkable
difference in comparisonwith other characteristic parameters, which indicates its significance to the dynamic
correlation with circuit performance.

INDEX TERMS Weighted complex network, circuit design, correlation, performance, complex network
characteristics.

I. INTRODUCTION
With the enormous progress of semiconductor manufactur-
ing technology, VLSI (very-large-scale integration circuit)
design has achieved rapid development following Moore’s
Law. Billions of components are integrated into a single chip
to improve the performance, which substantially increases the
design complexity simultaneously [1]. The cost, quality and
predictability of IC (integration circuit) design have become
intertwined challenges to the ability of designers to exploit
advances in underlying patterning, device and integration
technologies [2]. The physical design is a crucial stage for
the resulting circuit performance. Conventional optimization
tools may not be efficient enough to solve such problems,
and considerable efforts are devoted to the development of
new methods and algorithms for improving the performance
of EDA tools [3].

As a subject that explains the phenomena and complex-
ity of existing systems, complex networks have experienced
booming interest in recent years. The study of complex
networks spans a multitude of research fields from natural
science to social science [4]–[11]. In recent decades, the-
ories and growth models for explaining phenomena in the
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optimization of complex networks have been established
[12]–[14]. Especially, research on robustness and control-
lability of the network indicate the close correlation to the
properties of complex networks (such as scale-free, small-
world, etc.) [15]–[19].

As a special category of network, man-made networks are
typically designed for distribution of some commodity or
resource. The studied distribution networks include airline
networks [20], [21], railways [22], [23], power grids [12],
[24], electronic circuits [25], etc.

The electronic circuit can be viewed as a network in which
components are considered as vertices and wires between
components are considered as edges. The evolution of elec-
tronic circuits underwent transitions from analog circuits
to digital circuits, then to high integration. Early research
showed that both analog and digital circuits exhibit small
world behaviors [25]. Later, Teuscher et al. demonstrated
that the chip system with small-world characteristics can
adapt to scale growth and presents superior performance and
robustness with respect to regular structured chips [26], [27].
Oshida et al. investigated the network-on-chip (NoC) perfor-
mance with different structures through dynamic flow anal-
ysis. They found that the NoC architecture constructed with
the topology in which hubs mostly connect to lower-degree
nodes achieves short latency and low packet loss ratio [28].
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Zhan et al. devised amulti-layered design architecture to cap-
ture favorable characteristics of biological mechanisms for
the application of electronic circuit design. This demonstrates
that utilizing biological mechanisms for engineering design
is a promising approach for building intelligent systems [29].
To identify the infringement of intellectual property, Tan et al.
proposed a novel global similarity measurement for physical
circuit designs [30].

In this paper, we analyze the correlations between circuit
performance and the complex network characteristics of the
physical design of integrated circuits, and explore the strength
of the correlations with placement and routing. The transition
of correlations from placement to routing is also studied in
this context.

The paper is organized as follows. It introduces the funda-
mental characteristic related to weighted complex networks
in the second section, conducts experiment schemes and ana-
lyze results in the third section, and concludes in the fourth
section.

II. WEIGHTED COMPLEX NETWORK
In this section, we introduce a few fundamental concepts used
in the analysis of weighted complex networks. A network
or graph is usually represented by an adjacency matrix A;
element aij is set to 1 if there exists an edge connecting
vertex i to vertex j, and 0 otherwise. Similarly, a weighted
network can also be described by a matrix W in which
entry wij indicates the weight on the edge connecting ver-
tex i and vertex j (wij = 0 if the nodes i and j are not
connected). In this context, we only consider the case of
symmetric weight, namely, wij = wji. The weight can be
categorized into dissimilarity weight and similarity weight.
The dissimilarity weight is proportional to the distance,
while the similarity weight is inversely proportional to the
distance.

A. DEGREE AND STRENGTH
In a complex network, the most commonly utilized charac-
teristic parameter is degree, which is defined as the number
ki of neighbors. The average degree of a network < k > is
defined as the average number of degrees of all nodes in the
network, as shown by the following formula:

< k >=
1
N

N∑
i=1

ki (1)

In contrast with vertex degree ki, the vertex strength Si used
in theweighted network defines the significant property of the
vertex and is given by the following:

Si =
∑
j∈Ni

wij (2)

B. WEIGHTED CLUSTERING
The local structure of unweighted networks can be charac-
terized by the number of times a subgraph appears in the

network. The clustering coefficient, reflecting the local con-
figuration of triangles, can be considered as a special case
of this approach. Onnela et al. introduced subgraph intensity
as the geometric mean of link weights and coherence as
the ratio of the geometric to the corresponding arithmetic
mean [31]. A natural generalization of clustering coefficient
in the case of weighted networks (the so-called weighted
clustering coefficient) is defined as follows:

Cw
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1
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jk · w
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ki
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The average clustering coefficient C =
1
N

∑N
i=1 C

w
O,i

expresses the statistical level of cohesiveness when measur-
ing the global density of interconnected vertex triplets in the
weighted network.

C. DISTANCE AND BETWEENNESS
The distance dij between two nodes in unweighted networks
is defined as the minimum number of edges spanning from
node i to node j. Similarly, distance dij in a weighted network
is represented as the sum of the weights of the shortest paths
between node i and node j.

The average distance L shown in the following formula
represents the average degree of separation between nodes
in the network:

L =
2

N (N − 1)

N∑
i=1

N∑
j=i+1

dij (4)

Betweenness is another important centralitymeasure based
on shortest paths and is defined as follows:

Bi =
∑
j6=l 6=i

Njl (i)
Njl

. (5)

where Njl represents the number of shortest paths between
nodes vj and vl , and Njl(i) represents the number of shortest
paths passing through node vi between node vj and vl . In a
sense, betweenness reflects the influence of a node over the
spread of information through the network.

III. EXPERIMENT
A. EXPERIMENT SCHEME
In the experiment, we use a Lenovo workstation platform
with a 2.20 GHz CPU and 16.00GB memory. The operating
system is RedHat Enterprise Linux 6. A number of EDA tools
are used for comparison. For instance, circuit format conver-
sion tool DATC RDF [32]; placement tools Capo10.0 [33],
Fastplace3 [34], Dragon3.0 [35], MPL6 [36], NTUplace3
[37], and FengShui2.6 [38]; routing tools BoxRoute2.0 [39],
FGR [40], NCTU-GR2.0 [41], and NTHU-Route2.0 [42];
and complex network modeling and analysis toolsMATLAB,
PAJEK, and R.

We use the benchmark suite TAU 2017 Benchmark for
the experiment. This benchmark originated for the timing
contest [43]. It includes 17 circuits which will be run and
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TABLE 1. The number of modules and nets in each circuit in TAU 2017
Benchmark.

FIGURE 1. The experiment scheme.

analyzed by the previously mentioned tools. The number
of nets ranges from 469 to 176,890, and the number of
modules in the benchmark ranges from 488 to 178,490.
The detailed information of the benchmark is listed in
Table 1.

The experiment scheme is outlined in Figure 1. We place
and route circuits in TAU 2017 Benchmark in the phase
of ‘‘physical design by multi-tools’’, placements and lay-
outs with different performance are obtained due to different
p/l tools. In the phase of ‘‘complex network abstraction’’,
placements and layouts of the circuits are transformed into
weighted networks to extract characteristics parameters. In
correlation analysis, the Pearson correlation coefficient is
computed to evaluate the correlation between circuit perfor-
mance and characteristic parameters.

1) PHYSICAL DESIGN BY MULTI-TOOLS
In the physical design, circuits in the benchmark are placed
and routed to obtain designs with different performances. The
designs will be used to form complex networks to extract
various characteristics in the next phase.

First, we run the DATC circuit format conversion tool to
convert the benchmark circuit into bookshelf format. Then

TABLE 2. Kruskal-Wallis test on correlations.

the placement tools (i.e., Capo10.0, Fastplace3, Dragon3.0,
MPL6, NTUplace3, and FengShui2.6) are completed to
obtain placement designs of the circuits. The performances
of the resulting placements may differ from each other due to
the qualities of the tools. In the end, we also run the routing
tools (i.e., BoxRoute2.0, FGR, NCTU-GR2.0, and NTHU-
Route2.0) to obtain different layout designs.

2) COMPLEX NETWORK ABSTRACTION
In this phase, we first convert the formed placement into
the weighted complex network. In each circuit placement,
modules are regarded as nodes, and links between modules
are regarded as edges. The weight of the edge between two
connected nodes is approximated as the half-perimeter wire-
length (HPWL) of the bounding box. The average strength,
betweenness, average distance and clustering coefficient of
the weighted complex network are also extracted by the
analysis tools.

After the placement designs are routed, the structure of
the layout design becomes clear and concrete. The nodes in
the layout design are connected by horizontal and/or vertical
links. Unlike placement, virtual nodes such as vias are added
into the layout design. We use the nodes (include virtual
nodes) and links to form complex networks. The average
strength, betweenness, average distance and clustering coef-
ficient of the weighted complex network are extracted by the
analysis tools.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we introduce the correlation analysis method
and analyze the correlations of both placement design and
layout design.

1) CORRELATION ANALYSIS
In correlation analysis, we use the Pearson correlation coeffi-
cient to compute the correlation between circuit performance
and characteristic parameters. The coefficient is defined
according to the following formula:

r =
N
∑
xiyi −

∑
xi
∑
yi√

N
∑
x2i −

(∑
xi
)2√N∑ y2i −

(∑
yi
)2 (6)

where N is the number of total nodes, and xi and yi display
two data series, where one indicates the circuit performance
and another represents the characteristic parameter of the
complex network.

When the correlation coefficient r is larger than 0, the two
data series are positively correlated. In contrast, when r is
smaller than 0, the correlation is negative. When r is equal to
(or approximately) 0, it is uncorrelated.
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TABLE 3. Correlation between average strength and circuit performance under different placement tools.

TABLE 4. Correlation analysis between betweenness and performance under different placement tools.

2) CORRELATION IN PLACEMENT
In the experiment, we show the characteristic parameters and
circuit performance under different placement tools for TAU
2017 Benchmark. The characteristic parameters and circuit
performance (shown as HPWL) present differences due to
the efficiencies of the tools. The performance of placement
optimized by MPL is the best, followed by Capo, NTUPlace,
Dragon, FastPlace, and FengShui. According to the resulting
placement of each circuit, characteristic parameters of the
corresponding complex network are calculated. The results
are listed in Table 3 to Table 6. The correlations between cir-
cuit performance and characteristic parameters are calculated
and shown in the last lines of the tables.

Table 3 shows values of different average strength <S> and
circuit performance under different placement tools. The cor-
relations between circuit performance and average strength
for different placement tools are 0.68023, 0.71861, 0.68531,

0.78013, 0.62986, and 0.71844. In Figure 2, the scatters illus-
trate the variation of average strength <S> with HPWL for
different placement tools. It can be observed that lower per-
formance of the placement tool correlates with higher average
strength.

Table 4 shows values of different betweenness B and cir-
cuit performance under different placement tools. The cor-
relations between circuit performance and betweenness for
different placement tools are 0.79586, 0.76652, 0.78811,
0.78120, 0.75062, and 0.75874. In Figure 3, the scatters illus-
trate variations of betweenness B with HPWL of different
placement tools. The data roughly show that lower perfor-
mance of the placement tool correlates with lower between-
ness (except for MPL).

Table 5 shows values of different average distance D and
circuit performance under different placement tools. The cor-
relations between circuit performance and average distance
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TABLE 5. Correlation analysis between average distance and performance under different placement tools.

TABLE 6. Correlation analysis between clustering coefficient and performance under different placement tools.

FIGURE 2. The HPWL-<S> correlation in placement for TAU 2017
Benchmark.

for different placement tools are 0.77501, 0.78489, 0.73827,
0.78911, 0.79854, and 0.77627. In Figure 4, the scatters
illustrate the variation of average distance D with HPWL of
different placement tools. The data roughly show that lower

FIGURE 3. The HPWL-B correlation in placement for TAU 2017
Benchmark.

performance of the placement tool correlates with higher
average distance.

Table 6 shows values of different clustering coefficient C
and circuit performance under different placement tools. The
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FIGURE 4. The HPWL-D correlation in placement for TAU 2017
Benchmark.

FIGURE 5. The HPWL-C correlation in placement for TAU 2017
Benchmark.

FIGURE 6. The placement of wb_dma by NTUPlace3.

correlations between circuit performance and clustering coef-
ficient for different placement tools are 0.00413, 0.02595,
0.04227, 0.00199, 0.02922, and 0.01134. In Figure 5, the
scatters illustrate the variation of clustering coefficient
C with HPWL for different placement tools. The data
roughly show that lower performance of the placement
tool correlates with higher clustering coefficient (except for
FengShui).

We show the placement of the wb_dma circuit in Figure 6
and illustrate the three-dimensional weighted complex net-
work of the circuit in Figure 7.

The correlations between circuit performance of place-
ment and characteristic parameters are listed in the last
lines of Table 3 to Table 6. The correlation between cir-
cuit performance and average strength averages 0.70210,
the correlation between circuit performance and between-
ness averages 0.77351, the correlation between circuit
performance and average distance averages 0.77702, and
the correlation between circuit performance and clustering

FIGURE 7. The weighted complex network of placement of wb_dma.

FIGURE 8. Correlation comparison for different placement tools.

coefficient is 0.01911. The correlations are illustrated in
Figure 8. The data show that circuit performance has the
strongest correlation with average distance, followed by
betweenness and average strength, and has the weakest cor-
relation with th clustering coefficient.

3) CORRELATION IN LAYOUT
In this section, it shows the characteristic parameters and
circuit performance under different route tools for TAU 2017
Benchmark. The characteristic parameters and circuit perfor-
mance (shown asWL) present differences due to the efficien-
cies of the tools. The layout performance generated byNTHU
is the best, those of NCTU-GR and BoxRouter are nearly
identical and that of FGR is the worst. We convert the layout
design into a complex network and calculate the correspond-
ing characteristic parameters. The correlations between the
circuit performance of the layout and characteristic parame-
ters are calculated and shown in the last lines of Table 7 to
Table 10.

Table 7 shows values of different average strength <S>
and circuit performance under different routing tools. The
correlations between WL and average strength for different
routing tools are 0.50221, 0.54040, 0.48427, and 0.16201.
In Figure 9, the scatters illustrate the variation of average
strength <S> with WL for different route tools. This shows
that lower performance of the routing tool correlates with
higher average strength.

Table 8 shows values of different betweennessB and circuit
performance under different routing tools. The correlations
between WL and betweenness for different routing tools are
0.87639, 0.91437, 0.88974, and 0.96254. In Figure 10, the
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TABLE 7. Correlation analysis between average strength and performance under different routing tools.

TABLE 8. Correlation analysis between average betweenness and performance under different routing tools.

scatters illustrate the variation of betweenness B with WL for
different route tools. This roughly shows that lower perfor-
mance of the routing tool correlates with higher betweenness
(except for BoxRouter).

Table 9 shows values of different average distance D
and circuit performance under different routing tools. The
correlations between WL and average distance for different
routing tools are 0.19266, 0.28472, 0.25067, and 0.55930.
In Figure 11, the scatters illustrate the variation of average
distance D with WL for different routing tools. This roughly
shows that lower performance of the routing tool correlates
with lower average distance.

Table 10 shows the values of different clustering coef-
ficient C and circuit performance under different routing
tools. The correlations betweenWL and clustering coefficient
for different routing tools are 0.46342, -0.33941, 0.44012,
and 0.10439. Notably, the correlation between clustering

coefficient and circuit performance for FGR is negative. In
Figure 12, the scatters illustrate the variation of clustering
coefficient C with WL for different routing tools. For the
NTHU, NCTU-GR and BoxRouter tools, it shows that higher
performance of the routing tool correlates with lower cluster-
ing coefficient. The FGR tool presents a different style due to
the negative correlation.

It shows the layout of the wb_dma circuit generated
by FGR in Figure 13 and illustrates the three-dimensional
weighted complex network of the circuit in Figure 14.

The correlations between layout circuit performance and
the characteristic parameters are listed in the last lines of
Table 7 to Table 10. The correlation between circuit perfor-
mance and average strength averages 0.42222, the correlation
between circuit performance and betweenness averages
0.91076, the correlation between circuit performance and
average distance averages 0.32184, and the correlation
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TABLE 9. Correlation analysis between average distance and performance under different routing tools.

TABLE 10. Correlation analysis between clustering coefficient and performance under different routing tools.

FIGURE 9. The WL-<S> layout correlation for TAU 2017 Benchmark.

between circuit performance and clustering coefficient is
0.16713. The correlations are illustrated in Figure 15. The
data show that layout circuit performance has the strongest
correlation with betweenness, followed by average strength

FIGURE 10. The WL-B layout correlation for TAU 2017 Benchmark.

and average distance, and has the weakest correlation with
the clustering coefficient.

In Figure 16, we show the transition of correlations
between circuit performance and characteristic parameters
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FIGURE 11. The WL-D layout correlation for TAU 2017 Benchmark.

FIGURE 12. The WL-C layout correlation for TAU 2017 Benchmark.

FIGURE 13. The layout of wb_dma by FGR.

FIGURE 14. The weighted complex layout network of wb_dma.

from placement to routing. The orange curve presents the
correlation between circuit performance and characteris-
tic parameters in placement, while the blue curve presents
the correlation between circuit performance and character-
istic parameters in route. After routing, the correlations
between circuit performance and average distance and aver-
age strength have been weakened, while the correlations
between circuit performance and betweenness and clustering

FIGURE 15. Correlation comparison for different routing tools.

FIGURE 16. Correlation change from placement to routing.

coefficient have been strengthened. Notably, the corre-
lation between circuit performance and betweenness has
been further strengthened after routing, and it presents a
remarkable difference in comparison with other characteristic
parameters.

We had a statistical analysis on the experimental data
using the Kruskal-Wallis test. As shown in Table 2, there are
extreme significant correlations between circuit performance
and characteristic parameters (p-value < 0.0001), except no
significant correlation between circuit performance and clus-
tering coefficient in routing (p-value > 0.05). The conclusion
is consistent with the results shown in Figure 2 - Figure 12.

IV. CONCLUSION
In this paper, we have conducted a study regarding the case of
characteristic parameters and circuit performance under dif-
ferent placement and routing tools. The experimental results
of TAU 2017 Benchmark show that circuit performance
varies due to the efficiencies of the optimization tools. The
qualities of the placement tools ranked from best to worst
are MPL, Capo, NTUPlace, Dragon, FastPlace, and Feng-
Shui; the ranked qualities of the routing tools are NTHU,
NCTU-GR, BoxRouter, and FGR. The strength of the corre-
lations between circuit performance and the complex network
characteristics in placement follows the order of average dis-
tance, betweenness, average strength, and the clustering coef-
ficient; the strength of the correlations with routing follows
the order of betweenness, average strength, average distance,
and the clustering coefficient. We also show the transition
of the correlations from placement to routing. After routing,
the correlations between circuit performance, average dis-
tance and average strength have been weakened, while the
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correlations between circuit performance, betweenness and
the clustering coefficient have been strengthened. Notably,
the correlation between circuit performance and betweenness
has been further strengthened after routing, which presents a
remarkable difference in comparison with other characteristic
parameters.
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