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ABSTRACT Enhancing proteins’ thermostability is an important aspect of enzyme engineering. Many
studies have investigated the properties that determine the proteins’ thermostability. However, no consensus
has emerged. To understand the mechanisms underlying the high thermostability of thermophilic proteins,
we evaluated the relative importance of the amino acid frequencies in protein sequences for discriminating
thermophilic and non-thermophilic proteins based on machine learning algorithms together with a three-step
feature selection procedure and a principal component (PC) analysis to remove noisy and redundant
information. Our results showed that the frequencies of oppositely charged amino acids, i.e., Lys and Glu,
were higher in thermophilic proteins, suggesting that electrostatic interactions are fundamentally important
for protein stabilization at high temperatures. Further, we found that the frequencies of uncharged polar
amino acids, which are thermolabile or actively interact with water molecules, were lower in thermophilic
proteins. Moreover, the frequencies of β-branched aliphatic amino acids tended to increase with increasing
thermostability. Overall, these results suggest that proteins’ thermostability is determined by a few protein
features, which were well captured by the first two PCs. A classifier based on only the first two PCs achieved
a high accuracy of 90%, suggesting that our classifier could be an effective and efficient tool for engineering
stable proteins.

INDEX TERMS Thermostability, protein, machine learning, amino acid composition.

I. INTRODUCTION
Proteins are important biocatalysts; however, most of them
are unstable at high temperatures, severely curtailing their
applications in the chemical industry [1]. Many efforts, there-
fore, have been devoted to enhancing proteins’ thermosta-
bility. Thermophilic organisms, such as Thermus aquaticus,
produce proteins that can tolerate high temperatures even up
to 120 ◦C [2]. These thermophilic proteins are key materials
for exploring the mechanisms that allow proteins to maintain
stability at high temperatures, and for designing and optimiz-
ing enzymes [3].

Some early studies conducted pairwise comparisons of
thermophilic and non-thermophilic proteins and found that
changes in amino acid residues on the molecular surface
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can affect proteins’ thermostability [4]–[7]. For instance,
Argos et al. [4] and Haney et al. [5] found that replacing
certain amino acids, such as Gly and Ser, with Glu can
increase the proteins’ capacity to tolerate high temper-
atures. These results suggest that the existence of Glu
may increase proteins’ thermostability [4], [5]. In contrast,
Kawamura et al. [6] showed that a replacement of Glu with
Gly in the Bacillus stearothermophilus DNA-binding pro-
tein [8] HU greatly enhanced the thermostability of the
mutant protein. Similarly, Perl et al. [7] reported that chang-
ing Glu to Arg or Leu could transform a mesophilic protein
into a thermophilic protein.

To solve the inconsistency among the results of pre-
vious studies, later studies compiled protein sequence
data from multiple thermophilic and non-thermophilic
organisms and tested the protein features that may
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discriminate thermophilic and non-thermophilic proteins
using traditional statistical methods, such as t-tests and linear
regressions [9]–[17]. Various protein features were examined
in these studies. Fukuchi and Nishikawa [9] reported that the
amino acid composition (AAC) of the protein surface was key
for the discrimination of thermophilic and non-thermophilic
proteins. Das and Gerstein [10] further showed that ther-
mophilic proteins have a higher level of charged residues
than non-thermophilic proteins, suggesting that electrostatic
interactions, such as ion pairs, play an important role in ther-
mostability. This is in line with several other studies showing
that thermophilic proteins had greater polar surface area,
more frequent salt bridges and hydrogen bonds, and higher
isoelectric points [11], [18]–[22]. Additionally, researchers
found a greater number of hydrophobic residues in ther-
mophilic proteins, indicating the importance of hydrophobic
interactions for promoting thermostability [11], [20]–[22].
Other features, such as packing density or compactness [23],
secondary structural composition [24], changes in entropy
upon folding [25], and surface-to-volume ratio [26], were
also found to affect proteins’ stability at high temperatures.
However, the relative importance of various features regard-
ing thermostability remains unknown and is difficult to assess
using traditional statistical analyses due to collinearity among
features. Another subtle weakness in some of the above stud-
ies is that multiple tests were performed without corrections,
which may have resulted in an increased type I error [27].

Modern machine learning algorithms are free of statistical
tests and assumptions about data distribution and can han-
dle collinearity to some extent. Some algorithms, such as
random forest, can also provide an importance assessment
for each independent variable. Many studies have attempted
to use machine learning algorithms and various features to
discriminate thermophilic and non-thermophilic sequences
or to predict a given protein’s thermostability [28]–[31].
Zhang and Fang [32] tested the performance of AAC to
discriminate thermophilic and non-thermophilic sequences
based on a support vector machine (SVM), and the accuracy
was 0.91 with 5-fold cross-validation. They also compared
the influences of four machine learning algorithms on the per-
formance of AAC and found that the algorithms that had the
best performance for thermophilic and for non-thermophilic
proteins were different, with the best average accuracy
being 0.73 [33]. Gromiha and Suresh [28] used AAC and
dipeptide composition to predict proteins’ thermostability
based on 12 algorithms. They found that different algo-
rithms resulted in similar accuracies of around 0.89, and
the inclusion of the dipeptide composition did not signif-
icantly improve the performance [28]. Similarly, Lin and
Chen [29] showed that the addition of key features selected
from dipeptide composition only improved the accuracy from
92.56%, predicted solely based on AAC, to 93.27%, sug-
gesting that AAC is the main determinant of proteins’ ther-
mostability. Considering that many other features that affect
thermostability, such as salt bridges, are also influenced by
AAC [25], [34], [35], assessments of the relative importance

of different amino acids and the capacity of the combi-
nation of key amino acids to distinguish thermophilic and
non-thermophilic proteins are, therefore, essential to under-
standing the mechanisms that determine the high stability of
thermophilic proteins.

In this study, we first extracted data on the frequen-
cies of 20 amino acids and then evaluated their impor-
tance and selected relevant amino acids that could discrim-
inate thermophilic and non-thermophilic proteins based on a
three-step procedure. A dimensionality reduction procedure
based on principal component (PC) analysis was used to
further remove redundant information among the selected
amino acids. The performance of the first two PCs regarding
discriminating thermophilic and non-thermophilic proteins
was assessed based on jackknife cross-validation for three
machine learning algorithms, i.e., SVM, random forest, and
regularized logistic regression.

II. MATERIALS AND METHOD
A. DATASETS
The benchmark dataset of thermophilic and non-thermophilic
protein sequences was obtained from Lin and Chen [29].
It contained data collected from thermophilic organisms
and non-thermophilic organisms in the Universal Protein
Resource (UniProt) [29]. Species with a lower limit of
optimal growth temperature ≥60 ◦C were defined as ther-
mophilic organisms [29]. In contrast, species with an upper
limit of optimal growth temperature ≤30 ◦C were classi-
fied as non-thermophilic organisms [29]. Additionally, the
sequences were further scrutinized to ensure their reliability,
i.e., the sequences were manually annotated and reviewed,
were not fragments of other sequences or constructed
from prediction or homology, had low sequence similarity
(<40%) [36], and had no ambiguous residues [29]. In total,
1329 thermophilic and 1250 non-thermophilic protein
sequences from 17 archaea and 119 bacteria were included
in the analysis [29].

B. FEATURE EXTRACTION AND SELECTION
AAC was assessed in terms of the frequency of each of
the 20 amino acids per protein sequence with the following
equation (Fig. 1):

CN =
Number of (N )

Length (protein sequence)
(1)

where N = Ala, Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu,
Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, and Tyr.

The three-step procedure in the VSURF R package
was used to select relevant amino acids for discriminating
thermophilic and non-thermophilic proteins based on random
forests with ntree = 2000 trees [37]. Specifically, in the first
step, a random forest, which was widely employed in bioin-
formatics [38], [39], was built to assess the variable impor-
tance of each amino acid based on the bootstrap samples and
the out-of-bag samples, i.e., one-third of the original data that
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FIGURE 1. Study scheme. Raw protein sequences were first fed into a feature extraction process. The amino acid composition (AAC) was extracted in
terms of the frequencies of each amino acid in each protein sequence. Thereafter, a three-step feature selection procedure was used to select amino
acids relevant to discriminating thermophilic and non-thermophilic proteins based on random forests. A principal component (PC) analysis was then
utilized to further remove redundant information in the selected relevant amino acids. The first two PCs were used to train three classifiers, i.e., support
vector machine (SVM), random forest, and regularized logistic regression. Model performances were evaluated using jackknife cross-validation with four
evaluation metrics, i.e., sensitivity (SN), specificity (SP), accuracy, and area under the receiver operating characteristic curve (AUC).

were left out of the bootstrap samples [37]. Thereafter, amino
acids were ordered according to their variable importance
and were eliminated if their importance was smaller than the
standard deviation of the variable importance of the useless
amino acids [37]. In the second step, nested random forests
were constructed. Amino acids retained in step one were
successively added into the models based on their variable
importance. The amino acids in the model with the smallest
out-of-bag error were kept [37]. In step three, amino acids left
in the preceding step were listed in descending order based
on variable importance and were sequentially included in the
random forest models until the decrease of out-of-bag error
was smaller or equal to the average variation obtained by
introducing noisy variables [37]. The subset of amino acids
remaining in the final model was identified as relevant to
discriminating thermophilic and non-thermophilic proteins
and used for further reducing redundant information (Fig. 1).

C. DIMENSIONALITY REDUCTION
PC analysis [40] was utilized to further reduce redun-
dancy among the relevant amino acids (Fig. 1). The first
two PCs were then used to discriminate thermophilic and
non-thermophilic proteins (Fig. 1). To assess the importance
of each amino acid for the first two PCs, the contribution
of each amino acid was assessed based on the following
equation:

Contributioni =
cor2i∑
i cor

2
i

× 100 (2)

where cori is the correlation coefficient between relevant
amino acid i and each PC.

D. DISCRIMINATION OF THERMOPHILIC AND
NON-THERMOPHILIC PROTEINS
Three classifiers, SVM [41]–[45], random forest, and reg-
ularized logistic regression, were implemented to distin-
guish thermophilic and non-thermophilic proteins (Fig. 1).
These models were built and their tuning hyperparameters
were optimized using the caret R package [46].

Model performances were evaluated using jackknife
cross-validation with four evaluation metrics, i.e., sensi-
tivity (SN), specificity (SP), accuracy, and area under the

receiver operating characteristic curve (AUC; Fig. 1). SN is
the proportion of thermophilic proteins that are correctly
predicted as thermophilic proteins. SP is the proportion of
non-thermophilic proteins that are correctly predicted as non-
thermophilic proteins. Accuracy is the proportion of correctly
predicted thermophilic and non-thermophilic proteins. AUC
is the area under the curve of SN plotted against (1-SP) and
it assesses the model’s ability to avoid false prediction.

To illustrate the performance of key amino acids for clas-
sifying thermophilic and non-thermophilic proteins, model
performances were assessed with three sets of composition
matrixes, i.e., all 20 amino acids, the subset of relevant amino
acids, and the first two PCs.

III. RESULTS
The amino acid composition differed between thermophilic
and non-thermophilic proteins (Fig. 2 a). With all 20 amino
acids, a high discrimination performance was achieved
regardless of the algorithms and evaluation metrics used
(Table 1). 93% of thermophilic proteins and 93% of non-
thermophilic proteins were correctly predicted using SVM
and random forest, respectively. The overall accuracy was
91% using either SVM or random forest, and the AUC was
0.98 using SVM and 0.97 using random forest.

The importance of the 20 amino acids varied, with Glu,
Gln, and Lys having higher importance than others (Fig. 2 b).
In total, 14 amino acids were selected as the relevant amino
acids for discriminating thermophilic and non-thermophilic
proteins (Fig. 2 b). With these 14 amino acids, a higher
percentage of correctly discriminated proteins (92%) was
achieved using random forest than with all 20 amino acids
(Table 1). The highest AUC and SN were 0.98 and 0.93,
respectively, using 14 relevant amino acids, the same as when
all 20 amino acids were used, while a slightly lower percent-
age of non-thermophilic proteins were correctly classified
(Table 1).
Although the first two PCs only accounted for 33% of the

variations in the 14 relevant amino acids, most thermophilic
and non-thermophilic proteins were separated along with
them (Fig. 2 c). The discrimination performance with the
first two PCs was comparable to the discrimination perfor-
mance with all 20 amino acids and with the 14 relevant
amino acids (Table 1). Using SVM, for instance, 92% of
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TABLE 1. Performances of support vector machine (SVM), random forest and logistic regression using three sets of composition matrixes (all 20 amino
acids, the subset of relevant amino acids after feature selection, and the first two PCs). Models were evaluated based on jackknife cross-validation.

FIGURE 2. (a) The amino acid composition (AAC) in thermophilic and non-thermophilic proteins. The height of each bar indicates the mean frequency of
each amino acid in thermophilic proteins or non-thermophilic proteins, and the error bar shows the corresponding standard error. (b) Amino acids
ordered according to their importance for discriminating thermophilic and non-thermophilic proteins in the feature selection procedure. Out of the
20 amino acids, 14 relevant and six trivial amino acids were labelled as ‘selected’ and ‘not selected’, respectively. (c-e) Results of the principal component
(PC) analysis (dimensionality reduction). In (c), the positions of thermophilic and non-thermophilic protein sequences along the first two PCs and the
contribution of each selected amino acid to the first two PCs were plotted. The ellipses indicate where 95% of the thermophilic and non-thermophilic
proteins were distributed. In (d) and (e), to better visually illustrate the importance of amino acids to each of the first two PCs, the contribution of each
amino acid to PC1 and PC2 are presented separately. The red horizontal line in the bar plots indicates the expected average contribution, calculated as
1/14, as 14 relevant amino acids were selected in (b) and the contributions of amino acids were assumed to be uniform [58]. (f) Discrimination of
thermophilic and non-thermophilic proteins based on PC1 and PC2 using support vector machine (SVM). The decision values used to discriminate the
proteins are also shown.

thermophilic proteins, 88% of non-thermophilic proteins, and
90% of proteins overall were correctly predicted, and the
AUC was 0.94 (Table 1; Fig. 2 d). Logistic regression and
random forest performed similarly to SVM (Table 1). The

results from logistic regression showed that the coefficients
of PC1 and PC2 were 0.84 and -0.37, respectively, suggesting
that the effect of PC1 on the discrimination of thermophilic
proteins was positive while the effect of PC2 was negative.
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Among the 14 relevant amino acids, Lys, Ile, Glu, Ala,
and Gln had relatively high contributions to PC1 than oth-
ers, which was generally consistent with their importance
according to the feature selection procedure; Ala and Gln
were negatively correlated with PC1 (Fig. 2 d). Asn, Ser,
Thr, Tyr, Glu, Val, and Leu had relatively high contributions
to PC2; the latter three were negatively correlated
with PC2 (Fig. 2 e).

IV. DISCUSSION
We found that a few amino acids determined the proteins’
thermostability. After removing the redundant amino acids,
92% of proteins were correctly classified as thermophilic
or non-thermophilic proteins (Table 1). Our further PCA
analyses showed that even based on only the first two PCs that
were derived from the 14 relevant amino acids, 90% accuracy
was achieved (Table 1), suggesting that there was a lot of
redundant information in the relevant amino acids and the
proteins’ thermostability was governed by a small number of
amino acid properties.

A. DETERMINANTS OF PROTEINS’ THERMOSTABILITY
The largest variation among the frequencies of the 14 selected
relevant amino acids was captured by PC1 (Fig. 2 c). Along
PC1, the predominant trend, which is consistent with their
relatively higher variable importance, was the concurrently
increased frequencies of Lys and Glu in thermophilic proteins
(Fig. 2 a, 2 b-d). Lys is a positively charged amino acid
with an isoelectronic point of 9.74, while Glu is a negatively
charged amino acidwith an isoelectronic point of 3.22, imply-
ing that the existence of oppositely charged amino acids can
stabilize proteins at high temperatures. Likewise, many stud-
ies have also found a higher level of oppositely charged amino
acids in thermophilic proteins than in non-thermophilic pro-
teins [10], [11], [47]. These results suggest that electrostatic
interactions are fundamentally important for enhancing pro-
teins’ stability at high temperatures [48]. Indeed, salt bridges
and hydrogen bonds are crucial for increasing the conforma-
tional stability of proteins [14], [49]. The higher number of
salt bridges and hydrogen bonds in thermophilic compared
to non-thermophilic proteins also supports the role of elec-
trostatic interactions in determining proteins’ thermostabil-
ity [14], [22], [49].

Our results further suggest that a reduction of uncharged
polar amino acids in proteins can increase their stability at
high temperatures. This is supported by the tendency toward
reductions in the frequencies of uncharged polar amino acids,
i.e., Asn, Ser, and Thr, in thermophilic proteins along PC2
(Fig. 2 a, 2 c, and 2 e). Consistently, the other uncharged polar
amino acid, Gln, also decreased in thermophilic proteins
along PC1 (Fig. 2 a, 2 c-d). Gln and Asn are thermolabile and
deamidate at high temperatures [50], [51]. Ser and Thr have
relatively more interactions with water molecules surround-
ing proteins [52] and, at high temperatures, they release water
molecules that interacted with them at low temperatures, and
thus induce the proteins’ instability [35]. Therefore, suitable
replacement of uncharged polar amino acids by other amino

acids, especially charged ones, leads to fewer thermolabile
residues and may lead to improved protein thermostability.
Similarly, several studies have reported lower frequencies
of uncharged polar amino acids co-occurring with higher
frequencies of charged amino acids in thermophilic
proteins [14], [47], [53]. Bhanuramanand et al. [51] also
showed that replacing a few deamidation-susceptible Asn
residues resulted in higher thermostability in a lipase. Col-
lectively, these results suggest that the absence of uncharged
polar amino acids is important for enhancing proteins’ ther-
mostability.

Another noticeable but inconsistent trend is that the fre-
quencies of some aliphatic amino acids, i.e., Ile, Val, and Leu,
increased, but the other aliphatic amino acid, Ala, decreased
with increasing thermostability (Fig. 2 a, 2 c-e). Aliphatic
amino acids are generally hydrophobic; Ile, Val, and Leu are
β-branched amino acids and are the most hydrophobic [54],
while Ala is an unbranched amino acid and is less hydropho-
bic. The strength of hydrophobic interactions formed by these
hydrophobic amino acids increases with temperature [55],
and may thus be important for maintaining stability at high
temperatures. Ikai [56] proposed the aliphatic index, which
is mainly determined by the frequencies of Ile, Val, and
Leu in protein sequences, and reported that the aliphatic
index positively contributed to proteins’ thermostability.
Likewise, Lu et al. [57] found that thermophilic proteins had a
higher aliphatic index and higher Leu composition than non-
thermophilic proteins. High levels of β-branched amino acids
rather than unbranched amino acids can also lead to a smaller
increase in conformational entropy upon unfolding [53]. The
opposite correlations of Ile and Ala with PC1 thus suggest
that a high frequency of Ala may be replaced by a high
frequency of Ile in thermophilic proteins to increase their
thermostability. Similarly, Chakravarty and Varadarajan [53]
found that the frequency of Ile was slightly higher and the
frequency of Ala was slightly lower in thermophilic proteins
than in non-thermophilic proteins, although the differences
were not significant. In contrast, by conducting pairwise
comparisons of thermophilic and non-thermophilic proteins,
Argos et al. [4] showed that the high frequency of Val was
replaced by Ile and Ala in thermophilic proteins, but the
latter replacement may decrease internal hydrophobicity and
packing. Nevertheless, our results are in line with the higher
levels of Ile, Val, and Leu found in thermophilic proteins [14],
[53], [57], indicating the importance of β-branched amino
acids for increasing proteins’ thermostability.

B. DISCRIMINATION OF THERMOPHILIC AND
NON-THERMOPHILIC PROTEINS
Two things were found to be important for building classi-
fiers to distinguish thermophilic and non-thermophilic pro-
teins in our study. The first is to use AAC, in terms of
the frequencies of amino acids. Based on the frequencies of
each of the 20 amino acids, 91% of proteins were correctly
discriminated in our study (Table 1). Similarly, Zhang and
Fang [32] and Gromiha and Suresh [28] used the frequencies
of all 20 amino acids to predict a protein’s thermostability,
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and the accuracy was 90.5% and 89%, respectively. In con-
trast, Miotto et al. [31] used proteins’ secondary structure
content and architecture to discriminate thermophilic and
non-thermophilic proteins, but only 76% of proteins were
correctly discriminated. These results suggest that AAC,
rather than other metrics, appropriately captures the mecha-
nisms underlying proteins’ thermostability, i.e., the frequen-
cies of oppositely charged, uncharged polar, and β-branched
amino acids in a protein.

Further, we found that using feature selection procedures
to eliminate noisy and irrelevant amino acids improved accu-
racy. In our study, six amino acids were assessed as triv-
ial based on a three-step feature selection procedure, and
after removing these amino acids, the accuracy improved up
to 92% (Table 1). In accordance with our result, Lin and
Chen [29] employed an analysis of variance (ANOVA) fea-
ture selection procedure to select ten relevant dipeptides, and
by combining themwith the frequencies of all 20 amino acids,
they achieved an accuracy of 93.3%.Wang and Li [30] further
improved the accuracy to 95% by selecting nine amino acids
and 38 dipeptides using a genetic algorithm. These results
thus highlight the necessity of performing a feature selection
procedure for building classifiers to distinguish thermophilic
and non-thermophilic proteins.

V. CONCLUSION
Understanding the mechanisms that determine proteins’ ther-
mostability and building classifiers to discriminate ther-
mophilic and non-thermophilic proteins are important for
engineering enzymes that are stable at high temperatures.
We found that proteins’ thermostability is determined by
a few protein features. First, thermostability was increased
mainly due to stronger electrostatic interactions formed by
oppositely charged amino acids (especially Lys and Glu).
Additionally, thermostability was increased by decreasing the
number of uncharged polar amino acids, which minimized
deamidation at high temperatures and reduced the interac-
tions with water molecules. Moreover, the number of β-
branched amino acids can also affect thermostability. Overall,
these protein features were appropriately captured by the
first two PCs derived from the frequencies of relevant amino
acids that were selected based on a feature selection proce-
dure. A high discrimination accuracy of 90% was achieved
with only PC1 and PC2 in our study. Therefore, our classi-
fier is effective and efficient at discriminating thermophilic
and non-thermophilic proteins and useful for designing ther-
mostable proteins.
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