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ABSTRACT This paper proposes a new high-accuracy calculation method to estimate collision probability
to ground obstacles during Instrument Landing System (ILS) approach. The current collision risk model
(CRM) used to evaluate the ground obstacle collision probability was developed in the 1970s. In this
CRM, a shadowing technique is used to avoid over-estimation of the risk when there are multiple obstacles
located close to each other. However, this shadowing still overestimates the risk due to several conservative
assumptions. This paper proposes mathematical modifications to the calculation of shadowing to address
the risk overestimation. To validate the proposed method, 106 sets of aircraft trajectories are generated so
that the actual risk can be estimated by counting the number of collisions. The result shows that the risk
calculated by the proposed method is much closer to the actual risk compared to the one calculated by the
current CRM. The proposed model will help introduce ILS approach at obstacles-sensitive airports.

INDEX TERMS Collision risk model, aircraft navigation, approach, landing, safety.

I. INTRODUCTION
Aircraft landing phase is the most critical phase of each flight
and that is why about half of the accidents occur during
this phase [1]. Landing is difficult or sometimes impossi-
ble under low visibility condition. The Instrument Landing
System (ILS) was introduced to partly solve the problem.
ILS is a ground system which provides lateral and vertical
guidance by sending radio waves to landing aircraft. The
aircraft follows a straight fixed-path descent path guided by
ILS, and the aircraft can land safely regardless of visibility
by following this guidance. Although ILS guidance is very
accurate, an aircraft can still deviate from the nominal path
due to its navigation error, wind disturbances, etc., and could
collide to ground obstacles. Therefore, risk assessment for
collision to ground obstacles is mandated for safe operations.

The risk assessment is important in aviation field, with
numerous research efforts being made for accurate esti-
mation. The first collision risk model was proposed by
Reich [2], [3]. This model calculates the risk for mid-air
collision, i.e. collision of two aircraft in flight. This model is
stationary, i.e. probability density functions of several flight
parameters are assumed to be independent of time, and the
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collision probability is calculated. Since this model is simple
and allows an easy extension, its updated version is still used
for the risk assessment of vertical separation standard [4] and
lateral separation standard [5]. Later, a time-dependent model
was first developed by Hsu [6]. Since the time-dependent
model can consider more detailed dynamics of aircraft, it can
estimate the collision probability more accurately. The cur-
rent safety assessment of longitudinal separation standard is
conducted based on Hsu model [5]. The minor modifications
to Hsu model have been made to represent the flight scenar-
ios/situations considered [7], e.g. application to time-based
separation standard [8], [9], lateral/longitudinal separation
standard [10], [11], extension of Reich model [12], and appli-
cation to unmanned aircraft [13]. In addition, there are many
parameters which significantly affect the calculated collision
probability, so data analysis of actual flight is also important
and has been conducted [14], [15].

On the other hand, the safety assessment between aircraft
and ground obstacles has taken a different direction. The
risk of collision is not numerically calculated, and the pro-
tection area where the ground obstacles are not permitted is
determined based on navigation specification of aircraft and
ground instruments. The exception is the ILS approach. The
collision risk model (CRM) to calculate the risk of collision
to ground obstacles during ILS approach was developed by
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ICAO in 1970s [16]. The maximum tolerable collision proba-
bility per approach (collision probability) to ground obstacles
is set to 10−7 [17], and this CRM has been used so far and has
not been updated since then. There are some researches to
reduce the obstacle limitation area [18]–[20], but all of them
try to change the latera/vertical distribution, and no effort has
been made to improve the core algorithm of CRM calculation
itself.

From a safety perspective, the CRM should estimate the
risk conservatively, i.e. it should not underestimate the risk.
However, too much overestimation of the risk might hinder
the introduction of an ILS procedure despite the necessary
safety condition being actuallymet. To the best of the authors’
knowledge, no research has beenmade on how conservatively
the current CRM estimates the collision probability numer-
ically. The authors found that significant overestimation in
the current CRM is observed when multiple obstacles are in
close proximity to one another. This problem has not been
identified yet, and the calculation method is worth improv-
ing because of the significance of the overestimation in the
current CRM.

Therefore, this paper proposes a new calculation method to
estimate the collision probability more accurately when there
are multiple obstacles located closely to each other. First,
the existing CRM (current CRM) is reviewed, with a detailed
explanation of the calculation method in Sec. II. Next, a new
calculation method is proposed and explained in Sec. III.
In Sec. IV, the data sets of landing trajectory are prepared for
the validation purpose, and the parameters and distribution
functions are estimated from the data. The calculation results
are shown in Sec. V, and this paper is summarized in Sec. VI.

II. CURRENT COLLISION RISK MODEL
A. COLLISION RISK MODEL BASICS
The details of the current CRM are described in ICAO doc-
ument [16]. To aid the reader’s understanding of the method,
here CRM’s calculation flow is explained briefly. The current
CRM can calculate the collision probability to hit ground
obstacles during approach and missed approach phases.
An aircraft is assumed to conduct a missed approach when
it reaches the decision height (DH). Therefore, the CRM
does not account for the collision when the aircraft proceeds
towards landing after reaching DH. The obstacle protection
of the flight below DH is provided by another criteria (obsta-
cle free zone [21]). The calculation starts when the aircraft
reaches 1000 ft for landing and finishes when the aircraft
passes 1000 ft for missed approach. This paper focuses on
the approach phase only.

As for the calculation, the aircraft is assumed to be a box,
and the collision probability is calculated based on the pre-
determined distribution of lateral/vertical deviation of aircraft
c.g. position, Py(x, y) and Pz(x, z). Here, x-axis is defined
as along-track direction, and y-axis is defined as cross-track
direction, and z-axis indicates the vertical (altitude) direction.
(0, 0, 0) is located at the threshold. The aircraft width is

FIGURE 1. Lateral shadowing of Obstacle 1 cast on Obstacle 2.

assumed to be λy, and the vertical distance between aircraft
c.g. position and the wheel is assumed to be λz. A single spike
obstacle at x = x0, y = y0 and its height z0 is given, and the
probability to hit this obstacle is calculated by the following
form.

P =
∫ y0+λy/2

y0−λy/2
Py(x0, y)dy

∫ z0+λz

0
Pz(x0, z)dz (1)

Note that lateral and vertical movements are assumed to
be independent. Since it is difficult to make a continuous
along-track distribution, the vertical and lateral distributions
are defined at x = −7800 m, −4200 m, and −1200 m,
and interpolated exponentially between these points. The
distribution function is determined based on the empirical
data obtained in 1970s. Deviation is defined in DDM (dif-
ference in depth of modulation: linear to localizer/glideslope
dot), so the distribution is shrunk or expanded based on the
ILS parameters (e.g. localizer/glideslope antenna position,
runway length, glideslope angle, reference altitude at thresh-
old). In addition, aircraft size also affects the collision prob-
ability, because the size of aircraft box is changed.

Obstacles are modeled as a collection of ‘‘spikes’’ and/or
‘‘walls’’ depending on their shape. Neither a spike nor a wall
is assumed to have any along-track depth. Therefore, multiple
spikes or walls should be used to model an obstacle with
along-track depth.

B. SHADOWING
Once the distributions of lateral and vertical deviation are
determined, it is easy to calculate the collision probability
with a single obstacle. Multiple obstacles, however, present
more difficulties, because the unit of the risk of collision is
the number of accidents per approach. If two obstacles are
sufficiently separated by each other, the total risk is the sum-
mation of the collision probability to individual obstacles.
However, if multiple obstacles are located closely together,
a simple summation will overestimate the risk because the
aircraft is likely to hit the downstream obstacle if it hits an
upstream obstacle. This is called double-counting here, and
this double-counting causes the risk overestimation.

To avoid overestimation, a shadowing technique is used in
the current CRM. Fig. 1 illustrates the shadowing concept.
The shadow in the figure shows the part of the obstacle which
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will be hit if another upstream obstacle is hit. In other words,
the shadow area is equivalent to the area where the risk is
already accounted for by the upstream obstacle, so the risk
can be estimated more accurately by subtracting the risk of
the shadow area from the sum of the risk for all obstacles.
To implement shadowing in the calculation, the shadow angle
α is set, and the possible double counting area is set as
‘‘shadow’’ as shown in the figure. The shadow angle phys-
ically translates to the aircraft deviation angle at the time of
hitting the upstream obstacle. In this example, total collision
probability Rall , can be calculated by the following formula.

Rall = R1 + R2 − Rshadow,1,2 (2)

where Ri is the probability where the aircraft hits the obstacle
i, and Rshadow,i,j indicates the probability where the aircraft
hits both obstacles i and j calculated by shadowing. Although
this equation includes two obstacles only, the same calcu-
lation method can be easily extended to more obstacles by
iteratively calculating the collision probability from upstream
to downstream.

This example shows the lateral shadowing only, but the
same shadowing can be applied vertically, too. In the current
CRM, the lateral shadow angle is set to 14 deg, while the
vertical shadow angle is set to (glideslope angle) +0.5 deg.

III. PROPOSED IMPROVEMENT IN CALCULATIONS
A. PROBLEMS IN SHADOWING
Shadowing is a useful technique to avoid the overestimation
of risk. The key parameter is the shadow angle. A large shad-
owing angle causes conservative risk estimation, i.e. overes-
timation of the risk. On the other hand, the underestimation
of the risk should be avoided, so too low shadow angle is not
adequate. In the current CRM, a large single shadow angle
(14 deg) is used, but the authors argue that a variable shadow
angle depending on the situation can reduce the estimated
collision probability without underestimating it.

The shadow angle in the current CRM mathematically
corresponds to the maximum deviation angle at the time of
hitting the upstream obstacle. If the actual deviation angle is
smaller than the shadow angle, the shadow area is smaller
than the area where the actual aircraft flies over, which leads
to the overestimation of the risk. Therefore in this paper,
the shadowing calculation is modified to avoid the overes-
timation of the risk.

B. SUMMARY OF THE PROPOSALS
The authors propose two ways to determine the shadow angle
dynamically depending on the situation. Bothmethods reduce
the shadow angle while avoiding the underestimation of the
risk, which means that more accurate (smaller) risk of colli-
sion can be estimated.

First, percentile values are considered instead of consider-
ing the worst case. The proposed algorithm considers several
probability ranges, in each of which the worst case is assumed
and the collision probability is calculated.

Second, the shadow angle is determined dynamically
depending on the deviation magnitude. The aircraft track
angle is expected to depend on the deviation magnitude,
which is considered in the calculation.

Both methods can be applied simultaneously, and these
methods simply replaces the applied shadow angle instead of
the fixed value (14 deg). Therefore, the proposed method is
expected to show the lower collision probability but greater
than the actual collision probability without increasing the
computational cost.

C. PROPOSAL 1) MULTIPLE SHADOW ANGLES
To avoid the overestimation of the risk, the authors propose
that multiple shadow angles should be assumed. If a single
constant shadow angle is set, the maximum deviation angle
observed among all data might be appropriate to avoid the
underestimation. However, the maximum deviation angle is
rarely observed, so multiple shadow angles can potentially
reduce the overestimation. CR(α) indicates the calculated
collision probability using a single constant shadow angle α.
The proposed method to calculate the collision probability is
shown in the following form.

n∑
i=1

(Pi−1 − Pi)CR(αi) ∀i, αi−1 < αi&Pi−1 > Pi (3)

where Pi indicates the probability where the actual shadow
angle is greater than αi. P0 = 1 and Pn = 0.When n = 1, and
α1 = 14 deg, the proposed CRM is equivalent to the current
CRM. In this expression, the estimation of αi is important
once Pi is determined. If data are available, αi can be obtained
considering the ratio of flight where the maximum deviation
angle of a single flight is within the designated range of the
probability.

D. PROPOSAL 2) DEPENDENCY OF SHADOW ANGLE ON
DEVIATION MAGNITUDE
In the previous subsection, shadow angle was assumed to be
constant over the entire flight. In this subsection, the authors
argue that the shadow angle can vary depending on the devia-
tion magnitude. In most cases, the aircraft fly along the route
with small deviations and small deviation angles. On the other
hand, when large deviation is observed, large deviation angle
is also needed, so such a large deviation angle is more fre-
quently observed. Although the collision usually occurs when
the aircraft deviates from the route, simultaneous large devi-
ations in both lateral and vertical dimensions are extremely
rare because CRM assumes independent lateral and vertical
deviation distribution. Therefore, when the collision occurs
due to a large vertical deviation, the aircraft will probably be
still around the route laterally and in such a case the lateral
shadow angle should be small to avoid the overestimation.

Here, lateral shadow angle is considered. To hit a ground
obstacle (spike) located at y = y0, the aircraft should be at
y =

[
y0 − λy/2 y0 + λy/2

]
. Once the probability density of

lateral deviation and the expected shadow angle at y-position
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are determined, the average (expected) shadow angle to hit
this obstacle can be calculated as the following expression.

αave =

∫ y0+λy/2

y0−λy/2
αyPy(y)dy

/∫ y0+λy/2

y0−λy/2
Py(y)dy (4)

where Py(y) is the probability density of lateral deviation,
and αy is the expected shadow angle at y. From a safety
perspective, the worst shadow angle should be used. How-
ever, the lateral distribution is exponentially decreasedwith y-
position, and it is extremely rare to observe the worst shadow
angle. Therefore, the average of shadow angle is expected to
be a good approximation.

In the current CRM, the shadow angle is constant through
the calculation. However, this method applies a different devi-
ation angle depending on the position of the obstacle. This
method can also be used simultaneously with the proposed
method in subsection III B. The proposed calculation is given
by the following equation.

n∑
i=1

(Pi−1 − Pi)CRnew(αi,1, αi,2, . . . , αi,m) (5)

CRnew is the calculated collision probability with different
shadow angles αi,1, αi,2, . . . , αi,m. The shadow angle of αi,j
means the expected shadow angle in each range of aircraft
lateral deviation between dj−1 and dj, and is given as tab-
ular data. The shadow angle applied is calculated by using
αi,j depending on the lateral obstacle position as shown
in Eq. (5).

IV. DATA PREPARATION
A. TRAJECTORY DATA USED
In order to verify the effectiveness of the methods pro-
posed in the previous section, trajectory data sets are needed.
Here, landing trajectories are generated via numerical sim-
ulations. The author has developed a pilot control model
to conduct a landing simulation in the past research [22],
and using this model, 106 times simulations are conducted
with different flight conditions. The FAA random wind
model for evaluation [23] is used, and the simulation starts
at trimmed condition. The initial lateral position is uni-
formly distributed between −0.25 dot and 0.25 dot for local-
izer, and the vertical distribution is between −0.5 dot and
0.5 dot for glideslope. Finally, 106 sets of trajectory data are
obtained.

Based on the obtained trajectory, empirical lateral and
vertical distributions are obtained. The probability density
function is modeled with the empirical distribution, and is
used to calculate the collision probability. The shadowing
parameters used in the proposed methods (Pi, dj, αi,j) are also
obtained from the data sets. The actual collision probability
can be obtained by counting the number of collisions divided
by the number of trajectories (106). This method is called
‘‘counting’’ here, and this value is assumed to be the actual
collision probability, which is used to compare the collision
probability calculated by the current CRM and the proposed

FIGURE 2. Example of trajectory.

method for the validation purpose. In counting the number of
collision, the time series of trajectory data is linearly interpo-
lated, and the collision is counted if any of the interpolated
trajectory goes through the obstacles.

The purpose of this paper is to verify the proposed cal-
culation method, and not to estimate the collision prob-
ability in the real world (i.e. accurate estimation of the
lateral/vertical distributions). Real data verification could
increase the fidelity of the research. . However, the CRM
should estimate the collision probability of the order of 10−7,
and sufficient data sets (at least the order of 105 or 106) are
required to validate the proposed calculation method from
a statistical viewpoint. However, it is almost impossible to
obtain such number of data sets in the real world. In addition,
the obtained trajectories are investigated by some retired
airline pilots, and it is confirmed that the simulated trajectory
is reasonable and not far from the actual trajectory. Therefore,
simulation data are used for the validation of the proposed
model.

Fig. 2 shows data sample trajectory. In this case, the
aircraft flies along the route within 5 m errors in lateral
dimension and within 9 m in vertical dimension. The air-
craft starts missed approach and starts climbing around
x = −500 m.
Fig. 3 shows an example of the trajectory data when a large

deviation is observed. The maximum lateral deviation here
is 60 m. Although there are few data like this example, they
strongly affect the collision probability because these data
strongly affect the tail of the distribution.

In this simulation, the expected touchdown point is
x = 284.7 m, and decision height is set to 60 m. Therefore,
the aircraft is expected to conduct a missed approach at
x = −860.2 m. The CRM assumes the collision below 300 m
only, which corresponds to x = −5439.7 m.
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FIGURE 3. Example of trajectory with large lateral deviation.

FIGURE 4. Cumulative distribution function of empirical data and fitted
distribution function in lateral dimension at x = −4200 m.

B. DISTRIBUTION FUNCTIONS
Fig. 4 and Fig. 5 show the cumulative distribution of gen-
erated trajectory data and the modeled distribution function
at x = −4200 m in lateral and vertical domains. This time,
the lateral distribution ismodeled by the combination of John-
son SU and Laplace distribution, and the vertical distribution
is modeled by Johnson SU distribution. Probability density
functions of Johnson SU distribution and Laplace distribution
are given as follows:

J (x; γ, ξ, δ, λ)

=
δ

λ
√
2π

1√
1+

(
x−ξ
λ

)2
× exp

(
−
1
2

(
γ + δ sinh−1

(
x − ξ
λ

))2
)
(6)

L(x; λ,µ) =
1
2λ

exp
(
−
|x − µ|
λ

)
(7)

Although there is a small discrepancy between the
empirical data and distribution data in both dimensions,
the distribution function in general fits the empirical data.
Similar distribution functions are generated in the same way

FIGURE 5. Cumulative distribution function of empirical data and fitted
distribution function in vertical dimension at x = −4200 m.

at x = −7800 m and −1200 m, and these functions are used
to calculate the collision probability with current CRM and
the proposed CRM.

C. ESTIMATION OF THE VARIABLE SHADOW ANGLES
In this paper, the multiple shadow angles with different
probabilities are assumed, and the shadow angle is changed
depending on the deviation magnitude.

Based on (4), Pi, dj, and αi,j should be defined. First,
the following Pi and dj are chosen.

dj = {0, 3, 6, 9, 12, 15, 9999} (8)

Pi = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1,

0.01, 0.001, 10−4, 10−5, 0} (9)

Since higher accuracy is obtained if Pi and dj are finely
divided. This time, especially Pi is divided finely in this
calculation. αi,j indicates the shadow angle applied in each
condition. This value is obtained based on the simulated
trajectory data. First, data is used only where x position is
between −5439.7 m and −860.2 m. Next, pick up the flight
where there is at least one data when the deviation is between
dj−1 and dj. The maximum shadow angle when the deviation
is within dj for each trajectory is calculated (=calculated
shadow angle). The value of αi,j is simply estimated by the
100(1–Pi) percentile of the calculated shadow angle when
Pi is large. When Pi is small, it is difficult to estimate
the corresponding calculated shadow angle by the percentile
method because limited number of trajectories are available.
Therefore, the peak over threshold (POT) method is applied.

POT method [24] is one of extreme value statistics used in
estimating the frequency of occurrence exceeding thresholds.
In POT, the probability variables exceeding thresholds are
assumed to follow generalized Pareto distributions, whose
cumulative distribution function is given as follows:

H (y) = 1−
(
1+ ξ

y
σ

)−1/ξ
, 1+ ξy/σ > 0 (10)

A threshold should be determined in POT before the
parameter values ξ and σ are estimated. The threshold is
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TABLE 1. Shadow angle αi,j in each Pi and dj .

determined so that the parameter values ξ and σ are stabilized
near the threshold. Finally the distribution of αi,j is obtained
as shown in Table 1. The bold values in the table are estimated
based on the generalized Pareto distribution models. As the
lateral deviation becomes larger, the corresponding shadow
angle becomes also larger. Even when the lateral deviation
is small (dj = 3), large shadow angle (more than 9 deg) is
observed with very low probability.

The above Table 1 always assumes a positive shadow
angle. However, at the time of collision, the aircraft does
not necessarily fly toward the obstacle. If the aircraft flies
against the obstacle, the aircraft will never hit the adjacent
downstream obstacle, which means that the shadow angle can
be assumed to be zero. Since the selection of the shadow angle
affects the collision probability especially when the aircraft
flies against the centerline, zero shadow angle is assumed
with a certain probability when the shadow is made against
the centerline. When the shadow is made toward the center-
line, the values in Table 1 are used, which is a conservative
estimation. To calculate the probability of a zero shadow
angle, the following data is obtained. First, pick up the data
where the aircraft is flying toward the centerline. Next, the
number of data not deviating further than the initial position
for the next 1000 m flight is counted as shown in Fig. 6.
Zero shadow angle is assumed when both of the following
conditions are met.

a) The aircraft is not going against the centerline at con-
sidered obstacle. (obstacle 1 in figure)

b) The aircraft is not going beyond the initial position
laterally within 1000mflight (up to hitting obstacle 2 in
figure).

The obtained number is divided by the total data point,
which is the probability that zero shadow angle can be
assumed. Table 2 summarizes the result in each range of
initial lateral deviation. When the initial deviation is small
(0-3 m), most aircraft flies back to the initial lateral position.
However, as the initial lateral deviation increases, less aircraft
will come back to the initial lateral position. That is because

TABLE 2. Zero shadow angle probability in each range of initial lateral
deviation.

TABLE 3. Shadow angle αi,j in each Pi and dj when the shadow is made
against the centerline.

of the lateral deviation trend as shown in Fig. 3. When
the large lateral deviation is observed, the aircraft rapidly
deviates to the maximum lateral deviation position, and goes
back to the centerline gradually. This means that the aircraft
is more likely to fly toward the centerline when the initial
deviation is large. Assuming the probability to apply zero
shadow angle as shown in Table 2, a new shadow angle table
can be created for the case when the shadow is made against
the centerline as shown in Table 3. The shadow angle table of
either Table 1 or Table 3 is used depending on the direction of
shadow made. When the shadow is made against the center-
line and two obstacles are separated within 1000 m, Table 3 is
used. Otherwise, Table 1 (more conservative shadow angle)
is used.

D. ASSUMED GROUND OBSTACLES
To calculate the collision probability, the positioning of
ground obstacles is also important. All obstacles in CRM
are assumed to be a wall or a spike, so a single wall can
be described by 4 coordinates (x-position, y-position (left),
y-position (right), z-position), because the bottom of the wall
is assumed to be z = 0.

Therefore, the wall constructed by the following coordi-
nates can be expressed as (−4500, 50, 100, 1000).

Coordinates : (−4500, 50, 0)

(−4500, 50, 1000)

(−4500, 100, 1000)

(−4500, 100, 0)
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FIGURE 6. Several cases whether the shadow angle can be assumed to
be zero. (a), the aircraft is going against the centerline, so zero shadow
angle cannot be assumed. (b), the aircraft is going toward the centerline
at the beginning, but the aircraft goes beyond the initial lateral deviation
again within 1000 m, so zero shadow angle cannot be assumed. (c) and
(d), the aircraft is going toward the centerline, and the aircraft does not
go back to the initial lateral deviation within 1000 m, so zero shadow
angle can be assumed.

Note that a spike can be also described as a wall if y-
position (left) is equal to y-position (right).
This time, to confirm the effectiveness of the proposed

CRM, the following obstacles are assumed.
(a) Obstacle A (1 wall)

(−3000, 50, 100, 1000)
(b) Obstacle A-101 (101 walls)

For i = 0 to 100
(−3000+i, 50, 100, 1000)

(c) Obstacle A-11 (11 walls)
For i = 0 to 10
(−3000+ 10∗i, 50, 100, 1000)

(d) Obstacle A-2 (2 walls)
(−3000, 50, 100, 1000)
(−2900, 50, 100, 1000)

(e) Obstacle B (1 wall)
(−1500, −100, −60, 1000)

(f) Obstacle B-101 (101 walls)
For i = 0 to 100
(−1500+ i, −100, −60, 1000)

(g) Obstacle B-11 (11 walls)
For i = 0 to 10
(−1500+ 10∗i, −100, −60, 1000)

(h) Obstacle B-2 (2 walls)
(−1500, −100, −60, 1000)
(−1400, −100, −60, 1000)

(i) Obstacle C (1 spike)
(−2500, −30, −30, 123)

(j) Obstacle C-101 (101 spikes)
For i = 0 to 100
(−2500+ i, −30, −30, 123− i ∗ tan(3 deg))

(k) Obstacle C-11 (11 spikes)

FIGURE 7. Schematic image of obstacle A.

For i = 0 to 10
(−2500+ 10∗i, −30, −30, 123− 10∗i ∗ tan(3 deg))

(l) Obstacle C-2 (2 spikes)
(−2500, −30, −30, 123)
(−2400, −30, −30, 117)

(m) Obstacle D (1 wall)
(−4000, 35, 100, 210)

(n) Obstacle D-101 (101 walls)
For i = 0 to 100
(−4000+ i, 35, 100, 210− i ∗ tan(3 deg))

(o) Obstacle D-11 (11 walls)
For i = 0 to 10
(−4000+ 10∗i, 35, 100, 210− 10∗i∗ tan(3 deg))

(p) Obstacle D-2 (2 walls)
(−4000, 35, 100, 210)
(−3900, 35, 100, 204)

(q) Obstacle E (2 walls)
(−4500, 37, 100, 200)
(−4400, 37, 100, 200)

Obstacle A is a single wall, whereas Obstacle A-101,
A-11, and A-2 model the same rectangular cuboid obstacle.
Since all obstacles must consist of walls in the calculation,
a rectangular cuboid obstacle should be modeled as several
walls. The difference of obstacles A-101, A-11 and A-2 is
found in the number of assumed walls. If the number of
walls increases, it is likely to cause overestimation of the risk
because of double-counting. On the other hand, less walls
can cause underestimation of the risk because of the sparse
modeling of the obstacle. Also, for a better understanding of
the obstacles, the schematic image of obstacle A is shown
in Fig. 7. Obstacle B is similarly modeled like Obstacle A at
a different position.

Obstacle C is a single spike, and Obstacles C-101, C-11,
and C-2 indicate the same obstacle but the assumed number
of spikes is different. This obstacle is not a rectangular, but the
ceiling is lowered with a glide slope angle (3 deg). Obstacle
D is also similarly modeled like Obstacle C at a different
position.

Appendix is devoted to the explanation of the proposed
shadowingmethod, andObstacle E is used only as an example
in the explanation.

V. CALCULATION RESULTS
A. COLLISION PROBABILITY WITH A SINGLE OBSTACLE
First, the collision probability with a single obstacle is consid-
ered. When there is only one obstacle, double counting does
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TABLE 4. Collision probability to a single obstacle calculated by various
methods.

not occur and no shadowing is needed. Therefore, the cal-
culated collision probability by current/proposed CRM and
counting should almost match. Table 4 shows the result of
the calculation. Obstacles A, B, C, and D are used for the
calculation. The only difference of the current CRM and the
proposed CRM is the shadow angle, so the estimated collision
probability exactly match between them. According to the
result, the collision probabilities by counting and both CRMs
are almost the same. There is small difference between count-
ing and CRMs because of the discrepancy of the distribution
model with the empirical distribution illustrated in Fig. 4 and
Fig. 5. This result shows that the collision probability is
well estimated by both current and proposed CRM, and the
lateral and vertical probability density functions used in the
calculation are appropriate.

B. COLLISION PROBABILITY WITH MULTIPLE OBSTACLES
Next, the collision probability with multiple obstacles is
considered. The relative risk to a single obstacle is shown
in Table 5. Since there is small discrepancy between the result
by CRM and counting even when a single obstacle is assumed
as shown in Table 4, the relative risk (collision probability to
multiple obstacles / collision probability to a single obstacle)
is more appropriate for the comparison purpose. Since the
multiple obstacles should always give a greater risk than the
single obstacle, the relative risk should always be greater
than 1. The collision probabilities by CRMs are expected to
be close to the one by counting.

First, obstacles A-101, A-11, and A-2 are considered, all
of which model the same rectangular cuboid obstacle. Using
the counting, the calculated collision probabilities among
A-101, A-11 and A-2 are the same in this example. Compared
to the obstacle A (single obstacle), the collision probability
increases by 1.220 times only. Less walls can cause the
underestimation of the risk, but this case, the impact of the
number of walls on the collision risk seems to be small. On the
other hand, using the current CRM, the collision probability
becomes larger when more walls are assumed. The collision
probability with obstacle A-101 is 4.652 times larger than
that with obstacle A, while it is actually 1.220. Using the
proposed CRM, however, the difference of the collision prob-
ability among number of obstacles is small, which is the same
trend as counting. Even with obstacle A-101, the collision
probability is 1.574 times larger than that with obstacle A.
This result is slightly greater than the actual value (1.220), but
much less than that calculated by the current CRM (4.652).
The similar trend is observed in obstacle B-101, B-11,
and B-2.

TABLE 5. Relative collision probability to multiple obstacles to single
obstacle calculated by various methods.

Next, obstacles C-101, C-11, and C-2 are considered.
The y-position of these obstacles is −30 m, so the possible
aircraft position is [−60, 0]. Therefore, the small shadow
angle depending on the deviation magnitude as explained
in Section III C will suffice. However, the vertical shadow
is also considered in this example. Using the counting, the
collision probability gradually increases with the assumed
number of walls, the collision probability with obstacle
C-101 is 1.581 times larger than that with obstacle C. Using
the current CRM, the collision probability sharply increases
with the assumed number of walls, and the collision prob-
ability with obstacle C-101 is 12.657 times larger than that
with obstacle C, while it is actually only 1.632. This seems
to be due to too large a shadow angle is applied regardless
of the aircraft lateral position. On the other hand, using the
proposed CRM, the collision probability gradually increases
with the assumed number of walls, and the collision prob-
ability with obstacle C-101 is 2.222 times larger than that
with obstacle C. Although this value is larger than the actual
counting value (1.581), it is much smaller than that the current
CRM (12.657). In the same way, as for obstacles D-101,
D-11, and D-2, the proposed CRM shows much smaller
collision probability than that calculated by the current CRM.

The advantage of the proposed model is more significant
for obstacles C and D than obstacles A and B. Obstacles A
and B are located far from the centerline, which means that
the aircraft needs to deviate laterally to hit obstacles C and D.
In this situation, the applied shadow angle is always the same
if y >= 15m, which means that the effect of the proposal 2)
(shadow angle selection depending on the deviation magni-
tude) is limited. On the other hand, aircraft will obstacle C
and D with small lateral deviation (considering the aircraft
size, the aircraft will hit the obstacle at y = 0 for obstacle C),
so both effects of proposal 1) and 2) work well. Considering
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this fact, both methods appropriately work to estimate the
collision probability more accurately.

As shown in these results, the proposed CRM can esti-
mate the collision probability more accurately when there are
multiple obstacles. In general, there are many reasons that
more walls should be used to model the obstacles. 1) The
sparse modeling can cause the underestimation of the risk.
As shown in Table 5, the collision probability varies with the
number of assumed walls even for counting. That means that
sparse obstacle modeling could underestimate the risk. 2) The
sparse modeling cannot model the complicated shape of the
obstacle. If the obstacle has a complicated shape, there are
many ways of modeling the obstacle using sparse walls and
we should choose one of them subjectively. Using the pro-
posed CRM, the overestimation of the risk is relatively much
smaller than that by the current CRM, so the complicated
shape of the obstacle can be modeled more accurately with
dense walls with avoiding too much over-estimation.

VI. CONCLUSION
This paper proposed a new calculation method to estimate the
collision probability under ILS approach when there are mul-
tiple ground obstacles. The current CRM uses the mitigation
method (shadowing) to reduce the overestimation of the risk,
even though it does not eliminate overestimation completely.
The proposed CRM varied the shadow angle according to the
probability and magnitude of deviation, and it successfully
estimated the collision probability more accurately compared
to the current CRM. This result will help the introduction of
a new ILS procedure by estimating the risk of collision more
accurately.

APPENDIX
To illustrate the proposed calculation method, a sample
shadow calculation for the case of obstacle E is shown. The
aircraft width is assumed to be 60 m.

Consider i = 7 (i.e. Pi = 0.3). Here, wall1 (−4500, 37, 50,
200) makes a shadow on wall2 (−4400, 37, 50, 200). Since
the left edge of wall1 is located at 37 m laterally, the possible
aircraft y-position to hit the left edge is [7, 67]. According
to Eq. (4), the expected shadow angle to hit the left edge of
wall1 is calculated in the following way:

αleft =

∫ 67

7
αyPy(y)dy

/∫ 67

7
Py(y)dy (11)

αy is chosen from Table 3 because the shadow is made
against the centerline. Py(y) is obtained in Sec. IV B. Eq. (11)
is actually calculated in the following way.

αleft = (
∫ 9

7
1.739Py(y)dy+

∫ 12

9
2.420Py(y)dy

+

∫ 15

12
2.593Py(y)dy

+

∫ 67

15
2.131Py(y)dy)/

∫ 67

7
Py(y)dy

= 2.009 (12)

In the same way, the possible aircraft y-position to hit the
right edge is [70, 130]. The expected shadow angle to hit the
right edge of wall1 is calculated in the following way:

αright =

∫ 130

70
αyPy(y)dy

/∫ 130

70
Py(y)dy = 5.935 (13)

αy is chosen from Table 1 because the shadow is made
toward the centerline. The calculated shadow angle at left and
right edge of wall1 is 2.009 deg and 5.935 deg, respectively.

The vertical shadow is always assumed to be 3.5 deg.
Finally, the shadow wall on wall2 can be expressed as the
following wall.

(−4400, 37+ 100∗ tan(2.009 deg), 100− 100∗ tan(5.935
deg), 200 − 100∗ tan(3.5 deg)) =(−4400, 40.508, 89.604,
193.884)

The collision probability of wall1, wall2, and calculated
shadow wall are calculated. This calculation is repeated
in various i (probabilities), and the total risk is calculated
by Eq. (5).
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