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ABSTRACT Identifying influential spreaders in complex networks is crucial in understanding, controlling
and accelerating spreading processes for diseases, information, innovations, behaviors, and so on. We pro-
posed a semi-local-information-based algorithm named the adaptive weighted link model (AWLM), which
classifies the links in the subgraph made up of the second-order neighbors of nodes and gives them different
weights adaptively. The adaptive weighted link model is completely depends on the semi-local topological
structure and thus can be calculated not only faster but also under the case where the global topology is not
known, especially when the network is sparse, the time complexity is approximate linear. Empirical analyses
of the Susceptible-Infected-Recovered (SIR) spreading dynamics on ten real networks show that the adaptive
weighted link model always perform the best in comparison with well-known state-of-the-art methods.

INDEX TERMS Complex networks, influential spreaders, semi-local information, adaptive method.

I. INTRODUCTION
Network science is playing an increasingly significant role
in many domains [1]. The heterogeneous nature of real net-
works [2] asks for a crucial question: How to measure a
node’s importance quantitatively in a dynamical process? A
good answer is an efficient algorithm to identify influential
spreaders in complex networks, which can help to better
control the outbreak of an epidemic [3], optimize the use of
limited resources to facilitate the dissemination of informa-
tion [4], prevent catastrophic disruptions of power grid or the
Internet [5], discover the candidates of drug target and essen-
tial proteins [6], find the important species for ecosystems
[7], [8], and so on.

Till far, most known methods only make use of the
structural information [9], which can be roughly classified
into neighborhood-based centralities and path-based central-
ities. Typical representatives of neighborhood-based central-
ities are degree centrality [10] (DC), H-index [11], k-shell
decomposition method [12] (KS) and LocalRank [13] (LR).
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Two well-studied path-based centralities are closeness cen-
trality [14] (CC) and betweenness centrality [15] (BC).

Recently, some more potential methods that only use the
semi-local structural information are proposed and perform
much better than the above well-known state-of-the-art meth-
ods, such as Quasi-Laplacian centrality [16] (QC) and Local
Gravity Model [17] (LGM). QC is defined as the drop of the
Laplacian energy of the networkwith the deletion of the target
node from the network. LGM, inspired by the gravity law,
takes both neighborhood information and path information
into account.

We also proposed a semi-local-information-based algo-
rithm named the adaptive weighted link model (AWLM),
which classifies the links in the subgraph made up of the
second-order neighbors of nodes and gives them different
weights adaptively. Empirical results show that AWLM per-
forms always the best in comparison with the eight methods
mentioned above.

The remainder of the paper is organized as follows: In
Section II, the related works of methods to identify influ-
ential spreaders are introduced. In Section III, our adap-
tive weighted link model is proposed. The network data
description and numerical results based on various centrality
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measures applying on real networks are shown in Section IV.
Finally, conclusions are made in Section V.

II. RELATED WORKS
An undirected and unweighted network is represented by
G = (N ,M ) with N nodes and M links, and its structure
can be described by an adjacent matrix A = (aij)N×N where
aij = 1 if node i links to node j, and aij = 0 otherwise.
Many centrality measures have been proposed to rank

nodes. A simple one is DC [10], which is defined as

DC(i) =
∑
j

aij. (1)

Another two famous methods just considering the local
information are H-index and LR.

The H-index [11] of node i, denoted by H (i), is defined
as the maximal integer satisfying that there are at least H (i)
neighbors of node i whose degrees are all no less than H (i).

LR [13] of node i is defined as

LR(i) =
∑
j∈0i

Q(j), (2)

Q(j) =
∑
k∈0j

N (k), (3)

where 0i is the set of the nearest neighbors of node i andN (k)
is the number of the nearest and the next nearest neighbors of
node k .

There are also many well-known state-of-the-art methods
considering the global information, such as KS, CC and BC.

KS [12] assigns a k-shell index to each node based on
its topological location, where nodes closer to the core of
the network will get higher k-shell indices, and nodes in the
periphery will get lower k-shell indices.
CC [14] of node i is defined as

CC(i) =
N − 1∑
j 6=i
dij
, (4)

where dij is the shortest distance between node i and node j.
BC [15] of node i is defined as

BC(i) =
∑

s6=i,s 6=t,i 6=t

gst (i)
gst

, (5)

where gst is the number of shortest paths between nodes s and
t , and gst (i) is the number of shortest paths between nodes s
and t that pass through node i.

Furthermore, to identify the influential spreaders more
effectively, some more potential methods are proposed and
perform better than the well-known state-of-the-art methods,
such as QC and LGM.

QC [16] of node i is defined as

QC(i) = k2i + ki + 2
∑
j∈0i

kj, (6)

where ki is the degree of node i.

FIGURE 1. A simple network to illustrate the proposed method.

LGM [17] of node i is defined as

LGM (i) =
∑

dij≤R,j 6=i

kikj
d2ij
, (7)

where R is the truncation radius. Reference [17] reveals that
the optimal truncation radius, denoted by R∗, approximately
scales linearly with the average distance, denoted by 〈d〉, as

R∗ ≈
1
2
〈d〉 (8)

at β = βc. Such approximately linear relation also holds for
other values of β not so far from βc, where β is the infection
rate and βc is the epidemic threshold of the SIR model [18].

III. ALGORITHMS
If some node is selected as the center of the network, the other
nodes are arranged in different layers according to their dis-
tance from the center node. As is shown in Figure 1, node 1 is
the center node, its nearest neighbors (node 2, 3, 4, 5) occupy
1-layer, and its next nearest neighbors (node 6, 7, 8, 9) occupy
2-layer.

Initially, node 1 in the network is in the infected state and
the others are in the susceptible state. According to the rules
of SIR model, node 1 can infect its susceptible neighbors
(node 2, 3, 4, 5) with probability β. And in next step, node
1 changes to be recovered and will never participate in the
dynamics with probability λ. The spreading process repeats
until there are no more infected nodes in the network. The
first spread is completed by the four orange links between
0-layer and 1-layer, and the second spread is completed by
the two red links in 1-layer and the four grey links between
1-layer and 2-layer. If node 1 fails to infect node 4 and there
is no red link between node 3 and node 4, node 8 and node 9
can never be infected. If node 1 fails to infect node 2 and
there is no red link between node 2 and node 3, the number

VOLUME 8, 2020 66069



Z. Li et al.: Identifying Influential Spreaders Based on AWLM

of infected paths of node 6 is reduced from two (i.e., 1-
3-2-6 and 1-3-7-6) to one (i.e., 1-3-7-6). It is well known
that the farther the distance between the infected node and
the susceptible node, the more difficult the infection is, and
multiple infections can alleviate the problem to some extent.
Based on the above two examples, it is not hard to see that
the red links are extraordinarily important compared with the
grey links and they should be given a greater weight. The
different color links play different roles in the spread process.
Therefore, the different color links should be given different
weights. Based on the above analysis, this paper proposes the
adaptive weighted link model (AWLM) only utilizing semi-
local information. The adaptive weighted link of node i is
defined as

awl(i)=αki + (1− α)

(∑
j∈0i

kj − ki − 2Ri)+ Ri(1+
1
ki
)

,
(9)

where Ri = (
∑

j∈0i,k∈0i,j 6=k ajk )/2, 0i is the set of the nearest
neighbor of node i, and α ∈ [0, 1]. Here, we define orange
links as type I links, grey links as type II links and red links
as type III links, respectively. Obviously, ki is the number of
type I links,

∑
j∈0i kj − ki − 2Ri is the number of type II

links, and Ri is the number of type III links. In particular,
1+ 1/ki is used to amplify the contribution of type III links.
When the number of type III links of two nodes is equal,
compared with the neighbors of the node with large degrees,
the neighbors of the node with small degrees are more closely
connected, therefore, the amplification effect of the node with
small degrees is more obvious. The adaptive coefficient α is
used to adjust the weight of the first spread (i.e., type I links)
and second spread (i.e., type II links and type III links). For
a specific network, α can be obtained by traversing it (more
details see Section IV). In conclusion, the weight of type I
links is α, the weight of type II links is 1−α and the weight of
type III links is (1−α)(1+1/ki). Finally, a node i’s influence
can be estimated as

AWLM (i) =
∑
j∈0i

awl(j). (10)

Taking node 1 in Figure 1 as an example, set α = 0.3,
awl(2) = 0.3∗k2+0.7∗(k1+k3+k6−k2−2∗(a13+a31)/2+
(a13 + a31)/2 ∗ (1 + 1/k2)) = 5.3333, awl(3) = 6.4500,
awl(4) = 5.7500, awl(5) = 2.4000, therefore, AWLM (1) =
awl(2)+ awl(3)+ awl(4)+ awl(5) = 19.9333.

The most time-consuming operation in AWLM is to cal-
culate Ri and its time complexity is 〈k〉2, where 〈k〉 is the
average degree. So the time complexity of AWLM is N 〈k〉2.
Especially when the network is sparse, the time complexity
of AWLM is approximate linear. Therefore, AWLM is a
promising method for large-scale networks to identify the
influential spreaders.

IV. RESULTS
A. DATA DESCRIPTION
In this paper, ten real networks from disparate fields are
used to test the performance of AWLM, including two col-
laboration networks (Jazz and NS), four social networks
(PB, Facebook, WV and Sex), one transportation network
(USAir), one communication network (Email), one infras-
tructure network (Power) and one technological network
(Router). Jazz [19] is a collaboration network of jazz musi-
cians. NS [20] is a co-authorship network of scientists work-
ing on network science. PB [21] is a network of US political
blogs. Facebook [22] describes social circles from Facebook.
WV [23] is a network of Wikipedia who-votes-on-whom.
Sex [24] is a bipartite network in which nodes are females
(sex sellers) and males (sex buyers) and links between them
are established when males write posts indicating sexual
encounters with females. USAir [25] is the United States
airports transportation network. Email [26] describes email
interchanges between users including faculty, researchers,
technicians, managers, administrators, and graduate students
of the Rovira i Virgili University. Power [27] is the power
grid of the western United States. Router [28] is a sym-
metrized snapshot of the structure of the Internet at the
level of autonomous systems. These networks’ topological
features are shown in Table 1, including the number of
nodes, the number of links, the average degree, the clustering
coefficient [27], the assortative coefficient [29], the degree
heterogeneity [30] and the epidemic threshold [31] of the SIR
model.

B. EMPIRICAL RESULTS
The well-known SIR model is used to compare the rankings
of influences produced by algorithms and simulations. Ini-
tially, one node in the network is in the infected state (I) and
the others are in the susceptible state (S). Each of the infected
nodes can infect its susceptible neighbors with probability β.
And in each step, every infected node changes to be recovered
state (R) and will never participate in the dynamics with
probability λ. The spreading process repeats until there are
no more infected nodes in the network. The influence of any
node i can be estimated by

F(i) = Nr/N , (11)

where Nr is the number of recovered nodes at the end of the
dynamics. For simplicity, λ is set to 1, and the corresponding
epidemic threshold [31] is

βc ≈
〈k〉〈

k2
〉
− 〈k〉

, (12)

where
〈
k2
〉
is the second-order moment of the degree distri-

bution.
Given a network and the infection rate β, to obtain the stan-

dard ranking of nodes’ influences (i.e., the ranking of nodes’
influences calculated by Eq. 11), we use 1000 independent
implementations for averaging, in each implementation every
node is selected once as the seed once. The accuracy of an
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TABLE 1. The basic topological features of the ten real networks. 〈k〉 is the average degree. C is the clustering coefficient. r is the assortative coefficient.
H is the degree heterogeneity. βc is the epidemic threshold of the SIR model.

TABLE 2. The algorithms’ accuracies for β = βc , measured by the Kendall’s Tau (τ ). The best performed algorithm for each network is emphasized by bold.

FIGURE 2. The algorithms’ accuracies for different β, measured by the Kendall’s Tau (τ ).

algorithm is measured by the Kendall’s Tau (τ ) [32] between
the standard ranking and the ranking by the algorithm. The
Kendall’s Tau is an index measuring the correlation strength
between two sequences. Considering two sequences with N
elements, X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yN ).
Any pair of two-tuples (xi, yi) and (xj, yj) (i 6= j) are concor-
dant if both xi > xj and yi > yj or both xi < xj and yi < yj.
They are discordant if xi > xj and yi < yj or xi < xj and
yi > yj. If xi = xj or yi = yj, the pair is neither concordant
nor discordant. The Kendall’s Tau of two sequences X and Y
can be calculated as

τ =
2(n+ − n−)
N (N − 1)

, (13)

where n+ and n− denote the number of concordant and
discordant pairs, respectively. It can be seen that the extent to
which τ exceeds zero indicates the strength of the correlation.
A larger value of τ means a stronger correlation between
the two sequences and thus a better performance. Table 2
compares the accuracies of the proposed algorithms (i.e.,
AWLM) and eight benchmark algorithms. The infection rate
for each case is fixed as β = βc (for more values of β, see
Figure 2) and the parameters in relevant algorithms are all
adjusted to their optimal values subject to the largest τ .

As shown in Table 2, AWLM always performs the best
among the nine algorithms. The results reported in Table 2
demonstrate the advantage of AWLM and show that a
semi-local index (AWLM) can outperform global indices
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TABLE 3. The Kendall’s Tau between the standard ranking and the two rankings by AWLM with α = (1− r )/2 and α = 0.5. The best results for each
network is emphasized by bold.

FIGURE 3. The Kendall’s Tau between the standard ranking and the
eleven rankings by AWLM with different α.

(i.e., BC, CC and KS). As shown in Figure 2, results for other
values of β not too far from the threshold are consistent to the
one at βc, suggesting the robustness of our findings.

Notice that, the optimization process for α is as follows: α
is increased from 0 to 1 by 0.1 each step and eleven rankings
of nodes’ influences can be obtained, then, the Kendall’s Tau
between the standard ranking and the eleven rankings by
AWLM with different α can be calculated, finally, the α that
makes the Kendall’s Tau largest is selected as the optimal α,
denoted by α∗. However, when network is particularly large,
the calculation of the Kendall’s Tau will take a lot of time.
Therefore, a heuristics approach is proposed to set α. As is
shown in Figure 3, we discover that α∗ of the assortative
network (denoted by red) is more inclined to be less than
0.5, and α∗ of the disassortative network (denoted by blue)
is more inclined to be more than 0.5. Therefore, α∗ can be
calculated by (1− r)/2 approximately. In order to verify the
validity of the heuristic approach, the Kendall’s Tau between
the standard ranking and the two rankings by AWLM with
α = (1 − r)/2 and α = 0.5 is compared. As is shown
in Table 3, it is reported that the heuristic approach indeed
works. Even though it is not necessarily taking the optimal α,
it is better than the fifty-fifty mode.

V. CONCLUSION
To measure influences of nodes in a certain networked
dynamics, we propose a semi-local-information-based
method, namely the adaptive weighted link model (AWLM),
in which the links in the subgraph made up of the second-
order neighbors of nodes are classified into three categories:
type I links, type II links and type III links. The type I
links working in the first spread are given the weight of
α. The type II and type III links working in the second
spread are given the weight of 1 − α. In particular, we hold
that the type III links are more important than the type II

links, so the weight of type III links are amplified 1 + 1/ki
times. In conclusion, these three link are given different
weights adaptively by optimizing α. Empirical results show
that AWLM performs always the best in comparison with the
eight benchmark methods.

Furthermore, to improve the efficiency of the algorithm,
a heuristic approach is proposed to set α instead of travers-
ing α. Even though the heuristic approach is not necessarily
taking the optimal α, it is better than the fifty-fifty mode.
When network is particularly large, it will save a lot of time
and obtain a competitive result.

AWLM completely depends on the semi-local topological
structure and thus can be calculated not only faster but also
under the case where the global topology is not known,
especially when the network is sparse, the time complexity
of AWLM is approximate linear. Therefore, AWLM is an
extraordinary promising algorithm for real application.

Because our method is mainly for the undirected and
unweighted networks, we only need to calculate the number
of different types of links. If we want to extend it to the
weighted networks, we need to consider the inherent weight
of each link. The simplest way is to calculate the sum of the
weight of the three type links, respectively, furthermore, set
the three type links different weights. However, in weighted
complex networks, the heterogeneity of the links greatly
change their importance [33]. Our method may not work as
well as it does on the undirected and unweighted network.
Therefore, it is still a challenge to extend our model to the
weighted complex networks.
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