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ABSTRACT Ocean temperature, salinity, and electric conductivity are essential ocean properties. Their
structure and changes directly impact physical, chemical and biological processes in oceans. Since the 1970s,
numerous researches have focused on the morphological analysis of vertical profiles in oceanography.
However, due to the complexity of an ocean environment, most of them are conducted at local scales or only
focus on single elements, e.g., ocean temperature or salinity. This work aims to achieve the joint classification
of the vertical structure of ocean properties at a global scale and present two-dimension regional characteris-
tics. Based on 150 seawater profiles from the National Oceanographic Data Center, this work explores such
characteristics of ocean temperature, salinity and electric conductivity in the deep sea and achieves global-
scale joint classification. We demonstrate that their vertical features have clear regional characteristics and
can be classified into four types, i.e., bidirectional gradient, homo-dromous contravariant, homo-dromous
gradient, and homodromous gradient (salinity) ones. In addition, our results prove that there exist the
power-law distributions of these three factors in intermediate water, which may be explained through the
self-organization theory. Moreover, the ‘up-tail’ phenomenon is widely discovered in the vertical structure of
electric conductivity, and it may be considered as a combined effect caused by temperature, pressure, and
salinity.

INDEX TERMS Vertical structure, joint classification, ocean temperature, salinity, electric conductivity,
power-law behavior.

I. INTRODUCTION
Ocean temperature, salinity, and electric conductivity are
three critical oceanic environmental factors and can directly
reflect the physicochemical, thermal, and electric properties
of seawater [1], [2]. As they participate in the physical, chem-
ical and biological processes of seawater, their structure and
changes potentially affect marine dynamics, marine primary
production, and the interactions between the marine system
and climate changes [3]. Recent studies have particularly
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focused on the effect of these key processes, requiring accu-
rate measurements of temperature, salinity, and conductiv-
ity to realize a deeper understanding of oceans and their
interior [4], [5].

Numerous work has been conducted to analyze a ver-
tical cross-section of oceanic factors at local scales [6].
The history can be traced back to the 1970s. For instance,
Boguslavsky et al. (1994) carry out the numerical calculation
of the vertical salinity profile in the Black Sea and analyzed
its formation [7]. Gouskina et al. (1996) reveal the regular
trend of three kinds of properties by investigating the spatial
structure of the north pacific intermediate water [8]. In more
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recent efforts, Toyama and Suga (2010) examine the verti-
cal structure of mode waters in the North Pacific by using
Argo data and define the distribution area for each mode [9].
Damerell et al. (2016) present changes in the annual vertical
structure of temperature, salinity, and oxygen concentration
over 1000 meters of the ocean in the northeast Atlantic [10].
Yongcan, et al. (2019) explore the seasonal characteristics
and the formation mechanism of the thermohaline structure
of mesoscale eddy in the South China Sea and the results
show that the vertical distribution of temperature exhibits a
monolayer structure, while the salinity anomaly demonstrates
a triple-layer structure [11]. However, due to the complexity
of the marine environment, these studies reveal the sub-
stantial differences among them over various geographical
regions [12]. For example, there are large differences in the
spatial variability and the distribution of temperature and
salinity in the North Atlantic and North Pacific regions [13].
The differences are mainly caused by submarine topography,
local geographical and meteorological conditions, and ocean
currents [14], [15]. Nevertheless, such metric analysis at local
scales is unable to accurately account for the effect of oceanic
factors to global material cycles and energy flow, and air-
sea interaction. The reason is that the marine system is a
complex dynamic structure where each component of the
marine system affects each other [16], [17]. In addition, due
to the remote sensing technology and the global profiling
float program (Argo) that launched in the 2000s, it is easier
to obtain the vertical structure characteristics of seawater
properties on a global scale [18]. However, the deep-sea
structural features are usually not observed and the resolution
is relatively low.

Moreover, many sensitivity analyses of oceanic processes
focus on one or two factors (e.g., sea temperature and thermo-
haline structure) rather than multiple ones [19]. For example,
AquinoCruz and Aldo (2012) investigate the effect of seawa-
ter temperature on the growth and toxin production of three
harmful benthic dinoflagellates and suggest that increasing
seawater temperatures had a positive effect on them [20]. It is
only a partial analysis to focus on a single factor in a marine
system since ocean processes are better viewed as a combined
interaction of various mutually dependent factors including
ocean temperature, seawater chemistry and marine organ-
ism [21], [22]. As shown in various findings, some oceanic
factors are highly related to each other [23]. For instance,
it has been demonstrated that the electrical conductivity of
seawater is associated with salinity, temperature, and pres-
sure [24]. This association among oceanic factors strengthens
the role of oceanic processes [25]. Hence, an exhibition of the
global pattern on comprehensive factors can help us further
understand the comprehensive effect of oceanic factors on
various processes of ocean and predictive abilities regarding
changes in a marine environment.

This work adopts the CTD (conductivity-temperature-
depth) profiles provided by the National Oceanographic Data
Center (NODC), which widely distributed on a global basis.
The contribution of it are: (1) It makes a global-scale joint

FIGURE 1. Geographic locations of 150 CTD profiles. The map was created
by ArcMap 9.3 [40].

classification of vertical structure characteristics of ocean
properties for the first time. The results show that their
vertical features have clear regional characteristics and can
be classified into four types. (2) It reveals the power-law
distributions of these three factors in intermediate water. And
(3) It explains the ‘up-tail’ phenomenon widely found in
the conductivity vertical structure, considered as a combined
effect of temperature, pressure, and salinity.

II. DATA AND METHODS
The CTD profiles for this investigation are obtained from the
World Ocean Database 2013 (WOD13), provided by NODC.
It has been widely adopted for oceanographic, climate, and
modeling researches [26], [27]. In this work, the CTD profiles
are selected in theWOD select mode and sorted by ocean area
and latitudes (Fig. 1). This work prefers to choose the profiles
whose maximum measured depth is below 3000 meters and
they are distributed throughout the global oceans. We screen
and finally chose 150 CTD profiles to conduct our research.
The records of temperature and salinity spanned the period
from 1981 to 2016. In temperate regions, about half of the
CTD profiles are produced in summer. It is also worth noting
that there is no electric conductivity data in the WOD13 data
set. So conductivity is calculated from salinity, temperature,
and pressure with the Practical Salinity Scale 1978 [28], [29].

We complete the classification work in four steps, as
follows:

Step 1. Data pre-processing.
Due to inconsistent records of the raw data, we make the

process of data pretreatment. Firstly, these records are usually
binned in a depth of 1 to 5 meters, and some are calcu-
lated by using smaller-depth intervals. Therefore, we unify
all these CTD records to a 5 m-depth interval. Secondly,
we remove the redundant data, which are caused by the fluc-
tuating movement of the ships in the shallow water. Lastly,
we wipe off the abnormal data. Since individual data may be
impractical or lost due to environmental interference or human
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FIGURE 2. The vertical structures of temperature, salinity and electric
conductivity with standard deviations, and indicative of the tightness of
each curve.

factors during the collection and transmission of measure-
ment data.

Step 2. Determination of the typical vertical structure for
three ocean factors.

Existing literature shows that there are local variations in
salinity and temperature in the distinct geographic locations.
For example, previous research has reported decreases in
Atlantic Ocean water salinity with depth, which is the oppo-
site of the observed trend in the Pacific. By investigating
existing materials and data, we determine the typical vertical
structure for three ocean factors, including two types of tem-
perature, three types of salinity and two types of conductivity.
Then, we select them as the reference structures for the
subsequent similarity calculation.

Step 3. Shape similarity measurement based on the DTW
algorithm.

The dynamic time warping (DTW) algorithm is used to
measure the similarity between the target data and the tem-
plate data (reference structures). Its principle is to build
an adjacency matrix of two series and find a path along
which the cumulative distortion between the two series is
minimized [30]–[32].

We set two series P = (p1, p2, p3,. . .pm) and Q = (q1, q2,
q3,. . .qn). The adjacency matrix of two series is defined
as Dn×m = {dist(i, j)}n×m where dist(i,j) = ( pi − qj)2.
The path is optimized by the dynamic programming tech-
nique [33], [34], and can be expressed as below:

DTW (i, j) = dist(pi, qj)+min


DTW (i, j− 1)
DTW (i− 1, j− 1)
DTW (i− 1, j)

(1)

FIGURE 3. The distribution map of four types of temperature, salinity, and
electric conductivity. The map was created by ArcMap 9.3 [40].

where pi and qj are the ith and jth values of series
P and Q.

The DTW alignment distance between the target data and
the template data is taken as the feature factor of the next
comprehensive classification [35], [36].

Step 4. Comprehensive classification based on three
factors.

In this step, we compare the DTW distance between each
type of ocean factor in the target data and the reference
structure and choose the typical structure with the nearest
distance as its ownership structure [37]–[39]. After classify-
ing the structural types of the three ocean factors, the factors
comprehensive taxonomy is used to make the comprehensive
classification process for the 150 CTD profiles. The structural
types of salinity, temperature, and conductivity are taken as
the classification elements. Those CTD profiles in which the
structural types of three elements are the same are classified
into one class.

After the above procedures, we calculate the mean and
standard deviation of ocean temperature, salinity and electric
conductivity for each class to reveal the vertical structure.

III. RESULTS
A. FOUR CLASSES OF OCEANIC FACTOR VERTICAL
STRUCTURES
Based on vertical profiles of temperature, salinity, and electric
conductivity, their vertical structures can be divided into four
classes: bidirectional gradient, homodromous contravariant,
homodromous gradient, and homodromous gradient (salin-
ity) ones as shown in Figs. 2 and 3.
Class I. ‘Bidirectional Gradient’ Type:
Temperature and conductivity decrease rapidly from sea

surface to about 500 m depth. With the increase of depth,
temperature and conductivity reach a minimum at about
3000 m and 2000 m, respectively. The minimums are sep-
arately referred to as the temperature minimum (Tmin) and
conductivity minimum (Cmin) layer. Below the Tmin and Cmin
layer, temperature and conductivity slowly increase toward
the bottom, where the temperature increases in abyssal region
due to adiabatic compression. In contrast, salinity reaches its
maximum at about 3000 m depth, and then it preserves its
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value from 3000 m to the bottom. Observation sites in this
category are mainly distributed in high and middle latitudes
of North Pacific (40–60◦N and 35–55◦S).
Class II. ‘Homodromous Contravariant’ Type:
Salinity, temperature, and conductivity increase rapidly to

their maximum from sea surface to subsurface. Their max-
imums are separately referred to as the salinity maximum
(Smax), temperature maximum (Tmax), and conductivity max-
imum (Cmax) layer. Below these maximum layers, salinity
and temperature decrease monotonously down to the bottom.
Conductivity below its maxima at about 300 m decreases in
deeper layers. There is a salinity minimum at about 2300 m
depth, referred to as the conductivity minimum (Cmin) layer.
From the Cmin layer to the bottom, conductivity slowly
increases in the deep ocean. Observation sites in this category
are mainly distributed in the Antarctic and the Arctic Ocean.
Class III. ‘Homodromous Gradient’ Type:
Salinity, temperature, and conductivity decrease rapidly

from sea surface to about 1000 m depth. With the increase of
depth, temperature and conductivity reach their minimum at
about 4000 m and 3000 m, respectively. Their minimums are
separately referred to as the temperature minimum (Tmin) and
conductivity minimum (Cmin) layer. Below the Tmin and Cmin
layer, temperature and conductivity slowly increase toward
the bottom. From 1000 m to 3500 m depth, salinity increases.
Below 3500 m depth in the bottom direction, salinity pre-
serves the same value. Observation sites in this category are
mainly distributed at low and middle latitudes of the west
Pacific Ocean and the Atlantic Ocean. In addition, three sites
are found at high latitudes of the Atlantic Ocean and the other
three are found at low latitudes of the southern Indian Ocean
and Southeast Pacific Ocean.
Class IV. ‘Homodromous Gradient (Salinity)’ Type:
The vertical structure in this category is similar to the

‘homodromous gradient’ type but it contains two haloclines
in the vertical structure of salinity. Temperature and con-
ductivity decrease rapidly from sea surface to about 1000 m
depth. With the increase of depth, temperature and conduc-
tivity reach the minimum at about 4000 m and 3000 m,
respectively. Again, below the depth where the minimum
is achieved, temperature and conductivity slowly increase
toward the bottom. The salinity increases rapidly to the maxi-
mum value from the sea surface to subsurface. It is referred to
as the salinitymaximum (Smax) layer. From the Smin layer that
is recorded at about 800 m depth, salinity decreases rapidly
to its minimum, which referred to as the salinity minimum
(Smin) layer. From the Smin layer to 3000 m depth, salinity
increases again. Below 3000 m depth downwards, salinity
keeps its constant value. Observation sites in this category are
mainly distributed in the eastern Pacific Ocean and the Indian
Ocean. A few observation sites are in the tropical and subtrop-
ical regions of the west Pacific Ocean and the Atlantic Ocean.

B. POWER-LAW BEHAVIORS IN INTERMEDIATE WATER
The relations between depth and oceanic factors are presented
on a log-log plot in Fig. 4, and some show a linear relation

FIGURE 4. Log–Log plot of the vertical structure of temperature, salinity,
and electric conductivity.

at the subsurface and intermediate layer, which can be well
described by a power-law distribution, i.e.,

F(d) ∼ d−α (2)

where F(d) is an oceanic factor, d is sea depth, and α is a
power exponent. Usually, the value of α is greater than zero.

In Fig. 4, αt is the power exponent of temperature T , αs is
the power exponent of salinity, and αc is the power exponent
of conductivity. They are indicated by three-line segments in
cyan, yellow and pink, respectively. The R2 values are the
coefficients of determination for the fitting line segments on
the log-log plots. All R2 values for line segments are greater
than 0.99.

Besides Class II, the power-law behaviors always exist in
the vertical structure of temperature, salinity, and conductiv-
ity at middle-low latitudes. It is observed that multiple power-
law behaviors may occur in one CTD profile (e.g., Fig. 4c).
Moreover, there remain some differences among temperature,
salinity, and conductivity shown in Table 1. All power-law
exponents of temperature exhibit the maximal value, wherein
we find that a vase of salinity is the minimum. The power-law
exponent of conductivity is generally less than 0.2. For the
depth range, the power-law behavior existing in the vertical
structure of temperature is wide and the maximum value
is reached at 3000 m depth. For temperature, the power-
law behavior occurs approximately between 100 and 700 m
depth. The power-law behavior in the vertical structure of
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TABLE 1. Description of the power-law behaviors that exist in the vertical
structure of temperature (T), salinity (S), and conductivity (C).

conductivity occurs for a depth range approximately between
several tens to about 1000 m.

IV. DISCUSSION
In this work, we offer a joint study on ocean temperature,
salinity, and electric conductivity and classify them into four
major types on a global scale. The temperature and salin-
ity are two important parameters of marine hydrology and
have been widely adopted to analyze hydrographic features
and water masses. They interact with each other and act on
multiple processes at the same time. Numerous researches
use the TS-diagram to explore their characteristics, while we
study the dynamic evolution mode of them by using the space
panel data analysis method. Additionally, we encompass con-
ductivity into classification, since ocean conductivity is a
fundamental parameter in electromagnetic reflection, which
has a great influence on the process of marine biological and
physical processes. For instance, Irrgang et al. (2015) find
that the temporal variability of the magnetic field increase by
45% through the use of the true global conductivity distribu-
tion of seawater [41], [42].

Our results accord with earlier observations [43]. In low
latitudes, we define the type as ‘homodromous gradient’,
characterized by a vertical structure that first decreases with
depth and then slowly increases below some specific depth.
This finding corresponds to previous studies and is usually
found in the Atlantic, Pacific and tropical oceans [44]. Fur-
thermore, we define the ‘homodromous gradient (salinity)’
type, mainly because salinity has a rapid increase (repre-
sented as a small spike in Fig. 2(d) in the subsurface layer
of the ocean. Current work has attributed the small spike to
the high salt content water which sinks at the northern and

southern middle latitudes and extends to the equator [45].
For the middle and high latitudes, we define the ‘bidirec-
tional gradient’ (distributed in high and middle latitudes of
North Pacific) and the ‘homodromous contravariant’ type
(distributed in the Antarctic and Arctic Ocean), respectively,
according to the vertical features of these three factors. The
difference between them is whether the change in the trend
of salinity is consistent with those of the other two fac-
tors. The results indicate that sea salinity, temperature, and
conductivity increase rapidly to their maximum from sea
surface to the subsurface in polar regions, largely due to the
cold climate [46]. In the regions of 40–60◦N and 35–55◦S,
we find that salinity increases with depth while temperature
and conductivity decrease from sea surface to about 2000 m
depth. The observation is consistent with previous studies and
it is attributed to a combined effect of the freshwater exchange
across the air-sea boundary, the northward transport of water,
heat transfer at the air-sea boundary and vertical mixing [47].

In addition, the ‘up-tail’ phenomenon is widely found
in the vertical structures of temperature (except for
Class II) and conductivity (in all four classes). The warped-
tail phenomenon of temperature is previously revealed and
attributed their formation to the adiabatic heating [48]. How-
ever, the warped-tail phenomenon for conductivity is often
neglected [49]. To account for this, there are three factors for
driving the slow rise of conductivity in deep sea. The first
reason is high salinity. It increases the ionic concentration
in seawater [50], [51]. The second reason is increasing tem-
perature. It can positively affect conductivity [52]. The third
reason is high seawater pressure, which leads to an increase
in the ionic concentration in seawater [53], [54]. Our results
indicate that increasing conductivity in deep oceans can
be regarded as a combined effect of temperature, pressure,
and salinity. Increasing salinity and pressure can positively
affect conductivity while decreasing temperature leads to a
negative effect [55]. However, more controlled experiments
are required in future research to quantify the effect of each
factor on seawater conductivity [56].

Moreover, it is worth noting that conductivity varies con-
sistently with temperature from sea surface to about 2000 m
depth. In abyssal region, the difference in the changing
trend of conductivity and temperature increases gradually.
For salinity, it is considered that conductivity and salinity
are in the direct ratio [57]. However, the variation tendency
between conductivity and salinity are opposites in Class I,
as observed in high and middle latitudes of North Pacific.
Several reports have suggested that salinity is the main factor
for conductivity [55]. However, our findings suggest that
temperature has a greater influence on the vertical structure
of conductivity above abyssal region. Correlation analysis
between conductivity and temperature has also been con-
ducted, and the results indicate that conductivity has a high
linear relationship with temperature from the sea surface to
2000 m depth, with R2 = 0.99 [58].
Furthermore, we observe that power-law behaviors could

govern the statistics of three oceanic factors in intermediate
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water at middle-low latitudes. The power function model
with the decay coefficient (except for salinity in Class I and
temperature, salinity, and conductivity in Class II) is con-
structed to describe the vertical structures of oceanic factors
and to reveal the inherent dynamic mechanism. Based on this
observation, we put forward the hypothesis that the change
of vertical structure is a self-organized critical process. This
argument suggests that the vertical change of oceanic factors
follows a dynamical adapting mechanism in a certain depth
range, i.e., an intermediate water layer automatically evolves
towards an equilibrium state, and the process is spontaneous.
We believe that the ocean is an open dissipative system at
middle-low latitudes and meets the following conditions for
its formation.

Firstly, the ocean is constantly exchanging material and
energy with the external environment (such as the atmo-
sphere), and therefore the system is open [59].

Secondly, there are complex coupling effects of mechan-
ics, thermology, electricity, magnetism, and hydrochemistry
among the marine internal subsystems, and therefore the
input-output relationship of the system does not satisfy the
homogeneity and superposition [60]. It means that the system
has a nonlinear interaction.

Thirdly, the ocean system is a part of the earth’s evolution,
which is spatio-temporal symmetry-breaking and far away
from the equilibrium state. Moreover, the system is subject
to the combined action of the external loading and environ-
mental factors (such as the tidal stress and the rotation of the
earth), and therefore the system is non-equilibrium [61], [62].

Lastly, the ocean is composed of many water masses (sub-
systems), and each subsystem can be regarded as a thermo-
dynamic system. Thus, the ocean system satisfies the partial
thermal equilibrium assumption [63].

To sum up, it is appropriate to analyze the ocean’s spa-
tiotemporal property with the self-organization theory. Due to
the complex interaction among the subsystems in the ocean
system and the complex constraint relationship between
the system and the external environment, its spatiotempo-
ral property shows a kind of mutual system and overall
evolution behavior. Therefore, the power-law behavior of
ocean factors is a kind of a spatial structure obtained by
the internal self-organization of the ocean system at middle-
low latitudes, which embodies its scale invariance in space.
Furthermore, the power-law distribution of sea temperature
can be regarded as a dissipative structure in thermodynam-
ics, and the power-law distribution of salinity can also be
regarded as a Belousov-Zhabotinskii (B-Z) oscillating reac-
tion. The power-law distribution of electrical conductivity
can be regarded as the scale-invariant structure of ocean
electromagnetic characteristics. The new insights into the
vertical structure feature formation should greatly contribute
to exploring the dynamic properties of seawater.

Many studies refer to the oceanic mixed layer, character-
ized by a nearly homogeneous distribution of
properties [64], [65]. It seems that such a mixed layer is
not present in our results (Fig. 2), because most of the

measurements we chose are collected during the summer
when the depth of a mixing layer is very small [66], [67].
It has been demonstrated that the depth of the mixed layer
is greater in winter than that in summer in each hemisphere.
The reason for this is that solar heating of the surface water
increases in summer, which makes the density stratification
more stable and reduces the penetration of wind-driven mix-
ing [68], [69]. Hence, a mixed layer is not easy to distinguish
with our naked eye in Fig. 2. Nevertheless, a mixed layer is
shown to exist in Fig. 3, which can be approximated by a
constant reflected on a double logarithmic axis. We find that
the vertical structure of conductivity is nearly uniform in the
mixed layer.

V. CONCLUSION
This work performs a global-scale joint classification of the
vertical structure of ocean temperature, salinity, and electric
conductivity and presents the regional characteristics. The
results reveal that these three factors can be classified into
four classes and there exist the power-law distributions of
them in intermediate water. We explain it through the self-
organization theory. In addition, we find that the ‘up-tail’
phenomenon is widely discovered in the vertical structure
of electric conductivity, and attribute it to a combined effect
caused by temperature, pressure, and salinity. This work
provides a reference value for the comprehensive effect of
oceanic factors on a variety of ocean processes. Some recent
neural network methods, e.g., [70], can be used to refine the
classification work presented in this paper, thereby gaining
more insight into ocean properties at regional/local levels.
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