
Received February 18, 2020, accepted March 24, 2020, date of publication April 3, 2020, date of current version April 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985657

Deep Learning From Spatio-Temporal Data Using
Orthogonal Regularizaion Residual CNN for
Air Prediction
LEI ZHANG 1,2, (Member, IEEE), DONG LI1, AND QUANSHENG GUO1
1School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2Beijing Key Laboratory of Intelligent Processing for Building Big Data, Beijing 100044, China

Corresponding author: Lei Zhang (lei.zhang@bucea.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61871020, in part by the Key Science
and Technology Plan Project of Beijing Municipal Education Commission of China under Grant KZ201810016019, in part by the Ministry
of Housing and Urban Construction Science and Technology Project of China under Grant 2017-R2-018, in part by the High Level
Innovation Team Construction Project of Beijing Municipal Universities under Grant IDHT20190506, and in part by the Practical Teaching
Research Foundation of BUCEA under Grant J1712.

ABSTRACT Air pollution is harmful to human health and restricts economic development, so predicting
when and where air pollution will occur is a challenging and important issue, especially in fields of
urban planning, factory production and human activities. In this paper, we propose a deep Spatio-Temporal
Orthogonal Regularization Residual CNN (ST-OR-ResNet) for air prediction. Deep Convolutional Neural
Network (CNN) is presented to capture the complex spatio-temporal relation of the dynamic biased
meteorological data. Residual learning is designed to avoid unpredictable oscillations when training the
network and verifying errors. For the issue of characteristic statistical migration and saddle point proliferation
in deep network, the orthogonality regularizations are designed to stabilize the back-propagation errors,
utilizing various advanced analytical tools such as restricted isometry property without extra hassle. We then
benchmark their effects on public real-world datasets to demonstrate that ST-OR-ResNet has better predictive
performance than the state-of-the-art methods.

INDEX TERMS Deep learning, urban computing, spatio-temporal big data, orthogonal regularization,
residual network.

I. INTRODUCTION
Nine out of ten people around the world breathe the polluted
air, which kills seven million people a year, according to a
report by WHO (World Health Organization) in 2018 [1].
Urban expansion exacerbates air pollution and triggers a
series of imperative research [2].Most studies on air pollution
prediction are limited to meteorological models, with com-
plex modeling and poor flexibility. Therefore, the research
on using data mining and intelligent prediction to improve
the urban environment and urban planning, has become an
important hot scientific topic.

Environmental authorities face some challenges of estab-
lishing ground stations to monitor the air pollution, which are
expensive (about $150,000 a site) [3]:
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1) Due to the limited number and uneven distribution
of monitoring stations, the meteorological data are biased.
Therefore, reasonable allocation of resources, data sparsity
and data noise should be considered;

2) Meteorological data have dynamic spatio-temporal
properties. In terms of space, it is reflected in spatial distance
and dimension, as well as different spatial granularity and
urban structure. In terms of time, it is reflected in periodicity,
tendency and proximity;

3) Heterogeneous meteorological data. The spatial distri-
bution and temporal pattern of pollution sources are different,
which are affected by local emission, regional traffic, meteo-
rological conditions and other external factors.

In this paper, we propose an accurate and comprehensive
data mining model and prediction method for these dynamic
biased spatio-temporal big data to optimize the urban fine
management.
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There are many complicated relationships between mea-
surable and immeasurable spatio-temporal data, which need
to consider spatio-temporal reasoning process [4]. The exist-
ing machine learning and cloud computing cannot meet the
requirements of accurate processing, while the deep neural
network is better applied in urban computing, with its strong
expression ability of network model and analysis of dynamic
biased spatio-temporal big data. However, due to the lack
of sophisticated theoretical support for deep learning, there
are still many difficulties to be solved, for example how to
conduct abstract modeling of various situations and concepts;
how to solve the problem of gradient explosion and gradient
disappearance; how to speed up training process to avoid
falling into local optima.

Researchers have proposed a number of deep neural net-
works with desirable results.Wang et al. [5] designed a neural
network which has two branches for attention box prediction
(ABP) and aesthetics assessment (AA) on photo cropping.
These two sub-networks were designed to share the same
holographic convolutional feature map, and obtained better
computational efficiency. Lai et al. [6] proposed a residual
attentive learning network to predict dynamic eye-fixation
maps. A composite attention module was integrated for
enhancing the spatio-temporal saliency representation with
multi-scale information. The composite attention mechanism
learned local attentions as well as global attention priors
for emphasizing the informative saliency features and filter-
ing out the useless information, thus improving the spatio-
temporal saliency representation efficiently.

On the basis of previous studies, we devise a deep Spatio-
Temporal Orthogonal Regularization Residual CNN (ST-OR-
ResNet) for air prediction, which is based on deep learn-
ing algorithm by combining the Convolutional Neural Net-
work (CNN) with strong feature expression ability and the
Recursive Neural Network (RNN) with strong long-time
memory ability. Our approach makes several important new
contributions:

â A Deep CNN is designed to capture the complex cor-
relation of spatio-temporal data and the edge effect in
spatial distribution based on deep learning algorithm.

â Three residual CNN subnets are integrated to couple
the mapping relationship between the time dimension
and spatial dimension, which is called ST-ResNet. These
three subnets represent periodicity, tendency and prox-
imity respectively.

â An Orthogonal Regularization (OR) algorithm is pro-
posed to avoid characteristic statistical migration and
saddle point proliferation without altering the original
framework and achieve more accurate prediction.

The rest of this paper is organized as follows. Section II
discusses the literature. Section III elaborates on our
proposed network model and implementation details of
ST-OR-ResNet. In Section IV, we compare and analyze the
experiment results. Finally, we conclude the paper and out-
look of the future works in Section V.

II. RELATED WORK
A. METHODS OF AIR PREDICTION
Generally, the dominant models andmethods of air prediction
are roughly divided into the following four types:

1) Mechanism models. Gibson et al. [7] applied Gaussian
plume diffusion model for air prediction based on the point
source and line source. Wu et al. [8] used Numerical Weather
Prediction (NWP) model to estimate the Air Quality Index
(AQI) in 2005-2006.

2) Remote Sensing and Geographic Information System
(GIS) method. Kloog et al. [9] adopted a local regres-
sion model to predict the spatio-temporal distribution of
PM2.5 based on Aerosol Optical Data (AOD) of the mid-
Atlantic region in 2000-2008. Fang et al. [10] proposed a
satellite-based real-time adaptive method to predict the con-
centrations of PM2.5, and the reliability of the proposed
algorithm was tested by combining meteorological factors,
land utilization and other multi-source auxiliary data. He and
Huang [11] studied the spatio-temporal geographic weighted
regression model to estimate AQI using AODwithin a spatial
resolution of 3km.

3) Machine learning model. Lyu et al. [12] used Bayesian
hierarchical model to fit the statistical relationship between
AOD and spatio-temporal data for the air pollution predic-
tion. Hou et al. [13] applied the random forest algorithm on
Spark cluster to realize the real-time prediction of a single
monitoring site.

4) Deep learning model. Ong et al. [14] presented a
deep neural network prediction model using the time series.
Li et al. [15] combined geographic correlation with deep
learning to prediction, using the satellite remote sensing data
and the ground monitoring data.

To sum up, all kinds of air prediction models are effec-
tive. However, mechanism models need to take account of
the pollution source diffusion, meteorological conditions and
other factors, so the modeling is relatively complex. Remote
sensing and GIS method, which use satellite remote sensing
image data, is more stringent dependent on data, and the
partial distribution of GIS data is unstable, lack of flexibility.
Machine learning model is the widest approach; however,
it has many restrictions on the quality and quantity of sam-
ples, and it needs to spend much time on data preprocessing
and feature extraction. Deep learning models are commonly
used in Natural Language Processing (NLP). However, deep
learning mostly selects only one model for prediction, with-
out simultaneously considering the feature abstraction and
the contextual correlation along the time axis, so the perfor-
mance is unstable.

B. DEEP LEARNING FOR SPATIO-TEMPORAL PREDICTION
Spatio-temporal data processing method for urban comput-
ing has been paid much attention in recent years, but there
are still many difficulties. Support Vector Machine (SVM)
cannot be applied on big data sets due to its computational
density, robustness and other reasons [16]. The memory
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consumption of Decision Tree (DT) for big data processing
is too large [17]. The learning speed of Feedforward Neural
Network (FNN) is slow, etc. [18], [19].

Compared with these shallow neural networks, DNN pro-
vides modeling for the complex nonlinear system, and the
extra layers have higher abstraction and learning capacity.

As a representative of DNN, CNN has been outstandingly
applied in many fields, especially in computer vision, and
it is often used to capture the spatial correlation of images
[20], [21]. Ma et al. [22] adopted CNN to predict trans-
portation speed. Li et al. [23] proposed deep residual learn-
ing on images and avoided vanishing/exploding gradients.
Yao et al. [24] presented a deep multi-view network based
on the combination of CNN and Long Short-Term Mem-
ory network (LSTM). LSTM can not only process single
data (such as image), but also the entire data sequences.
Zhang et al. [25] put forward spatio-temporal residual algo-
rithm to predict the traffic flow, considering the time prox-
imity, period and trend. While these methods do predict
the historical timestamps, they do not explicitly model the
chronological order dependencies.

C. FEATURE MAPPING FUNCTION OF CNN
In present urban computing methods, CNN is widely used to
capture spatial similarity due to its performance on extracting
high-latitude features among pixels. Yi et al. [26] proposed a
method of space transform component and depth distributed
convergence network, considering the spatial correlation of
pollutants, heterogeneous data and weather conditions, etc.
Jia et al. [27] modified CNN structure, introduced a wavelet
transforms to replace the sub-sampling layer and redistributed
the weight matrix adaptively to improve the oscillation
phenomenon.

Outside the scope of urban computing, many scholars
began to pursue the potential spatio-temporal attributes in
multi-source data and learned new mapping relationships.
Wu et al. [28] discussed that location-based services could
influence people’s trajectory. Considering the limitation of
geographic space and the correlation of time series, a differ-
ential privacy location mechanism was proposed to improve
the accuracy and effectiveness of trajectory privacy protec-
tion. Fan et al. [29] adopted a novel framework for human
motion recognition with the local spatio-temporal feature
behaviors. A local semantic Siamese framework was pro-
posed to extract more robust features for high-speed visual
object tracking, which was realized by adding a classification
and residual channel attention block into the Siamese frame-
work during the offline training [30].

Through the above works, CNN is widely applied in cap-
turing the spatial features due to its performance on high
dimension mapping correlations in pixels.

III. PROPOSED METHODOLOGY
Although some interesting deep neural networks were
studies to examine the potential connections among the
training instances, aiming to achieve a more powerful

FIGURE 1. Overview of ST-OR-ResNet.

representation [31], [32], our focus is to predict exactly the
future trends of dynamic spatio-temporal big data.

In this section, we elaborate the architecture of ST-OR-
ResNet, shown in Fig.1. It contains two modules: Spatial
Conversion and Deep CNN. The spatial conversion module
uses ‘‘transform, fill and interpolation’’ to convert the real
geographical data into sparse pixel matrix. Then, the pixel
matrix is fed into Deep CNN to obtain the predicted result.

The detailed architecture and the proposed methodology
are described below.

A. OVERALL STATEMENT
Firstly, we transform the raw data to low dimensions for
capturing the temporal correlation and the internal dynamics.
Then, the timeline is divided into three segments, repre-
senting latest time, near history and far history separately.
Further, we use three CNN subnets to simulate three temporal
characteristics (periodicity, tendency and proximity), which
have the same structure, followed by a residual sequence.
The whole architecture can capture the spatial dependence
of the nearby area and the remote. Finally, we combine
other context factors to present the impact on the pre-
dictive results, that is, the outputs of these three subnets
are weighted together to capture deeper mapping relations
by the activated function tanh() to [−1,1]. So that’s our
Deep CNN.
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FIGURE 2. Procedure of spatial conversion.

B. SPATIAL CONVERSION
The purpose of spatial conversion is two-fold:

1) Converting the real meteorological data into pixel
matrix, then put them into the CNN subnets;

2) Transforming the real-world physical space to an
abstract space.

Firstly, space is divided into 32 × 32 grids according
to latitude and longitude. Each grid is assigned a pixel
value (that is, the monitored data at its location), and the
grid outside the space is assigned a value of zero. Then,
the spatio-temporal data is transformed to a pixel matrix.
As shown in Fig.2, the colors represent different air quality
levels.

Due to the limited number of sites, the pixel matrix is
sparse and biased, which cannot reflect the global spatial
distribution. Moreover, the geographical environment is not
only determined by the local monitoring site but also affected
by the adjacent area. Therefore, we develop a simple com-
mon spatial interpolation method, that is Inverse Distance
Weighted Interpolation (IDWI) [33], to carry out data pre-
treatment. IDWI uses the data of the known grid to interpolate
the data of the unknown grid.

ŷ(S0) =
n∑
i=1

λiy(Si) (1)

Here, the value ŷ(S0) of the unknown grid S0 is calcu-
lated by the weighted sum of the known value Si with the
weight λi.
Considering the known data of adjacent regions, IDWI

assigns weights to the available readings of adjacent grids
in each space according to the distance from the target,
weights these weights to average, and then accumulates the
interpolation of the vacant grids to finally obtain the average
meteorological values in this region.

C. CNN SUBNET
With the in-depth study of spatio-temporal data, more and
more scholars use deep CNN to deal with the spatio-temporal
events due to its excellent feature representation ability.

Our proposed deep CNN can capture the mapping relation-
ship between the mutual influence of air quality in further
space and the impact of human activities, which showsCNN’s
powerful extract ability.

The deep CNN contains three CNN subnets (shown
in Fig.3) to capture the time periodicity, tendency and prox-
imity, respectively.

FIGURE 3. Architecture of CNN Subnet.

The previous pixel matrix is a 32×32 single-channel image
as the input of convolution. The size of the convolutional
kernel is m × m, so m2 values, which come from the m × m
lower layer, generate a feature of higher layer through convo-
lution, that means enough convolution can capture the spatial
dependence of the global region.

In order to make the output size of subnet consistent with
the ground truth, we design a residual output layer (ResOut)
with only a convolutional kernel and no pooling layer. So,
the output channel of the subnet is adjusted to 1.

Increasing the depth of CNN can improve the predic-
tive performance; however, vanishing/exploding gradients
are caused by multiple layers. The residual network effec-
tively addresses these issues, and we also propose the novel
normalization and orthogonality methodologies during the
training processes.

1) RESNET
As is known to all, with the network depth increases, the accu-
racy reaches saturation and then declines rapidly, not caused
by overfitting. Adding more layers to the appropriate depth
model will cause higher training errors. With this in mind,
we introduce the residual CNN (ResNet).

The core of ResNet is that if a deep network can be trained
into a shallow network and a set of invariant mapping net-
works during the training process, the obtained deep network
will have no training errors. In other words, the residual
network is essentially a shallow exponential set that avoids
the disappearance/explosion of gradients.

Unlike [25], we improve the structure of ResNet:

â Delete the convolutional layer 1 and layer 2, the pixel
matrix is input directly to the residual network;

â ResOut layer is designed to reduce the dimension and
the calculation;
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FIGURE 4. Schematic diagram of residual learning.

FIGURE 5. Structure of ResNet block.

â Add a convolution kernel of size 1 × 1 in shortcut
connections to stabilize the training process.

ResNet becomes easier to optimize by adding shortcut
connections, and a couple of layers with shortcut connections
are called residual blocks.
The schematic diagram of residual learning is shown

in Fig.4. The traditional input and output of the neural net-
work are x and F(x), and the training objective is F(x) =
H (x).

In our proposed ResNet, the input of the neural network
is x, the output is H (x) + x, and the training target is H (x)
= F(x) − x. H (x) is called residual. It’s easier to train H (x)
than F(x).
Fig.5 shows one ResNet block, and a CNN subnet contains

twelve blocks. In this ResNet unit, assuming the input pixel
matrix size is 32× 32.
In the first layer, the size of the convolutional kernel is 1×1,

and the number of convolutional kernels is 64, which is fol-
lowed by Batch Normalization (BN) and activation function
ReLU()

In the second layer, the size of the convolutional ker-
nel is 3 × 3, the number of convolutional kernels is
also 64, and the following step is the same as the first
layer.

In the third layer, the size of the convolutional kernel is
1 × 1, and the number of convolutional kernels is 256. The
shortcut connection has only one convolutional kernel with
the size of 3 × 3. After the third convolution, the residual
convolution and BN are performed.

Finally, the output of ResNet is obtained through a fully
connection layer, and its size is 32× 32× 256.

2) NORMALIZATION
Normalization approaches are indispensable components
in deep learning, and they are often stacked after each

convolutional layer or fully connection layer to improve the
generalization ability [34].

The essence of deep learning process is the distribution
of learning data; meanwhile, the data distribution affects the
training speed and the generalization, that is why we add
Batch Normalization (BN) into network structure.
Almost all data preprocessing uses the normalization, and

it applies Gaussian standardization to subtract the mean of the
representation, and then to divide the centered representation
by the standard deviation.

BN is characterized by refactoring and introducing two
learnable variables, and its implementation is shown in the
following equations:

µB ←
1
m

m∑
i=1

xi (2)

σ 2
B ←

1
m

m∑
i=1

(xi − µB)
2 (3)

x̂i ←
xi − µB√
σ 2
B + ε

(4)

yi ← λx̂i + β ≡ BNλ,β (xi) (5)

wherem denotes mini-batch’s size, the mean and variance are
calculated by (2) and (3) separately. Equation (4) defines the
sample data normalization process. The transformation and
scaling process are based on (5), which contains the learning
parameters λ and β, allowing a new variable to have anymean
and standard deviation.

The chain rule for back-propagation is shown below:

∂`

∂ x̂i
=
∂`

∂yi
· λ (6)

∂`

∂µB
=

 m∑
i=1

∂`

∂ x̂i
·
−1√
σ 2
B + ε

+ ∂`

∂σ 2
B
·

m∑
i=1
−2 (xi − µB)

m

(7)

∂`

∂σ 2
B
=

m∑
i=1

∂`

∂ x̂i
· (xi − µB) ·

−1
2

(
σ 2
B + ε

)−3/2
(8)

∂`

∂xi
=
∂`

∂ x̂i
·

1√
σ 2
B + ε

+
∂`

∂σ 2
B
·
2 (xi − µB)

m
+

∂`

∂µB
·
1
m

(9)

∂`

∂λ
=

m∑
i=1

∂`

∂yi
· x̂i (10)

∂`

∂β
=

m∑
i=1

∂`

∂yi
(11)

Back-propagation calculates the gradient error, where is
the i-th sample in mini-batch, is input error, so the gradient
of mean and variance are calculated by (7) and (8). Equation
(9) denotes the output error, and the scale parameters of BN
are expressed in (10) and (11).
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Due to the complex dynamics of nonlinear deep learning,
even a proven mathematical theory cannot guarantee that
multiple signals remain equidistant in practical applications.
The depth causes the ‘‘butterfly effect’’ of exponential dif-
fusion, and the nonlinearity leads to the uncertainty and ran-
domness.

The state-of-the-art approaches [35]–[37] tried to stabilize
the signal strength in one direction (forward /backward), so
some studies found an alternative method for controlling
signals in bio-directions. BN simplifies the problem by no
longer controlling bio-direction signals but instead focusing
on forwarding signals to reduce the internal covariant shifts
in a hierarchical way.

3) ORTHOGONAL REGULARIZATION
We use ResNet to improve the training performance of Deep
CNN, but Veit et al. [38] believed that ResNet was a rel-
atively shallow exponential set, which could avoid vanish-
ing/exploding gradients, instead of solving it directly.

Essentially, the performance gains of a network depend
on its diversity, not its depth. As mentioned above, BN
ensures the stability of the forward propagation, and the key
to improve learning effectiveness on its reverse channel of
error propagation. However, BN cannot guarantee the stable
error rate in the back propagation. Therefore, we study the
Orthogonal Regularization (OR) algorithm to replace the
traditional weight decay regularization and use orthogonal
rules to stabilize the back-propagation error [39].

Orthogonality is imposed on linear transformations in hid-
den layers. It reserves the energy and guarantees that the
activation energy will not be amplified [40]. Therefore, it sta-
bilizes the distribution of activations among layers [41], [42]
and improves the generalization ability.

OR is ‘‘plug-and-play’’ added to CNNs, without any other
modification. We derive and discuss several orthogonality
regularizers.

A vector x maps to a vector y using linear transformation
W , that is y = W T x, W T is the transposed matrix of W . If
||x|| = ||y||, this transformation is norm-preserving, as well
as the linear transformation matrixW is orthogonality, so the
formula shows:

||y||=
√
yT y=

√
xTWWT x=

√

xT x=||x||iff.WWT
= I

(12)

For a convolutional layer C ∈ S × H × C ×M , where S,
H , C , M are filter width, filter height, input channel number
and output channel number, respectively.

Firstly, we reshape C into a matrix form W 0
∈ m0

× n0,
where m0

= S × H × C and n0 = M . The setting for
regularizing convolutional layers follows [43], [44] to enforce
orthogonality among filter layers.

Then, we discuss two novel orthogonality regulariza-
tion, Soft Orthogonality (SO)Regularization and Spectral
Restricted Isometry Property (SRIP) Regularization.

According to the previous studies [44]–[46], which sug-
gested to adopt the Gram matrix, we define the SO regular-
ization:

(SO) λ

∥∥∥W TW − I
∥∥∥2
F

(13)

where λ is the regularization coefficient (the same below).
SO is a direct relaxation of the ‘‘hard orthogonality’’

assumption [47]–[49] under the standard Frobenius norm and
a different weight attenuation term.I is the identity matrix,
W ∈ Rm×n(m × n shows the real spatial matrix) where
m = W × H × C , n = M . || · ||F represents the Frobenius
norm.

SO limits the orthogonality among filter layers and min-
imizes the correlation of learning functions, thus reducing
redundancy and enhancing the diversity of filters, especially
from the bottom filter [50].

Reviewing theRestricted Isometry Property (RIP) [51]–[53]:

(1− δ)||θ ||22 ≤ ||Aθ ||2
2
≤ (1+ δ)||θ ||22 (14)

Here, ||Aθ ||2
2 is the energy of the output signal, and ||θ ||22

is the energy of the input signal. We rewrite the special RIP
condition with k = n in the form below:∣∣∣∣ ||Wz||2

||z||2
− 1

∣∣∣∣ ≤ δW , ∀z ∈ Rn (15)

In order to increase orthogonality of W , it may minimize
RIP constant δW in a special case k = n, which should be
chosen as:

sup
z∈Rn,z6=0

∣∣∣∣ ||Wz||2
||z||2

− 1

∣∣∣∣
Therefore, we ultimately minimize the spectral norm of

W TW − I :

(SRIP) λ · σ
(
W TW − I

)
(16)

Equation (16) is called Spectrally Restricted Isometry
Property (SRIP)regularization [54], [55]. We iterate the fol-
lowing procedure a few times (such as two times) [39]:

u←
(
W TW−I

)
v, v←

(
W TW−I

)
u, σ

(
W TW−I

)
←
||v||
||u||
(17)

The experiment is proceeded later, and we could observe
consistent performance gains after applying SRIP, both the
final accuracies and the convergences. SRIP reduces the com-
putational cost from O(n3) to O(mn2) and is practically much
faster for implementation.

D. CONVERGENCE METHODOLOGY
In this section, we use the parametric matrix-based conver-
gence method to merge the three time-attributes of the trend,
period and proximity in Fig.6 (a∼c), respectively.

As shown in Fig.6(a), the x-axis is twelve months in a year,
and the y-axis is the monthly average AQI. It illustrates that
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FIGURE 6. Monthly average AQI in one year (trend); (b). Daily AQI in a
given week in different months (period); (c). Changing AQI at different
times in a day (proximity).

the change of air quality has a certain trend, that is, AQI in
spring (February) and winter (December) is lower than which
in summer (June).

The variation of air quality in some given week on different
months is shown in Fig.6(b). The x-axis is the days of a
certain week, and the y-axis is the daily average AQI. The
weekly AQI has a certain period, but the curve is different
corresponding to different months.

Fig.6(c) depicts the changing AQI at different times in a
day. The curve is relatively smooth, indicating that AQI is not
an instantaneous sudden change; in other words, the change
of AQI has time proximity.

In summary, for the time series, AQI is affected by the
trend, period and proximity, and the weight of the influence
is different. Therefore, these three attributes are assigned
different weights to connection:

XRes = Wc ∗ XLc +Wp ∗ XLp +Wq ∗ XLq (18)

where XLc is periodic input of L layer, Wc is its weight
matrix;XLp is proximity input,Wp is its weight matrix;XLq is
trend and its weight matrix is Wq.

The final prediction at time t is:

Xt = tanh (XRes) (19)

FIGURE 7. a) Actual AQI (b) Forecasted AQI.

The optimal method adopts Adam algorithm [56] during
the training process. The loss function is the Mean Square
Error (MSE) in (20).

L(θ ) = ‖Xt − Xt‖
2
2 (20)

IV. EXPERIMENT AND PERFORMANCE ANALYSIS
In this section, we use the real data sets from different regions
in Beijing to evaluate the predictive performance of our pro-
posed model. In the first part of the experiments, we com-
pare our proposed ST-OR-ResNetwith some baseline models.
In the second part, we make two OR-model evaluations.

A. DATA AND ENVIRONMENT
The experiments are implemented on GPU server and Keras
programming environment (TensorFlow).

We use real data sets collected by 42 official monitoring
stations in Beijing from 2012 to 2018. Each record contains
five pollutants: PM2.5, PM10, O3, CO and SO2. Then we
calculate the integrated AQI according to the Chinese mete-
orological standard. The monitoring interval is one time per
hour, and data is collected 24 times per day.

According to Section III.B, we divide 32 × 32 grids, and
obtain the pixel matrix by (1). We predict the air quality over
the next two days using our ST-OR-ResNet. Fig.7 shows the
actual AQI and our forecasted result; that is, our model has a
reliable measure.

Then, we compare our methods with baseline models,
using Accuracyand Rooted Mean Square Error (RMSE).

Acc = 1−

√√√√ 1
m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2
RMSE =

√√√√ 1
m

m∑
i=1

(
h
(
x(i)
)
− y(i)

)2
where y(i) represents the real data, and h

(
x(i)
)
represents the

predictive results; m is the number of grids in the matrix.
Keras uses the default parameters to initialize the learning

parameters under a uniform distribution [57]. As depicted in
section III.C, the residual blocks contain 64 convolutional
kernels of size 1× 1, 64 convolutional kernels of size 3× 3,
256 convolutional kernels of size 1×1, and the ResOut layer
has only one convolutional kernel with the size of 3 × 3.
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FIGURE 8. Evaluation on the changing size of conv kernel.

FIGURE 9. Evaluation on the changing number of conv kernels.

12-depth ST-ResNet includes twelve residual blocks and one
ResOut layer. Adam algorithm is applied for optimization,
the batch size is 100, and the initial learning rate is 0.001.
The decay of the learning rate uses the function Learn-
ingRateScheduler ().
c (peroid) and q (trend) are constant for one day and one

week. We set lc ∈{1,2,3,4,5}, lp ∈{1,2,3,4}, lq ∈{1,2,3,4}
and a 5-1 training-validating split data.

B. PERFORMANCE ANALYSIS
1) COMPARISON WITH BASELINE MODELS
In this part, we compare our proposed methods with some
baseline models.

Ours: ST-ResNet without orthogonal regularization;
ST-OR-ResNet_SO using Soft Orthogonal regularization;
ST-OR-ResNet_SRIP using Spectrally Restricted Isometry
Property regularization.

FIGURE 10. Different number of ResNet units impact on RMSE.

FIGURE 11. OR-model evaluations.

Baselines: LSTMs with 3, 6, 12, 24, and 48 lay-
ers are constructed respectively, Autoregressive Integrated
Moving Average (ARIMA) [58] and Seasonal ARIMA
(SARIMA) [59].

The results of RMSE and accuracy are shown in Table 1.
We can see that the RMSE of LSTM is 26∼27% with a depth
of 3∼48. ARIMA and SARIMA have the worst RMSE. Our
methods perform better than these baseline models, espe-
cially ST-OR-ResNet_SRIP.

Further, we change the structure of ST-ResNet in twoways:
the size of convolutional kernels and the number of convolu-
tional kernels. The comparisons are shown in Fig.8 and Fig.9.

Fig.8 depicts the relationship between the size of the con-
volutional kernel and the error rate; that is, the error rate
decreases as the size of the convolutional kernel increases.

The difference in accuracy is small between 3×3 and 4×4
convolutional kernel, and 5× 5 convolutional kernel has the
lowest error rate. However, the expansion of the convolutional
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TABLE 1. Comparison with different baselines.

kernel to 5 × 5 increases the calculation, running time, and
the number of hyperparameters, as well as decreases the
optimization.

Analogously, Fig.9 shows the relationship between the
number of convolutional kernels and the error rate.

Fig.10 shows that the RMSE of ST-ResNet decreases with
the increasing depth, however, when the depth reaches a cer-
tain level, the inflection point occurs, and the RMSE suddenly
rises.

2) OR-MODEL EVALUATIONS
In this part, we apply two orthogonal regularization meth-
ods on ST-ResNet and employ model configurations on real
datasets. The convolutional kernel regularization learning
rates are set to 0.01 and 0.0001, respectively.

From the experiments, we observe that the complete
replacement of the l2 weight attenuation with the orthogonal
regularizer can accelerate and stabilize the training process at
the beginning.

The regularization coefficient is λ which is expressed in
(16), and it plays an important effect on the training process.
For λ, we start with 10−8, increase to 5× 10−4 after 20 iter-
ations in SO model.

To SRIP regularizer, we maintain the initial λ throughout
the whole training process. The reason is that SRIP has a
stronger effect on forcingW TW close to I, so it is insensitive
to λ.

As shown in Fig.11, applying orthogonal regularization
can improve the optimization, and it has a strong positive
impact at the early training stage (not just initialization).
However, when the training process approaches the end,
the effect is weaker.

From the experimental results, SRIP is the best practice
choice, and it consistently performs in achieving the highest
precision and acceleration/stability training curves.

V. CONCLUSION AND FUTURE WORK
In this paper, we studied the spatio-temporal data predic-
tive mechanism for air pollution and proposed a deep learn-
ing model based on the convolution residual approach and

orthogonality regularization algorithm. Our solution, ST-OR-
ResNet, was used to optimize the prediction accuracy and
accelerate the training efficiency. Our method not only con-
sidered the coupling of time and space but also combinedwith
the complex mapping relationship at high latitude. In almost
all times, the novel SRIP regularizer exceeded all else con-
sistently and remarkably. Using real data sets, we demon-
strated that our proposed methodology outperforms the exist-
ing baselines especially in prediction accuracy and general-
ization.

In the future, we will study how to enrich this research
by taking the multi-source heterogeneous spatio-temporal big
data and various external factors into account, e.g., points
of interests and emergency. In addition, we will expand our
research into other relevant fields of urban computing.
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