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ABSTRACT Due to the rapid development of chip technology and deep learning revolution, many ship
detection frameworks for synthetic aperture radar (SAR) imagery based on convolutional neural networks
(CNNs) have been proposed and achieved great success. However, there are problems hampering their
development: 1) For the SAR ship detection task, it is uneconomic to apply heavy backbone network to
extract features because it results in heavy computing load and prolongs the inference time cost; 2) The
anchor-based methods usually have massive hyper-parameters, which typically need to be tuned carefully
and easily lead to weak detection performance. To alleviate the problems, an efficient low-cost ship detection
network for SAR imagery is proposed in this paper. Firstly, a simplified U-Net as the backbone to extract
features is proposed. It only contains ∼ 0.47 million learnable weights, which is 2.37%, 0.76%, 0.34%,
1.01%, 0.55% and 1.07% of DarkNet-19, DarkNet-53, VGG-16, ResNet-50, ResNet-101 and ResNext-
101, respectively. Secondly, an anchor-free SAR ship detection framework consisting of a bounding boxes
regression sub-net and a score map regression sub-net based on simplified U-Net is proposed. To evaluate the
effectiveness of our method, extensive experiments have been conducted and a more comprehensive set of
evaluationmetrics have been applied. Results demonstrate that the proposed network achieves 68.1% average
precision and 67.6% average recall on the SAR ship detection dataset (SSDD), respectively. Compared
with the state-of-the-art works, our proposed network achieves very competitive detection performance and
extreme lightweight (∼ 0.93 million learnable weights in total).

INDEX TERMS Bounding box, score map, simplified U-Net, anchor-free, low-cost, SAR ship detection.

I. INTRODUCTION
Marine traffic is increasingly crucial for global, regional and
national economies and security because it significantly ben-
efits seaborne trade and defends illegal activities, including
smuggling, territorial sea invasion and maritime terrorism.
To ensure effective and efficient marine traffic control, intel-
ligent ocean surface ship surveillance, which is based on
remote sensing imagery and computer-vision technique, has
become a hot research field in recent years. High-resolution
synthetic aperture radar (SAR) is regarded as one of the
most suitable sensors for instances detection and maritime
monitoring in the field of space technology, for it offers high-
resolution images regardless of weather and light conditions.
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During the past decades, numerous research achievements
have been published in the field of SAR ship detection.
The most widely used method is Constant False-Alarm Rate
(CFAR) algorithm. This algorithm sets a threshold so that we
can identify targets that are statistically significant above the
background pixel while maintaining a constant false alarm
rate [1]–[13]. In [5], Ai et al. proposed a 2-D joint log-
normal distribution algorithm utilizing a strong gray inten-
sity correlation to model the clutter of ship targets. Wang
et al. presented a new hierarchical scheme for detecting ships
in SAR images [6], which consisted of detection and dis-
crimination modules, so that ship candidates were obtained
by applying CFAR and ship discrimination was performed
by using one-class classification. Hou et al. detected ships
by measuring the visual conspicuity of each water region.
And then, the ship targets were detected in the interested
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FIGURE 1. Architecture of proposed SAR ship detection network based on simplified U-Net backbone.

regions by the k-means clustering algorithm [7]. Wang et al.
designed a fast block detector to extract sea clutter in a
uniform local area [8], and then CFAR was employed. Ships
were identified based on the kernel density estimation of
ships, aspect ratio and pixel points. However, due to the
high similarity between the harbor and the ship body on
gray and texture features, the methods described above are
unable to achieve the effective detection of inshore ships. Zhai
et al. presented a novel approach via saliency and context
information to deal with this issue [9]. Zhang et al. proposed
a ship segmentation scheme with non-local processing to
handle the speckle noise and the complicated backscatter-
ing phenomenology in SAR images [10]. In [12], both ship
bounding boxes and contours are extracted based on the active
contour algorithm. These ship detection approaches are based
on manually extracted features, experienced statistic model
and traditional image processing methods. A great deal of
prior knowledge is required, and end-to-end optimization is
difficult to achieve. In recent years, with the rapid develop-
ment of hardware computing, deep learning has encountered
another revival. Lots of convolutional neural network (CNN)
architectures have already achieved great success for image
features extraction and classification tasks in computer vision
field, such as AlexNet [14], VGG-Net [15], GoogleNet [16],
ResNet [17] ResNeXt [18], and EfficientNet [19]. Taking
these CNNs with strong feature extraction capability as the
backbone, region proposal-based object detectors, such as
Faster R-CNN [20] and its variants [21]–[24], and regression-
based detectors, such as YOLO [25] and its variants
[26]–[29], have proved their remarkable results on vari-
ous object detection benchmarks. With the release of a
series of ship detection datasets for SAR image [30]–[32],
many researchers began to apply universal object detectors

or design application-specific network to SAR ship detec-
tion [32]–[52]. Li et al. firstly proposed to apply Faster
R-CNN in the SAR ship detection task and they believed
that deep learning based detector would be the focus of
future mainstream research [32]. Kang et al. took the objects
proposals generated by Faster R-CNN for the guard windows
of the CFAR algorithm so that in this way these small-sized
ship targets could be identified both accurately and effi-
ciently [33]. Ai et al. used an adaptive-threshold-based CFAR
detector as target prescreening to remove the high-intensity
outliers before CNN [34]. An improved Faster R-CNN based
on maximum stability extremal region decision criterion for
SAR ship detection in harbor was proposed in [35], aiming
to achieve effective inshore ship detection. To improve the
ship detection accuracy, much efforts have been devoted from
different perspectives to improving the ship detection accu-
racy, such as sea-land segmentation [36], contextual infor-
mation fusion [37], attention mechanism [43]–[46], oriented
proposal [38], [39] and transfer learning [47]–[49].

In view of the above works, the deep-learning-based SAR
ship detectors usually perform better than traditional ones
since CNN can extract features adaptively and it has a strong
ability of non-linear mapping to regress the location and
bounding boxes of ship instances. However, most works focus
on improving ship detection accuracy, whereas the detec-
tion speed, which is extraordinarily significant, especially
in maritime rescue and emergent military decision-making,
is neglected to some extent. Although there are several recent
studies which regard speed as an essential aspect, their back-
bone networks, which are originally constructed for universal
multi-categories object detection task, are still too heavy.
Unlike the universal multi-categories object detection task,
the ship detection task only contains ship and background
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categories, and it is therefore uneconomic to apply heavy
backbone network to extract features because it results in
heavy computing load and prolongs the inference time cost.
It is necesary to design specific lightweight backbone net-
work for SAR ship detection. In addition, the approaches
mentioned above are all anchor-based. The anchor-based
object detectors usually have massive hyper-parameters,
which typically need to be tuned carefully and easily lead to
weak detection performance.

In order to alleviate the problems above, an efficient low-
cost ship detection network for SAR imagery is proposed
in this paper, starting with a simplified U-Net [53] as the
backbone to extract features. Different from other feature
pyramids network (FPN) [54] based object detectors which
are computing andmemory intensive, the proposed simplified
U-Net has a concatenationmechanism behaving as pyramidal
hierarchy concept but achieves extremely low-cost. Then,
we construct a bounding boxes regression network with a
score map regression network in parallel based on simplified
U-Net backbone. The former is used to regress the bounding
boxes size in polar representation and the latter is exploited
to predict the probability of current pixel as centers of ship
instances. After the two sub-nets, a soft non-maximum sup-
pression (NMS) [55] post-processing module is cascaded to
fuse all bounding boxes proposals. In theory, the proposed
lightweight network can directly regress ships’ bounding
boxes without any predefined anchors.

To verify the practicability and robustness of the proposed
method, we conducted extensive experiments and used a
more comprehensive set of metrics than previous papers.
Compared with other state-of-the-art methods, our proposed
architecture showed competitive performance with much
lower computing costs. The main contributions of this paper
are as follows: 1) A simplified U-Net is proposed specifically
for extracting the features of SAR ship instances. The pro-
posed simplified U-Net (∼0.47 million learnable weights) is
significantly lighter than the backbone network used by the
mainstream detectors. 2) An anchor-free SAR ship detection
framework consists of a bounding boxes regression sub-net
and a score map regression sub-net based on simplified U-
Net is proposed. The proposed network architecture not only
achieved encouraging performance and extreme lightweight
(<1 million learnable weights in total), but also can be easily
modified for multi-tasks.

The remainder of this paper is organized with the following
sections: Section II illustrates the proposed ship detection
architecture. Experiments and results are demonstrated and
discussed in Section III, Section IV, respectively. A brief
conclusion is given in Section V.

II. ARCHITECTURE OF PROPOSED NETWORK
A. ARCHITECTURE
Fig. 1 illustrates the architecture of the proposed ship instance
detection network, which consists of two branches: 1) ship
bounding boxes regression network and 2) score map regres-

FIGURE 2. Ship instance’s contour in the polar coordinate system, each
point is represented with (θ,d ), the bounding box could be represented
with (dr ,du,dl ,db)T vector.

sion network. Both branches use the proposed simplified
U-Net to extract features. Subsequently, a soft non-maximum
suppression (NMS) post-processing module is cascaded to
fuse all bounding boxes proposals. The ship bounding box is
represented by 4-tuple vector, and is expected to be regressed
based on each pixel in input image. The score map regression
network is designed to predict a 2-D probability distribution
in which each score at each position [i, j] indicates the likeli-
hood of current position as the centers of any ship instances.
Based on the predicted scoremap, one can choose these pixels
with high scores and construct the bounding box using a
4 − D vector using the current position as the origin point.
Though related, ship bounding boxes regression and score
map regression are two different types of regression tasks.
If only one simplified U-Net is used to extract features, which
means sharing the weights and calculation, many convolu-
tion layers need to be cascaded in parallel for bounding
boxes regression and score map regression. This will not
only increase the number of parameters, but also cause the
multi-scale information of the simplified U-Net not to be
significantly transmitted backward, so it is necessary to use
two parallel sub-networks. Due to the fact that neighboring
bounding boxes usually have correlated scores and result in
false positives, a soft NMS module is therefore cascaded to
fuse all these bounding boxes.

B. SHIP BOUNDING BOX REPRESENTATION
As shown in Fig. 2, each point locates at the ship instance
boundary is represented with (θ, d) in polar coordinate sys-
tem. This concept is quite simple and was initially pro-
posed in [56] for instance segmentation. It inspired us to
represent the bounding box in the same way. Once given a
center point [xc, yc], one can compute the intersection points
(xi, yi), i = 1, 2, 3, 4 of ship bounding box and four rays
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TABLE 1. Architecture of simplified U-Net backbone.

starting from center point with θ = 0◦, 90◦, 180◦,−90◦

easily. The corresponding distance dr , du, dl, db between the
center point and each contour intersection point compose a
4 − D vector. Based on the center point [xc, yc] and the dis-
tance vector (dr , du, dl, db)T , the ship bounding box could be
reconstructed handily. In this way, the ship instance detection
task is formulated as instance center classification and four-
direction distance regression.

C. SHIP BOUNDING BOX REGRESSION NETWORK
In this work, a simplified U-Net [53] based end-to-end train-
ing convolutional neural network is constructed to regress
the distance vector (dr , du, dl, db)T at each potential pixel,
as is illustrated in the upper branch in Fig. 1. The proposed
simplifiedU-Net follows the encoder-decoder framework and
it consists of a contracting path (left partition) and an expan-
sive path (right partition). The contracting path follows the
typical architecture of a convnet. It consists of the repeated
application of two 3 × 3 convolutions, each followed by a
rectified linear unit (ReLU) and a 2×2max pooling operation
with stride 2 for down-sampling. After each down-sampling
operation, we increase the number of convolutional kernels.
Every step in the expansive path consists of an up-sampling
of the feature map (3 × 3 up-convolution) followed by a
concatenation operation from the same level from contracting
path, and then the two 3×3 convolutions, each followed by a

ReLU, are stacked. Since the high resolution features from the
contracting path are combined with the up-sampled output,
the successive convolution layer can then learn to assem-
ble a more precise output based on it. Unlike other feature
pyramids network (FPN) based object detectors, which are
computing and memory intensive, simplified U-Net’s con-
catenation mechanism combines coarse, high layer informa-
tion with fine, low layer information together, which behaves
as pyramidal hierarchy concept but achieves low-cost. Table 1
lists the ship detection network detail configuration based on
512 × 512 input SAR image size and reports the amount of
learnable weights. Final convolutional layer ‘‘conv18’’ after
U-Net backbone maps feature map to 4 channels, regressing
dr , du, dl, db, respectively. Our proposed simplified U-Net
only contains ∼ 0.47 million learnable weights, which is
2.37%, 0.76%, 0.34%, 1.01%, 0.55%, 1.07% of Darknet-
19, Darknet-53, VGG-16, ResNet-50, ResNet-101, ResNext-
101, respectively.

D. SHIP BOUNDING BOX REGRESSION LOSS
In object detection task, the metric intersection over union
(IoU) measures how well the predicted bounding boxes and
their ground truths align and overlap. IoU loss is an effective
way to supervise the learning phase, which directly optimizes
themetric of interest. In this paper, IoU loss is used to train the
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FIGURE 3. IoU(interaction area over union area) of ship instance.

bounding boxes regression network, which is defined below:

Lbbox = 1.0−
2 ∗ |Bp ∩ Bgt |
|Bp| + |Bgt |

(1)

where Bp and Bgt are predicted bounding box and its corre-
sponding ground truth, respectively. | · | is a function return to
the area of input’s rectangle. As is depicted in Fig. 3, the IoU
area could be figured out by:

|Bp ∩ Bgt | = (min(dr , d ′r )− min(dl, d
′
l ))

× (min(du, d ′u)− min(db, d
′
b)) (2)

where (d ′r , d
′
u, d
′
l , d
′
b)
T and (dr , du, dl, db)T are predicted dis-

tance vector at θ = 0◦, 90◦, 180◦,−90◦ in polar coordinate
system and its ground truth.

E. SCORE MAP REGRESSION NETWORK
Score map regression network in Fig. 1 is used for predicting
score map S ′, in which each element locates at [i, j] indi-
cates its probability as centerness of any ship instances. The
network also follows simplified U-Net structure (as shown
in Table. 1) and the final convolutional layer outputs a 512×
512 × 2 data blob with softmax probability normalization.
During the inference phase, one can choose these pixels with
the high predicted score as a reference point (center point
in Fig. 2) to reconstruct the bounding box of ship instances.
To get the ground truth of score map S for network training,
d[i, j] is defined as the distance between pixel [i, j] to its
closest pixel which belongs to background category. It is
clear that larger d[i, j] implies pixel [i, j] is far away from
the ship instance border, i.e., closer to ship instances’ cen-
terness. As illustrated in Fig. 4)(a), there are totally 5 ship
instances in the given image, d[i, j],∀(i, j) is figured out and
normalized to 0.0 ∼ 1.0 for each ship instance based on
our ship semantic annotations. Finally, these score maps of 5
ship instances are accumulated together as S, which is shown
in Fig. 4(b).

FIGURE 4. Input SAR image (a) and its ground truth of score map (b).

F. SCORE MAP REGRESSION LOSS
Due to the fact that the ship instances usually occupy a frac-
tion of the input SAR image, it is a typical positive/negative
samples imbalance situation for score map regression net-
work training and all the neural network weights could be
easily converged to zeros during training phase if we directly
use L2 Euclidean distance loss. In order to alleviate the sam-
ples imbalance problem, we derive an effective loss formula
based on two expectations: i). the non-zero (e.g. > 10−4)
area of predicted score map S ′ should be converged to non-
zero area of its ground truth S. ii). the difference between
predicted S ′ and its ground truth S at non-zero area should
converge to zero. Therefore, the score map regression loss
Lscore is formulated below:

Lscore = Ldist + Lcloseness (3)

Ldist =
2× g(S ′) ∩ g(S)
g(S ′) ∪ g(S)

(4)

Lcloseness =
1
|g(S)|

∑
∀(x,y)∈|g(S)|

(S[x, y]− S ′[x, y])2 (5)

where Ldist implies the IoU between non-zeros areas ofS ′ and
S. Lcloseness measures the proximity of score values at non-
zero area. g(Z) is a function to return all non-zero coordinates
list of input matrix Z . |g(S)| is the non-zero values’ amount
of S.

G. SHIP INSTANCES FUSION
Due to the fact that each pixel in resized input SAR image out-
puts the bounding box proposal vector (dr , du, dl, db)T with
its corresponding score pwhich implies the probability of the
current pixel locates as centerness of a ship instance. Neigh-
boring bounding boxes usually have correlated scores and
it results in false positives. Therefore, a soft non-maximum
suppression (soft NMS) is exploited as a post-processing
phase to get final detections, as is illustrated in Algorithm 1.
For a detection bounding box F with the maximum score,
soft NMS decays the detection scores of all other objects as
a continuous function of their overlap with F . It is clear that
scores for detection boxes which have a higher overlap with
F should be decayed more, as they have a higher likelihood
of being false positives. The decay function used in our work
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FIGURE 5. SAR image samples with bounding boxes annotation from SSDD, semantic polygon boundary is constructed for score map regression.

FIGURE 6. Loss convergence curve of training dataset and validation dataset.

is the same with [55], it is a linear weight function defined
below:

f (iou(F ,Di)) =
{
1, if iou(F,Di) < Pt
1.0− iou(F,Di), otherwise

(6)

III. EXPERIMENTS SETUP
A. DATASET
In this paper, we used the SAR ship detection dataset
(SSDD) [32] to train and validate our proposed network’s per-
formance. SSDD is a widely used benchmark for researchers
to evaluate their approaches because it includes ships in
various environments, such as a variety of ships with adjacent
docks and land, isolated oceans, and side by side, as shown
in Fig. 5. SSDD follows the standardized image object’s
ground truth labeling approach in PASCAL VOC [57] to
construct annotations. There are totally 1160 SAR image
slices (with indexing from 1 to 1160) and 2456 ship instances
in SSDD from RadarSat-2, TerraSAR-X, and Sentinel-1 in
Yantai, China and Visakhapatnam, India. They vary in terms
of polarization (including HH, VV, VH and HV) and res-
olution (from 1m to 15m). The average number of ships
per image is 2.1. We divided SSDD dataset into three parts:
training subset (754 images), validation subset (174 images)

Algorithm 1: Soft Non-Maximum Suppression

1 Input: Initial detected bounding boxes list
D = {D1,D2,D3, · · · ,DM } and its corresponding
confidence probability (score value) list
C = {c1, c2, c3, · · · , cM }, NMS threshold Pt

2 Output: Bounding boxes list D̂ with corresponding
confidence probability list Ĉ.

3 D̂← {}, Ĉ← {}
4 while len(D) 6= 0 do
5 e← argmax C
6 F ← De, p← ce
7 D̂← D̂ ∪ F , Ĉ ← Ĉ ∪ p
8 D← D − F , C ← C − p
9 for Di in D do
10 ci← ci × f (iou(F ,Di))

11 return D̂, Ĉ

and test subset (232 images), these images with indexes’
suffix 1 and 9 were collected as test subset, others as training
subset and validation subset randomly. It is worth mentioning
that we constructed the semantic label artificially for score
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TABLE 2. Comparison of different U-Net configurations based on SSDD (%).

FIGURE 7. Average precision and recall at different St and Pt .

map supervised learning, which is illustrated with polygon
boundary in Fig. 5.

B. EVALUATION METRICS
To evaluate the performance of our proposed low-cost ship
detection network, the following metrics were used: aver-
age precision (AP), average recall (AR), network parameters
amount N and inference time cost Tinf .. For a given IoU
threshold η, the predicted bounding box Bp is regarded as a
true positive (TP) only if the IoU between Bp and its ground
truth Bgt is greater than η; otherwise, it is a false negative
(FN). The precision P and recall R at IoU threshold η are
defined below, respectively:

P(η) =
TP

TP+ FP
(7)

R(η) =
TP

TP+ FN
(8)

where FP implies false positive and TP + FP represents the
total number of ship bounding boxes recognized by the detec-
tion network. TP + FN is the total amount of ship bounding
boxes in annotations (ground truth). Precision refers to the
percentage of detected ship instances that are relevant and
recall refers to the percentage of total relevant ship instances
correctly gathered by the ship detector. It is not possible to
maximize both precision and recall at the same time, as one
comes at the cost of another. AP and AR are figured out over
multiple η:

AP =
1
|T |

∑
η∈T

P(η) (9)

AR =
1
|T |

∑
η∈T

R(η) (10)

where T = [0.5, 0.55, 0.60, · · · , 0.95] is the IoU thresholds
set and |T | is the length of T . In our experiments, the (aver-
age) precision at η = 0.5 (AP.5) and η = 0.75 (AP.75) were
reported as well. Meanwhile, APS , ARS , APM , ARM , APL ,
ARL were adopted for analyzing the average precision and
average recall for small size (area of Bgt < 322), medium size
(322 < area ofBgt < 962) and large size (area ofBgt > 962) ship
instances, respectively. To emphasis the model complexity
and its real-time capability, network parameters amount N
and inference speed Tinf . were taken into consideration for
further comparison with state-of-the-art works.

IV. RESULTS AND DISCUSSION
A. TRAINING
The architecture in Fig. 1 was implemented based on Ten-
sorflow [60] framework and was trained end-to-end using
Intel Xeon(Cascade Lake) Platinum 8269CYCPU@2.5GHz
and a NVIDIA GeForce TITAN V with 12G memory. The
training batch was 32, the initial learning rate was 0.001 and
decayed 2 times every 20 epochs. The gradient optimizer
was Adam. Fig. 6 plots the training loss curve distribution,
and the validation loss after each epoch is also reported. The
weighted loss was the sum of bounding boxes IoU loss and
score map regression loss. One can observe that the loss
converged after 100 epochs, then the overfilling phenom-
ena occured on the training dataset. We chose the network
weights after epoch 119, in which the bounding boxes IoU
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FIGURE 8. Visualization of score map prediction and bounding boxes prediction for SAR images. The bounding boxes are presented in different colors
randomly.
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TABLE 3. Comparison of ship detection performance with other state-of-the-art instance detection models based on SSDD (%).

loss converged to 0.1285 and the score map loss converged
to 0.0687, to inference the validation dataset and evaluate the
model performance.

B. ABLATION STUDY
1) INFLUENCE OF DIFFERENT U-NET CONFIGURATION
In order to evaluate the influence of different U-Net con-
figurations, we performed ablation experiments from 3 per-
spective: 1) Increasing convolutional kernels’s amount. 2)
Increasing the feature extraction network based on residual
block of ResNet [17], which retains shallow context by a
connection from the first to the last layers of a block layer.
The residual mechanism has already been proven that can
effectively take equal or higher features expression ability. 3)
Expanding the receptive field by replacing the convolution
kernel in Fig. 1 with dilated convolutional kernel (DCK),
which inserts zeros between pixels in convolutional kernels
and was expected to increase the resolution of intermediate
feature map responses [50]. Table 2 lists the performance
results based on SSDD dataset. All these 4 experiments were
trained 200 epochs with the same training configurations and
selected optimal model parameters using validation weighted
loss. We selected these pixels with predicted score > 0.2
as potential centerness of bounding boxes. The soft NMS
thresholdPt = 0.75.We can observe that the dilated convolu-
tional kernel is ineffective for detecting ships in the compli-
cated backscattering phenomenology of SAR images. With
residual block, due to the fact that different layers can con-
tribute through the residual bypass principle, there is a minor
improvement occurred in the detection performance, how-
ever, it is at the cost of high computing resource requirement
and increasing model complexity. Therefore, our proposed
simplified U-Net, with reduced convolutional kernels, is an
economic solution with acceptable detection performance.

2) INFLUENCE OF DIFFERENT SCORE/SOFT NMS
THRESHOLDS
After training the network, we need to set a score threshold
St and highlight these pixels with predicted score > St ,
then reconstruct the bounding boxes based on these selected
pixels as origin point together with predicted (dr , du, dl, db)T

vector. Neighbour pixels usually generate bounding boxes
with high correlation, so soft NMS with overlap threshold Pt
was used to fuse all potential bounding boxes of the same
ship instance, as is introduced in Algorithm 1. It is obvious
that decreasing St will introduce more bounding boxes in
input SAR image and changing Pt will influence the final
bounding boxes quantity and quality directly. To analyze
the detailed impact of both St and Pt , Fig. 7 plots the AP
and AR distribution under various St and Pt . Findings show
that optimal St and Pt for average precision is 0.20, 0.75,
respectively. The correspondingAR is 0.676. One can obverse
that AP and AR can not be optimized at the same time, one
is at the cost of another. Meanwhile, AP and AR metrics are
insensitive with respect to St < 0.50 and Pt , which indicates
the robustness degree of bounding boxes regression for each
pixel. By setting St = 0.20,Pt = 0.75, Fig. 8 illustrates some
typical SAR examples in SSDD with their ground truths,
predicted score map and predicted bounding boxes. For small
size ships, if the score map could not predict it with high
response, then it is easy to occur false negative, which can
be observed from the second row in Fig. 8.

C. PERFORMANCE COMPARISON
To verify the effectiveness of our proposed method,
YOLO-v2 [26], YOLO-v3 [27], SSD [58], RetinaNet [28],
ATSS [59], FCOS [29], Cascade R-CNN [21], Faster
R-CNN [20],MaskR-CNN [22], CascadeMaskR-CNN [23],
Mask Scoring R-CNN [24] were implemented to evaluate
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FIGURE 9. Backbone network learnable weights statistic (a) and
inference time cost of different detection frameworks based on NVIDIA
GeForce TITAN V GPU (b).

the detection performance based on Pytorch [61] frame-
work. In addition, MMdetection toolbox [62] was used
to implement RetinaNet, ATSS, FCOS, Cascade R-CNN,
Faster R-CNN, Mask R-CNN, Cascade Mask R-CNN, Mask
Scoring R-CNN. Table 3 reports the performance metrics
of these state-of-the-art works. Different backbones with
FPN including ResNet-50 [17], ResNet-101 [17], ResNeXt-
101 [18] with 64×4d template were integrated in these com-
petitors. Experiment results demonstrated that our proposed
network achieved competitive performance with mainstream
object detection frameworks. It is worth mentioning that
our proposed network is much light-weighted as compared
others. Fig. 9 illustrates the parameters amount of different
backbones and the inference time cost of different frame-
works based on NVIDIA GeForce TITAN V. Compared with
other competitors, our proposed network, with∼0.93 million
learnable weights in total, only cost 8 milliseconds to infer a

512× 512 SAR image. Therefore, even through it performed
a little bit inferior than other state-of-the-art frameworks
in detection performance, the proposed simplified U-Net
based bounding boxes regression network with score map
regression branch is absolutely a much more suitable solution
for SAR ship detection in high-speed and low-cost scenarios.

V. CONCLUSION
In this paper, a novel simplified U-Net based bounding
boxes regression network, together with another score map
regression network in parallel is proposed to detect ships in
SAR images. Score map indicates the probability of current
position as the center of ships, and ship bounding boxes are
represented in a 4 tuple format in polar coordinate system,
which can be easily fitted and converged during the training
phase. By filtering all pixels with predicted score above a
given threshold, one can select all pixels with high confi-
dence as ‘‘good’’ locations of ships. The proposed detection
mechanism no longer depends on any region proposals and
there is no necessity to configure any anchors. Therefore, our
proposed network is of low-cost and carries slight quantity
of learnable weights. It achieved encouraging performance in
both detection and real-time capacity. The proposed method-
ology is not only limited to ship detection in SAR image, but
can also be easily modified for multi-tasks.
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