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ABSTRACT This paper proposes an integrated preventive maintenance and economic production quantity
model. A condition-based maintenance policy is described by a random coefficient regression model, based
on which the monitored condition is divided into two parts: the actual condition and random error. Products
are produced in batches and the system ismonitored at the end of each batch. If the observed system condition
either reaches or exceeds the critical level, the system should be renewed by preventive maintenance.
However, if the actual system condition reaches the failure level during the production process, the system
fails and should be renewed immediately. Based on these two renewal situations, we construct a model of
expected cost per unit time using the renewal reward theory. The critical level and production lot size are
decision variables, which can be obtained by minimizing the cost model. We also develop a simulation
process to obtain the optimal results in another way and validate our proposed cost model. Finally, a real
case study is given to demonstrate the model and the simulation process.

INDEX TERMS Economic production quantity, condition-based maintenance, renewal reward theory,
inventory, preventive maintenance.

I. INTRODUCTION
The joint optimization of maintenance and production has
two main research streams. The first research stream is the
joint optimization of the capacitated lot-sizing and scheduling
problem (CLSP) and maintenance. This considers several
periods in a finite planning horizon, wheremore than one type
of product demand needs to be satisfied in each period and
preventive maintenance (PM) is assumed to be carried out at
the end of some periods tominimize production interruptions.
The optimal production planning and PM schedule can be
obtained by simultaneously minimizing the production and
maintenance cost in the planning horizon [1]–[3]. The second
research stream is the joint optimization of the economic
production quantity (EPQ) and maintenance. Most research
in this area considers an infinite planning horizon, where the
product is repeatedly produced in batches and PM is assumed
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to be carried out at the end of some batches. The optimal lot
size and PM schedule can be calculated by minimizing the
maintenance and production cost per unit time [4], [5]. In this
paper, we focus only on the second research stream, i.e., the
integrated EPQ and PM problem.

Most existing research on this problem considers regu-
lar PM, i.e. time-based maintenance (TBM), where 1) the
expected number of system failures is always calculated to
obtain the expected maintenance cost and 2) the PM schedule
and lot size are optimized byminimizing themaintenance and
production cost per unit time. Here, we only review some rep-
resentative studies. Giri and Yun [6] proposed an integrated
EPQ and PMmodel for an unreliable production system sub-
ject to two types of random failure. Shortages are considered
in their model because of the longer repair time, and, as the
PM is regular, the optimal lot sizing policies can be obtained.
Giri and Dohi [7] considered corrective maintenance (CM)
and PM times, and the time to failure in their model is ran-
dom. They constructed an integrated EPQ and maintenance
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model based on the net present value method, demonstrat-
ing the advantages of this method over a traditional model.
El-Ferik [8] used random failure and imperfect maintenance
in an integrated EPQ and maintenance model, where PM is
carried out either upon system failure or when the usage of the
system reaches a predetermined level. Chakraborty et al. [9]
assumed that a production facility has two states – the ‘in-
control’ state and the ‘out-of-control’ state – and that the
transfer epoch of the system state is random and can occur
during a production run. They proposed an integrated model
of the expected cost per unit time, where CM is carried out
when a machine breakdown occurs and PM is performed
at the end of a lot size. Similarly, Chakraborty et al. [10]
considered the in-control state and out-of-control state of a
system with two different inspection policies. Jin et al. [11]
considered uncertain demand and proposed an option-based
and analytical cost model for scheduling joint production
and PM, where the ‘option’ is a financial derivative tool
used to tackle the optimization problem under an uncertain
environment. Bouslah et al. [4] considered the joint deter-
mination of optimal lot sizing and production planning for
an unreliable and imperfect production system, where the
quality control of the produced lots was performed using a
sampling plan, and the lot sizing and production rate were
the decision variables. Wee and Widyadana [12] developed a
production model for deteriorating items with stochastic PM
time and rework using the first-in first-out rule. Liu et al. [13]
proposed an integrated production, inventory and PM model
for a multi-product production system. They studied multiple
products and used the delay-time concept to describe mainte-
nance activity.

All these studies used a TBM policy in their models.
However, in recent years, because of the development of
sensor technologies, some research on integrated EPQ and
PM models has started to consider condition-based mainte-
nance (CBM). Based on CBM, the degradation process of a
system can be monitored to predict the residual life of the
system and reduce unnecessary maintenance activities [14].
Many probability models have been proposed for modeling
the degradation process. Almost all of these models can be
divided into two categories, one is stochastic process mod-
els, such as a Wiener process, gamma process and inverse
Gaussian (IG) process, and the other is the random coefficient
regression model (RCRM), which is also called the general
path model [15]. Here, we only review some representative
works about the degradation models. Regarding the first cat-
egory, aWiener process is widely used in modeling the degra-
dation process. Zhang et al. [16] proposed a prognostic model
for degradation systems, where performance degrades with
usage and recovers in storage. A nonlinear Wiener process
was used to model the degradation process, and a case study
of Li-ion batteries was carried out to illustrate the model.
Zhai andYe [17] proposed an adaptiveWiener processmodel,
where the time-varying drift rate follows a Wiener process.
A maximum likelihood estimation procedure was developed
to estimate the model parameters, and the degradation-based

remaining useful life was also addressed based on the pro-
posedmodel. Another important stochastic model is a gamma
process model, which is used to model a strictly monotonic
degradation process. Lawless and Crowder [18] constructed
a tractable gamma process model considering the random
effect and covariates, and the model was applied to some data
on crack growth. Lu et al. [19] presented a maximum likeli-
hood estimation (MLE) method for estimating the parameters
of a gamma process model, and the Genz transform and a
quasi-Monte Carlo method were applied in the estimation.
An IG process model is also an attractive model with mono-
tonic paths. Compared with a gamma process, an IG process
has many superb properties when considering covariates and
random effects [20]. The MLE method is always used to
estimate the parameters in IG process models for degra-
dation data, and the estimation-maximization (EM) method
is always applied to obtain the unknown parameters of the
maximum likelihood estimators [21]. The second category
concerns the RCRM, which has been widely used in the fields
of social science, economics, pharmacokinetics and quality
management, among others [22], [23]. It has also been used in
the field of maintenance and reliability, especially regarding
the degradation process (e.g., wear and fatigue and crack
length) of a system. Lu and Meeker [22] modeled fatigue
crack growth progress on the basis of the RCRM, defining
a particular time-to-failure distribution. Wang [23] not only
applied the RCRM to model the time-to-failure distribution
but also to determine the optimal PM threshold and the
monitoring interval. Tang et al. [24] developed a random
coefficient autoregressivemodel with a time effect to describe
system degradation. Sun et al. [25] used the RCRM as a gen-
eral degradation model, proposing a two-stage degradation
model to derive the degradation path for reliability prediction.

In addition to the aforementioned works, some other
methods are available for modeling a degradation process,
although they have not yet received as much attention, for
example, shock models, continuous-time Markov models,
and delay-time models. Although many models have been
studied for modeling a degradation process based on a CBM
policy, few studies exist on the joint optimization of a CBM
policy and EPQ planning. To the best of our knowledge,
Jafari andMakis [26] proposed a proportional hazards model,
that considers both the CM data and the age of a produc-
tion facility. Here, the deterioration process of the system is
determined by the age and covariate values, and the covariate
process is modeled by a continuous-time Markov process.
The optimal EPQ and PM levels can be calculated by min-
imizing the long-run expected average cost per unit time.
Jafari and Makis [27] extended the work in [26] by modeling
the covariate process with a continuous-time hidden Markov
process. Bouslah et al. [28] also constructed an integrated
EPQ and CBM model. They obtained the qualification rate
of the products through continuous sampling monitoring, and
then analyzed the qualification rate to determine the deteri-
oration process of the system. Peng and Houtum [29] con-
sidered the continuous-time and continuous-state degradation
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processes in an integrated EPQ and CBM model, where the
production lot size is optimized by taking the CBM activities
into account. Their model of the average long-run cost was
developed based on the renewal theory. Cheng et al. [30]
proposed a joint EPQ and CBM optimization model for a
multicomponent production system, where the components
deteriorate gradually with use and age. Cheng et al. [31]
proposed an integrated EPQ and CBM optimization model
for an imperfect production system, where the quality con-
trol is studied and the degradation process is modeled by a
gamma process. They used the structural importance measure
to make maintenance decisions, and they set the produc-
tion lot size and PM threshold as the decision variables.
All these works used a stochastic process or Markov process
to describe the system deterioration processes. They also set
some form of critical level as the PM threshold (e.g. the
system condition threshold, the reliability threshold, or the
hazard rate threshold) and used the PM threshold and lot size
as decision variables. The optimal results were all calculated
by minimizing the average long-run maintenance and pro-
duction costs. However, despite the many studies about the
degradation process using the RCRM, the RCRM has not
been used for the integrated EPQ and CBM problem. In fact,
the RCRM is very easy to use, and the theory has been well
studied; it is very flexible in incorporating random effects,
and it is more robust than stochastic process models and other
process-based models.

In this paper, we propose an integrated EPQ and CBM
model using the renewal reward theory. We use the RCRM
to describe the system deterioration process, and the coeffi-
cients in the model include random variables, that follow a
multivariate distribution. Most degradation models used for
this particular problem are restricted to a single characteristic
of the system (i.e., the fixed effects, which give the inherent
characteristics of the system). However, as the RCRM is a
more general model, it can be used to describe not only
the fixed effects but also the random effects of the system
(i.e., those effects that are relevant to the individual character-
istics of the system). Furthermore, in the RCRM, the observed
system condition has two parts: the actual system condition,
which cannot be observed accurately, and the random error,
which is relate to the measurement errors and some unknown
factors. Previous research has treated the observed condition
as the actual condition, and the random error has not been
considered. The RCRM can fill this research gap. In addition,
unlike previous studies that considered only the PM action
triggered by the system condition threshold, we also consider
the product quality problem caused by system deteriora-
tion, i.e. the qualification rate of products could gradually
decrease in line with the system deterioration. Unqual-
ified products should therefore be reworked to improve
their quality back to normal or be sold at a lower price.
As such, we add the handling cost of unqualified products to
our model.

We consider an infinite planning horizon, where the prod-
uct is repeatedly produced in batches and the system is

monitored at the end of each lot size. Once the observed sys-
tem deterioration condition meets or exceeds the critical level
(which is a decision variable) the system should be renewed
by PM. If the system deterioration condition meets the failure
level, the system is likely to break down and a repair or
replacement should be carried out immediately to renew the
system. The same monitoring process is then resumed. Our
objective is to find the optimal lot size and critical level
by minimizing the expected cost per unit time, where the
costs include the inventory cost, setup cost, maintenance cost,
shortage cost and cost of unqualified products. For model
verification, we also develop a simulation process to describe
the maintenance and production strategy in detail.

Our integrated EPQ and CBM model provides innovation
in the following areas: 1) for this type of model, we are the
first study to use the RCRM to describe a system degradation
process; 2) we consider the product quality problem in the
model; and 3) we develop a simulation process to verify our
model and provide a new method for finding the optimal
results.

The rest of this paper is organized as follows. Notations and
the problem description are given in Section II. Section III
introduces the cost models. Section IV describes the simula-
tion process. Numerical examples are presented in Section V,
and Section VI concludes the paper.

II. NOTATIONS AND PROBLEM DESCRIPTION
A. NOTATIONS
p production rate
d demand rate
Q production lot size – a decision variable
τ production time of a lot size
CI unit inventory cost
CS unit setup cost
CM unit cost of condition monitoring check
CP unit PM cost
CF unit cost of failure repair or replacement
CL unit shortage cost
CU unit handling cost of unqualified products
tj the time of the jth monitoring check since new, j =

1, 2, . . . . . .
y(tj) the observed system condition at time tj
ηj the actual system condition at time tj
C the first condition level, which is called the crit-

ical level. Once the observed condition meets or
exceeds this level, the system should be renewed
by PM – a decision variable

D the second condition level, which is called the
failure level. Once the system condition meets this
level, the system is likely to break down

FT (t) the distribution of the time to failure
P(Y ) the distribution of y(tj)
dP unit time of PM
df unit time of failure repair or replacement

8(·) the standard normal distribution function
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FIGURE 1. Maintenance and lot sizing strategy of PM renewal.

FIGURE 2. Maintenance and lot-sizing strategy of failure renewal.

B. PROBLEM DESCRIPTION
1) MAINTENANCE AND LOT-SIZING STRATEGY
The system has two renewal scenarios: PM renewal and
failure renewal. We first describe the PM renewal scenario,
as shown in Fig. 1. The product is produced in batches at
production rate p, and the product is consumed at demand
rate d , where p > d . The product accumulates at rate p-d
until a lot size is finished. The production time of a lot size
is τ , where τ = Q/p; τ can also be treated as a decision
variable because lot size Q is a decision variable and p is
constant. When a lot size is finished, the system is shut down.
Here, the product inventory is (p− d) τ , the inventory is
still consumed at demand rate d , and the length of the idle
time is [(p− d) τ ]

/
d . The degradation process is monitored

when a lot size is finished. If the observed system condi-
tion, y(tj), is less than the critical level, C , then no main-
tenance action is needed. However, if the observed system
condition meets or exceeds C but is less than D, PM should
be carried out to renew the system. We assume that the PM
time dP satisfies dP ≤ [(p− d) τ ]

/
d because the system

is in an ‘in-control’ scenario, not a sudden failure scenario.
In practice, the shortage cost is very high. It is therefore
logical to disallow shortages at the planning stage, and this is
a common setting in deterministic demand environments [3].
A new batch and a new renewal cycle will be started when
the inventory decreases to zero.

Fig. 2 shows the failure renewal scenario, which is iden-
tified by the failure level, D. D is not a decision variable;

it can be obtained by data analysis or system specification.
For example, Lu and Meeker [22] defined a critical crack
length of 1.6 inches to be a failure level according to the
data of 21 test units, and Wang [23] collected the measured
wear data of 8 identical components over their life cycles.
When the actual deterioration, ηj, reaches D, the system is
likely to break down. This will be observed immediately,
at which point CM should be carried out. As shown in Fig. 2,
in the batch where system failure occurs, τ ′ < τ , and the
idle time from system breakdown to when the inventory
decreases to zero is

[
(p− d) τ ′

]/
d . We cannot set df ≤[

(p− d) τ ′
]/
d directly since the failure time is random;

therefore, if df >
[
(p− d) τ ′

]/
d , shortage occurs. A new

cycle starts when the inventory decreases to zero under the
situation df ≤

[
(p− d) τ ′

]/
d or when CM is finished under

the situation df >
[
(p− d) τ ′

]/
d .

2) THE RANDOM COEFFICIENT REGRESSION MODEL
The condition of the system deteriorates over time, and
the observed condition of the system can be modeled by
an RCRM, where the mean and variance of the observed
condition can be increasing functions with time. At time tj,
the observed system condition is y(tj), which is composed of
two parts: the actual system condition, ηj, and the random
error, ε. We use an RCRM to describe the system deteriora-
tion process as follows:

y(tj) = ηj + ε = η(tj; θ, ξ )+ ε. (1)

In (1), ε denotes the random error, which is assumed to
be normally distributed with constant variance and mean
zero, that is, ε ∼ N (0, σ ). The normal distribution has been
commonly used in existing research because it has a good
fitting effect for the random error. Additionally in (1), θ is
the fixed-effect parameter, representing the inherent char-
acteristics for a system; ξ is the random-effect parameter
with probability distribution function g (ξ), representing the
individual characteristics of a system; ξ and ε are assumed
to be mutually independent; ηj can be a linear or nonlinear
function of tj with θ and ξ . For example, ηj = θ + ξ tj,
ηj = θ1 + ξ exp(θ2tj) [22].
For simplification, we use tj in the model. This denotes

the actual running time of the system at the jth monitoring
point. However, please note that the actual running time,
such as that in interval [0, tj] in Fig. 1, is composed of the
actual running time, jτ , and the down time, j [(p− d) τ ]

/
d .

Therefore, Eq. (1) in this paper should be calculated using the
actual running time, jτ .

III. THE INTEGRATED MODEL
A. THE DISTRIBUTION FUNCTIONS OF THE CONDITION
AND TIME TO FAILURE
We use the model proposed in [22] and [23] to describe the
distribution functions of y(tj) and the time to failure. In (1),
ξ is a random variable. For a given ξ , the distribution function
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of y(tj) is

P (Y |ξ ) = P
(
y(tj) ≤ Y |ξ

)
= P

(
η(tj; θ, ξ )+ ε ≤ Y

)
= 8

(
Y − η(tj; θ, ξ )

σ

)
. (2)

Based on (2), we have

P (Y ) = P
(
y(tj) ≤ Y

)
=

∫
A
g(ξ )P

(
y(tj) ≤ Y |ξ

)
dξ, (3)

where g (ξ) is the probability distribution function of ξ , A is
the sample space of ξ , and P (Y ) is only influenced by the
actual system running time.

If the actual condition meets failure threshold D, the sys-
tem fails and should be renewed. We use T to denote the
failure time. For a given ξ , the distribution function of T is
P (T ≤ t |ξ ) = FT (t |ξ ). Therefore, we have

P(T ≤ t) = FT (t) =
∫
A
g(ξ )FT (t |ξ ) dξ. (4)

In (4), if the time at which η meets D is less than or equal
to t , the system has failed before or at time t: FT (t |ξ ) = 1.
However, if the time at which η meets D is greater than t ,
the system has not failed at time t: FT (t |ξ ) = 0. For
example, assuming that η = ξ t + θ , and ξ follows a Weibull
distribution, we have D = ξT + θ . We therefore have

P (T ≤ t) = P
(
D− θ
ξ
≤ t

)
= P

(
ξ ≥

D− θ
t

)
=

∫ D−θ
t

0
g(ξ )FT (t |ξ ) dξ+

∫
∞

D−θ
t

g(ξ )FT (t |ξ ) dξ

=

∫
∞

D−θ
t

g(ξ )dξ. (5)

In (5), if 0 ≤ ξ < D−θ
t , then T > t and FT (t |ξ ) = 0.

If ξ ≥ D−θ
t , then T ≤ t and FT (t |ξ ) = 1.

B. THE INTEGRATED COST MODEL
Based on the problem description, there are two types of
system renewal: PM renewal and failure renewal. We first
discuss PM renewal.When the system condition y(tk ) is equal
to or higher than the critical level C at time tk , the system
should be renewed by preventive replacement. After preven-
tive replacement, a renewal cycle is generated. The proba-
bility of this situation is denoted by Pp(tk ;C). The system
must not have failed or been preventively replaced before tk ;
therefore, for a given ξ , we have

Pp(tk ;C |ξ )

= [1− FT (tk |ξ )]

k−1∏
j=1

P(y(tj) < C |ξ )

P(y(tk ) ≥ C |ξ ).
(6)

In (6), 1 − FT (tk |ξ ) is the probability that the system has

not failed before tk ,
k−1∏
j=1

P(y(tj) < C |ξ ) is the probability that

the system has not been preventively replaced before tk , and
P(y(tk ) ≥ C |ξ ) is the probability that the system condition
meets or exceeds critical level C at tk . We therefore have

Pp(tk ;C) =
∫
A
g(ξ )Pp(tk ;C |ξ )dξ. (7)

Within a PM renewal cycle, the total monitored cost
is kCM , the total setup cost is kCS , the PM cost is CP, and
the total product inventory cost is CI

(
kp(p−d)τ 2

2d

)
. We also

consider the total handling cost of unqualified products,
which can be obtained through the unqualified product
rate R(t). We denote the unqualified product rate R(t |ξ ) for
a given ξ , where t is the actual system running time and
R(t |ξ ) is an increasing function of t . We therefore have
R(t) =

∫
A g(ξ )R(t |ξ )dξ . The production quantity within a

PM renewal cycle is kQ = kpτ ; therefore, the expected total
handing cost of unqualified products is CU ·R(kτ ) · kpτ . The
expected total cost during a PM renewal cycle is

ECp(tk ) =

 kCM + CI (kp(p− d)τ 22d

)
+CU · R(kτ ) · kpτ + kCS + CP

Pp(tk ;C).
(8)

As previously described, PM should be carried out to
renew the system at tk . We assume that dP ≤ [(p− d) τ ]

/
d .

A new production and renewal cycle starts when the inventory
decreases to zero, so the expected length of a PM renewal
cycle is

ELp(tk ) =
(
k
pτ
d

)
Pp(tk ;C). (9)

We now similarly discuss the failure renewal situation.
Assume that the actual system condition reaches failure level
D during the production process of the k th batch. Here,
the system fails and is renewed, and a failure renewal cycle
is generated. The probability of this situation is denoted by
Pf (tk ;C). For a given ξ , the probability of a failure with the
k th batch production process is

Pf (tk ;C |ξ )

= [FT (tk |ξ )− FT (tk−1 |ξ )]

k−1∏
j=1

P(y(tj) < C |ξ )

 , (10)

where FT (tk |ξ )− FT (tk−1 |ξ ) = P(tk−1 < T ≤ tk |ξ ) is the
probability that the system has failed between tk−1 and tk ,

and
k−1∏
j=1

P(y(tj) < C |ξ ) is the probability that the system has

not been preventively replaced before tk−1. Based on (10),
we have

Pf (tk ;C) =
∫
A
g(ξ )Pf (tk ;C |ξ )dξ. (11)

From Fig. 2, we know that the k th lot size might not
have finished when the system fails. If we suppose that the
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running time of the k th batch is τk , the consumption time of
inventory accumulated within τk is (p− d)τk

/
d . Therefore,

if df ≤ (p− d)τk
/
d , i.e. τk ≥

df ·d
p−d , there is no shortage in the

renewal cycle; otherwise, τk <
df ·d
p−d , a shortage occurs, and

the shortage time is df − (p− d)τk
/
d . If we let 1 = df ·d

(p−d) ,
the expected shortage cost within the renewal cycle is

ECL=CL


0 ·
∫ kτ

(k−1)τ+1

∂Pf (t;C)
∂t

dt

+

∫ (k−1)τ+1

(k−1)τ

(
df −

(p− d)
d

(t − (k − 1)τ )
)

∂Pf (t;C)
∂t

dt

 .

Then, the expected inventory cost within the renewal cycle is

ECI = CI


(k − 1)p(p− d)τ 2

2d
Pf (tk ;C)

+

∫ kτ

(k−1)τ

p(p−d) (t−(k−1)τ)2

2d
∂Pf (t;C)

∂t
dt

,
the total monitored cost is (k − 1)CM , the total setup cost
is kCs, the failure repair or replacement cost is CF , and the
expected handling cost of unqualified products is ECU =∫ kτ
(k−1)τ (CUR(t)pt)

∂Pf (t;C)
∂t dt .

According to the abovementioned derivation, the expected
cost in a failure renewal cycle is

ECf (tk ) = ECL + ECI + ECU
+ [(k − 1)CM + kCs + CF ]Pf (tk ;C). (12)

The expected length of the failure renewal cycle is

ELf (tk )

= (k − 1)
pτ
d
Pf (tk ;C)

+

∫ kτ

(k−1)τ+1

(
(t − (k − 1) τ )

p
d

) ∂Pf (t;C)
∂t

dt

+

∫ (k−1)τ+1

(k−1)τ

(
(t − (k − 1)τ )+ df

) ∂Pf (t;C)
∂t

dt. (13)

Based on the renewal reward theory, which has beenwidely
applied in existing research [32], [33], the expected cost per
unit time is

EC(τ ;C) =

∞∑
k=1

(
ECp(tk )+ ECf (tk )

)
∞∑
k=1

(
ELp(tk )+ ELf (tk )

) , (14)

where Q and critical level C are the decision variables,
which can be obtained by minimizing EC(τ ;C). However,
we cannot obtain the explicit form of the solutions because
the integral, differential coefficient and unknown distribution
of ξ exist in the model.

Many effective methods can be used to solve this problem
because there are only two decision variables. For example,
a sequential quadratic programming algorithm [34] can be
used to search for the optimal results, or an enumeration

FIGURE 3. Simulation process.

algorithm can be used to solve the problem according to
the reasonable scope and precision of the decision variables,
as described before. Where D is predetermined, 0 < C < D.
Where p is predetermined, Q = pτ , in which τ is the batch
time length that, in reality, cannot be too long and has a scope
according to experience and specification, so an enumeration
algorithm is an effective method for solving the problem in
this paper.

IV. SIMULATION
In this section, we develop a simulation process to obtain
the optimal Q and critical level C . In addition to using a
secondary method to obtain the results, this also validates the
models proposed in Section III. We set the reasonable value
ranges of τ and C , all combination values of τ and C can
be enumerated based on the given precision, although τ and
C are both continuous variables. The cost of unit time can
be calculated based on each combination value of τ and C ,
the optimal result of τ and C can be obtained according to the
minimal cost of unit time, then the optimalQ can be obtained.
Fig. 3 shows the simulation process. It contains 6 steps:

Step 1: Initialization

1) Initializing the system and assigning values to the cost
and time parameters;

2) Setting the ranges of τ and C to [τmin, τmax] and
[Cmin,Cmax], respectively;

3) N is the simulation time, and n denotes the nth

simulation;
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4) EC denotes the total cost of all renewal cycles, EL
denotes the total length of all renewal cycles, and k
denotes the k th monitoring point of the k th batch.

Step 2: Generating random values of ξ and ε
In each renewal cycle, based on the parameter values in

step 1, ξ and ε are generated according to (1).
Step 3: Calculating y (tk) and η (tk)
y (tk) and η (tk) are calculated based on the values of ξ and

ε in step 2.
Step 4: Calculating the cost and length of the renewal

cycle
1) If η (tk) ≥ D, the system fails during the production

process of the k th lot size and should be renewed.
Assuming that the length of the k th lot size is τk ,
we have η [(k − 1)τ + τk ] = D. τk can be calculated,
so the total cost in the failure renewal cycle is

Cnf = (k − 1)CM + kCs + CF

+CL max
{
0, df −

τk (p− d)
d

}
+CI

(
(k − 1)p(p− d)τ 2

2d
+
p(p− d)τ 2k

2d

)
+CUR [(k − 1) τ + τk |ξ ] p [(k − 1) τ+τk ].

(15)

The length of the failure renewal cycle is

Lnf =
(
(k − 1)

pτ
d

)
+ τk +max

{
df ,

τk (p− d)
d

}
.

(16)

2) If y (tk) ≥ C , the system should be renewed by PM.
The total cost in the PM renewal cycle is

CnP = kCM + kCs + CP + CI

(
kp(p− d)τ 2

2d

)
+CUR (kτ |ξ ) pkτ. (17)

The length of the PM renewal cycle is

Lnp = k
pτ
d
. (18)

3) If η (tk) < D and y (tk) < C , the system does not need
to be renewed: k = k+1. Go back to step 3.

Step 5: The calculation of C ∗
If the numbers of simulation n = N , the cost of unit time

is C∗ = EC
EL .

Step 6: Obtain the optimal results
All values of C∗ are calculated according to the ranges of

τ and C . By selecting the best results of τ and C based on the
minimum C∗, the optimal Q and C can be obtained.

V. NUMERICAL EXAMPLE
In this section, we use data collected from a steel factory
that we previously visited. The system produces steel pipes.
Several methods exist to assist with parameter estimation
in the RCRM, such as the maximum likelihood estimation

TABLE 1. The values of the model parameters.

FIGURE 4. The results of the integrated cost model.

method [35], the expectation maximization algorithm [36],
and the two-stage estimation method, which is simpler than
that above [22], [23]. We give the parameters directly since
the parameter estimation is not the innovation in this paper.
We use (19) to model the system condition, in which we
assume that random variable ξ follows a Weibull distribu-
tion because of its applicability and the fact that it is well
studied [22], [23]. Equation (20) is the probability density
function of ξ , where, for simplicity, the fixed parameter θ = 0
and ε ∼ N (0, 0.0312).

y(tj) =
(
ξ tj + θ

)
+ ε. (19)

f (x;α, β) =

{
αβ(αx)(β−1)e−(αx)

β
, x ≥ 0;

0, x < 0.
(20)

The relevant parameter values are presented in TABLE 1.
The unit of weight is ‘ton’, the unit of time is ‘day’, and
the failure level of the system condition is D = 5 (10 µm),
which is the vibration that is collected by the sensor and used
to assess the condition of the system. Regarding the rate of
unqualified products, the data collected had an unqualified
rate of 2–4% of the production quantity. Therefore, in this
example, we use the mean value of 3% as the unqualified rate.

A. THE OPTIMAL RESULTS
Based on the above content, we use the models in Section III
to calculate the optimal result, as shown in Fig. 4. Note
that we set the interval of critical level C to 1∼4 and the
production time of lot size τ to 1∼4. These are not the same
unit of measurement, and the allowable ranges of C and τ are
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FIGURE 5. The simulation results.

FIGURE 6. The expected cost per unit time when C=2.6.

greater than those in Fig. 4. To make Fig. 4 clear, we select
only the part of the range that contains the optimal result.

Fig. 4 shows that the optimal result is EC(τ∗;C∗) =
EC(1.5; 2.6) = 122.6. Therefore, the optimal EPQ is Q∗ =
pτ∗ = 15, and the optimal critical level is C∗ = 2.6.
When the monitored system condition reaches or exceeds
this critical level, the system should be renewed by PM.
Here we can see that the optimal lot size and the critical
level can be obtained simultaneously, that is, the optimal
production planning and maintenance policy can be arranged
simultaneously, which is the main objective of this paper.

Fig. 5 shows the results obtained using the simulation
process from Section IV. The number of simulations is
set to 20000 and the optimal result is EC(τ∗;C∗) =
EC(1.5; 2.6) = 122.1. This result is very close to the result
that was calculated through the models. This shows that
the simulation method is another way to obtain the optimal
results and also further validates the model results from
Section III, which is also an important objective of this paper.

B. ANALYSIS OF THE RESULTS
We use the model to analyze the results separately.
Fig. 6 shows three types of expected cost per unit time

FIGURE 7. The expected cost per unit time when τ = 1.5.

TABLE 2. The results of the sensitivity analysis of CF.

for C=2.6: total cost, inventory cost and maintenance cost.
Each of these costs changes along with different τ . The inven-
tory cost per unit time increases when τ increases (i.e., when
the EPQ increases), which is a practical result. The trend of
the expected maintenance cost per unit time is similar to the
trend of the expected total cost per unit time, but the gap
between the two gradually increases as the inventory cost
increases.

Fig. 7 shows three types of expected costs per unit time for
τ = 1.5: total cost, inventory cost and maintenance cost. The
trend of the maintenance cost is similar to the trend of the
total cost. In contrast, the inventory cost is nearly constant.
This occurs because τ is fixed, which makes the EPQ fixed.
Fig. 6 and Fig. 7 show that the maintenance cost is influenced
by both C and τ , but the inventory cost is only influenced by τ ,
which is a practical result.

C. SENSITIVITY ANALYSIS
Sensitivity analysis shows the influence of the parameters in
a model. This paper uses several model parameters; however,
because the failure state is always catastrophic and CF is
always larger than the other unit costs, we only select CF as
an example for sensitivity analysis here. TABLE 2 shows the
results of the sensitivity analysis with different values of CF .
TABLE 2 shows that τ∗ gradually decreases as CF

increases. This is because the monitoring interval should
be decreased to prevent system failure. C∗ also gradu-
ally decreases as CF increases but becomes stable when
CF ≥ 600. This is because more frequent PM actions not
only reduce system failure but also cause an increase in
PM and setup costs; therefore, the critical level cannot
always decrease. The results of the sensitivity analysis match
the real-world situation. Sensitivity analysis of the other
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parameters can be similarly studied, but we do not analyze
them here.

VI. CONCLUSION
This paper studied the integrated economic production
quantity (EPQ) and condition-based maintenance (CBM)
problem. We used the random coefficient regression
model (RCRM) to describe the degradation processes of the
system, where both the actual condition and the random
error were considered. Two renewal scenarios were studied
according to a pre-set failure level and the critical level,
which is the decision variable of the system condition. Based
on the distributions of the system condition and time to
failure, we proposed an integrated EPQ and CBM cost model.
We applied the renewal reward theory to find the optimal
critical level and lot size. A simulation process was also
proposed to verify our model. A real case study was presented
to demonstrate the applicability of both our model and the
simulation method. The results show that the optimal lot size
and critical level can be calculated simultaneously. This also
proves the validity of our model because the results calculated
through the model are very close to those calculated through
simulation. Through sensitivity analysis, we found that the
optimal production time of a lot size gradually decreases
as the failure cost increases. Further, the optimal results of
the critical level also decrease as the failure cost increases,
but this becomes stable when the failure cost exceeds a high
value, which is reasonable in reality.

As we introduced before, the RCRM had advantages in
describing the degradation process, such as its flexibility
and being more robust than stochastic models; however,
the original RCRM is simplified in reality and may not be
able to be applied to more complex situations. Based on this
paper, there are many possible research extensions as follows:
1) To reduce the randomness in the observed degradation, the
time-varying covariates in the degradation process should be
considered in the RCRM, such as temperature, humidity, and
voltage, and these environmental stress factors may affect the
degradation process. 2) Additionally, in this paper, PM was
assumed to be perfect (i.e., where PM renews the system),
but this assumption could be relaxed. If the PM is imperfect,
the usage of the system might decrease when PM is carried
out, but it will not decrease to zero. The random demand rate
and production rate could also be studied further. 3) Only
one type of product is studied in this paper, and more than
one type of product can be produced alternately in batches
by a system in reality, so multiple products can be studied in
the integrated RCRM and EPQ model. 4) An RCRM could
be used to model economic and social science problems, and
the model proposed in this paper could be applied to quality
control problems.
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