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ABSTRACT With the development of intelligence in air confrontation, the demand for cooperative
engagement ofmanned/unmanned aerial vehicle (MAV/UAV) is becomingmore intense. Deep reinforcement
learning (DRL), which combines the abstract representation capability of deep learning (DL) and the optimal
decision-making and control capability of reinforcement learning (RL), is an appropriate application for
dealing with this problem. In the case of continuous action space, the dynamics model of UAV and the basic
structure of one of the most popular DRLmethods called deep deterministic policy gradient (DDPG) are built
firstly. To establish the framework of intelligent decision-making of MAV/UAV, typical intentions including
Head-on attack, Fleeing, Pursuing and Energy-storing, corresponding to four optimization models, are intro-
duced secondly. Then the neural network is trained by means of reconstructing the replay buffer of DDPG
algorithm. Finally, simulation results show that UAV is able to learn intelligent decision-making throughout
the intention guiding of MAV. Compared with original DDPG algorithm, the improved method can achieve
a better performance in convergence and stability. Furthermore, the level of intelligent decision-making in
air confrontation can be improved by self-learning.

INDEX TERMS Manned/unmanned aerial vehicle, intelligent decision-making, application of deep rein-
forcement learning, intention guiding, deep deterministic policy gradient, self-learning.

I. INTRODUCTION
As a flourishing air confrontation force, UAV plays a more
and more significant role in the modern warfare. Compared
with MAV, UAV has the unique advantages of zero casual-
ties, sustained operations, low cost and outstanding maneu-
verability. By the use of MAV/UAV cooperative platform,
the deficiency of current autonomous level of UAV can be
made up in some extent, and the survivability in warfare can
be enhanced, which is beneficial to the victory of the war [1].
The cooperative mode is one of the development directions
of the potential penetration fighter in the sixth generation [2].
In 2016, the University of Cincinnati developed an intelli-
gent pilot named Alpha, using the genetic fuzzy search tree
method to implement air confrontation in virtual with the
famous pilot Colonel Gene Lee [3]. In this confrontation,
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Gene Lee was thrashed. That same year, the U.S. military
launched the ‘‘Commander’s Virtual Staff’’ Project’’ [4] for
reducing the cognitive burden on commanders by means of
integrating artificial intelligence technology and information
systems. In August of 2019, the U.S. Air Force Research
Laboratory and DZYNE Company experimented with the
‘‘ROBOpilot’’ program in Dugway [5]. The researchers used
cameras to collect aircraft dashboard data and took mechan-
ical transmission equipment to control joystick, pedal and
switch, etc. The U.S. put forward ‘‘loyal wingman’’ program
in 2015 with the purpose of providing reasonable and fast
suggestions for pilots [6]. It completed the first flight test of
the XQ-58A ‘‘Valkyrie’’ UAV in Arizona in March of 2019,
which was a typical type of loyal wingman. In addition,
Russia announced that a flight test has accomplished with
‘‘Hunter’’ UAV and Su-57 MAV in September of 2019 [7].

Airborne communication networks (ACNs) were utilized
for MAV/UAV cooperative system [8], [9], where the UAV
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receiving commands from MAV was mainly depended on
ACNs. Hence, it was one of the most significant guaran-
tees for cooperative engagement of MAV/UAV. Compared
to terrestrial wireless networks, ACNs were characterized by
frequently changed network topologies and more vulnerable
communication connections [10]. The latest research indi-
cated that studying the technologies of control, networking,
and transmission would help design scalable, practical, and
fault tolerant ACNs [11]. Besides, the DRL method can also
be carried out to develop communications coverage, energy
consumption and connectivity [12].

Since the classical observe-orient-decide-act (OODA)
operational theory [13], it is critical to research on the intel-
ligent decision-making of MAV/UAV, which is of signifi-
cance to improve the level of air confrontation [14]. The
current air confrontation decision-making methods can be
divided into two main categories [15]: one is traditional
strategy contains differential game and expert system, etc.
The other is intelligent strategy, such as genetic algorithm,
influence diagram, ant colony algorithm, artificial immune
system, etc. The core of the decision-making problem is
to predict the possible states of future. However, the above
methods can not realize the long-term prediction in real time
due to the influence of the computational complexity and
other factors. Recent years, artificial intelligence (AI) has
drawn much attention and researchers have implemented the
technology for decision-making [16], [17], but three main
deficiencies are presented. First is the limitation of devia-
tion from reality caused by discretization of action space or
simplification of reward function, etc. [18], [19]. In [20],
an autonomous maneuver decision model was proposed for
the UAV short-range air combat based on RL. According to
the requirement of discrete control, deep Q network (DQN),
a traditional DRL method for solving discrete space was
applied. Second, the efficiency of RL should still be further
improved although numerous researchers have focused on the
issue [21], [22]. Typically, DDPG, an algorithm for solving
continuous controlling models was proposed by DeepMind
in 2016 [17]. After that, in July of 2017, OpenAI introduced
proximal policy optimization (PPO) [23], a family of policy
optimization methods. The method had some of the benefits
of trust region policy optimization, but they were much sim-
pler to implement and higher efficiency. Then Google Deep-
Mind proposed Distributed PPO on this basis [24]. Third,
the application and implementation of decision-making are
relative monotonous, such as for UAV, attacking implemen-
tation is in dominant [25], [26] and for unmanned vehicle,
achieving the goal of safely driving is in majority [27], which
ignores the directive effect of commander in cooperative
system. To alleviate the third trouble, in [28], the mapping
from state to motivation in standard Q learning is transformed
into three layer mapping, i.e., state-motivation-action, and
simulated annealing algorithm is adopted to improve the RL
process. Nevertheless, if-then rule is used during the mapping
of the motivation layer to the action layer, which brings great
subjectivity and should be elaborately considered in future.

To the best of our knowledge, combiningDRLwith air con-
frontation decision-making ofMAV/UAV aswell as research-
ing the feasibility and applicability is a novel application and
has not been deep investigated. Due to the core of this paper
is the application of DRL, so which detailed method of DRL
for solving the problem of air confrontation decision-making
of MAV/UAV is not vital. The method for continuous con-
trolling, such as DDPG, PPO, DPPO, are all suited. To this
end, the improved DDPG is investigated in this work.

The main contributions and innovations of this paper can
be summarized as follows:

i) We combine DRL with air confrontation decision-
making of MAV/UAV, where the innovation is reflected
in proposing the four typical intentions including Head-on
attack, Fleeing, Pursuing and Energy-storing, corresponding
to four optimization models.

ii) We improve the traditional DDPG algorithm by means
of reconstructing the replay buffer. The mechanism of expe-
rience judgment and improvement of sampling strategy are
put forward, which result in the superiority in the aspect of
convergence and stability of training.

iii) We utilize self-learning of different intentions to
improve the degree of intelligent decision-making, which is
of significance to achieve real intelligent air confrontation in
future.

This paper is organized as follows. In Section II,
the dynamics model of UAV and the basic structure of DDPG
are built. The framework of decision-making of MAV/UAV
containing four typical intentions and the reconstruction of
replay buffer in DDPG are presented in Section III. The
simulation is executed in Sections IV. Finally, we conclude
with suggestions for future research in Section V.

II. PROBLEM FORMULATION
A. DYNAMICS EQUATION OF UAV
In this paper, it is assumed that the tasks of MAV/UAV coop-
erative system aremainly performed byUAV. ForMAV, in the
rear of UAV, is relatively safe. Its work is to commanding in
the light of battlefield situation. Hence, only the dynamics
equation of UAV needs to be discussed.

In the decision-making process of air confrontation,
the main focus is on real-time position and speed informa-
tion of the two sides. Therefore, the model of UAV can be
described commendably by simplified point-mass equations.
In the inertial frame, the dynamics equation of UAV is given
as 

ẋ = vu cos γ cosψ
ẏ = vu cos γ sinψ
ż = vu sin γ

v̇u =
T cosα − D

m
− g sin γ

γ̇ =
(L + T sinα) cosµ

mvu
−

g
vu

cos γ

ψ̇ =
(L + T sinα) sinµ

mvu cos γ

(1)
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where vu represents the velocity of UAV; γ , ψ and µ indicate
the UAV’s flight-path angle, heading angle, and flight-path
bank angle respectively; α is attack angle, m is the mass of
UAV, regarding as a constant in the paper; T is the engine
thrust, g is acceleration of gravity;Air resistance D and lift L
can be donated as 

L =
1
2
ρv2uSCL

D =
1
2
ρv2uSCD

(2)

in which S is reference cross-sectional area for UAV; CL and
CD are coefficient of lift and air resistance, respectively;
ρ is atmospheric density. When UAV is in the troposphere,
ρ varies with the altitude h, as given in (3).

ρ = 1.225∗
[
(288.15− 0.0065∗h)/288.15

]4.25588 (3)

The engine thrust T of UAV can be defined as

T = δTmax (4)

in which Tmax is the maximum thrust of the engine, δ is
throttle with the range of [0, 1].
As discussed above, given the input [δ α µ] and the time

step of decision-making 1t , we can easily obtain the next
states of UAV accordance with Runge-Kutta method [26].

B. DDPG ALOGORITHM
The goal of RL is to find the policy that maximizes the
expected return which is defined by a reward function. The
interaction between agent and environment is modeled as a
Markov Decision Process (MDP) [29], which contains the
state space, action space, reward function, discount coeffi-
cient and probability of transition. Specially, in the case of
model-free RL, only the former four elements need to be
analyzed.

Classical reinforcement learning is difficult or impossible
to traverse all cases in the face of high dimension of state
and action space, which may result in slow convergence of
the algorithm or the inability to learn reasonable strategies.
An effective way to solve the above problems is to use
the method of function approximation to express the value
function or strategy explicitly [21]. For the complex nonlinear
function, the deep neural network has a better approximate
effect, so it has become a trend to introduce the deep neural
network as a tool into RL for approximating the value func-
tion or strategy function in recent years [20].

Faced with the model of intelligent decision-making of
MAV/UAV, whose state space is multi-dimensional, one of
the most popular DRL algorithms called DDPG is adopted.
For the algorithm, the idea of Deterministic Policy-Gradient
algorithms, Actor-Critic structure, and DQN are combined.
The Policy-Gradient is a kind of RL based on the probabilis-
tic theory, which represents the optimal decision of MDP
by a probability distribution function. For the algorithm,
the whole action space should be integrated in each step of
the decision-making process, so the demand of computational

power is extremely high. In this context, Siliver [30] proves
the existence of Deterministic Policy-Gradient and integrates
it into the Actor-Critic framework, which consists of critic
network and actor network.

To make the learning stable and robust, similar to
DQN [16], DDPG also deploys experience replay and evalu-
ate/target network. We use Q(s, a|θQ) and µ(s|θµ) to denote
the evaluate network of critic network and actor network,
respectively, corresponding to the parameter θQ and θµ, while
Q′ and µ′ are represented as target network with the parame-
ter θQ

′

and θµ
′

.
For critic network, the input of which are action a and

state s, output is Q value, i.e. Q(s, a). The update of the
network parameter is mainly dependent on minimizing the
loss between Q value of evaluate network and target network.
The former Q value is estimated by evaluate network, while
the latter is obtained by adding the Q′ and reward ri. The
process of update can be expressed as (5)-(6)

yi = ri + γdQ′
(
si+1, µ′

(
si+1|θµ

′
)
|θQ

′
)

(5)

min
θQ

L = min
θQ

1
N

N∑
i=1

(
yi − Q

(
si, ai|θQ

))2
(6)

where γd is discount coefficient of the reward function.
For actor network, the input is s, output is a, and using the

sampled policy gradient to update, which can be described as

∇θµJ ≈
1
N

N∑
i=1

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)

∇θµµ
(
s|θµ

) ∣∣si
(7)

Target network is updated according to:

θQ
′

← τθQ + (1− τ )θQ
′

θµ
′

← τθµ + (1− τ )θµ
′

(8)

in which τ is the parameter of update rate.
In summary, the flow-chart of DDPG algorithm is shown

in Figure 1. The number in the figure is the sequence the
algorithm runs.

III. ALGORITHM DESIGN
Based on the DQN algorithm, the DDPG continues the
idea of mode-free RL, and state space, action space, reward
function and discount coefficient should be studied respec-
tively. Among of them, the action space is derived from
the dynamics equation of UAV (Section II.A), and the state
space is mainly determined accordance with the model of
air confrontation (Section III.A), which is also based on
the dynamics equation. Besides, the reward function in four
typical intentions is introduced in Section III.B, which is a
key to realize the intelligent decision-making of MAV/UAV.
The discount coefficient is designed as universal rules [20].
In addition, the improvement of the DDPG structure is shown
in Section III.C.
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FIGURE 1. The flow-chart of DDPG algorithm.

A. STATE AND ACTION SPACE OF DRL IN AIR
CONFRONTATION DECISION-MAKING MODEL
1) DETERMINATION OF STATE SPACE
From section II.B, we know that the deep neural network is a
significant tool to approximate the value or policy function.
Thus, the state space in air confrontation decision-making
model, regarding as the input of neural network, is critical
to determine.

It is assumed that the red is represented as us while the blue
is enemy, which are distinguished by the subscript r and b,
respectively. The situation in battlefield, especially the rela-
tive of the red and blue, may not be reflected commendably if
the states of UAV in (1) are used as the input of neural network
directly. Considering the relative states acquired expediently
by GPS, LIDAR, and other sensors, x0 are selected as the
state space, which contain 10 scalars

x0 = [d, qr , qb, β,1h,1V , vu, h,F1,F2] (9)

where d denotes the relative distance of the two sides; qr and
qb represent the angle between the velocity vector and the
centroid; β is the angle between the velocity vector of the red
and blue;1h and1V are the difference of height and velocity
of the two sides, respectively. Moreover, vu and h are also
included in x0 because of that Tmax is a function of vu and h,

FIGURE 2. Definition of partial states of air confrontation model.

and it makes sense during the process of controls conversion;
F1 and F2 denote the flag of reaching the goal and exceeding
the limits of states, respectively.

Unknowns in x0 can be derived by air confrontationmodel,
which was illustrated in (10), as shown at the bottom of the
next page, and Figure 2.

Note that the states in x0 need to be normalized before
input to the neural network.
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FIGURE 3. The framework of air confrontation intelligent
decision-making of MAV/UAV.

2) DETERMINATION OF ACTION SPACE
The action space a generated in DDPG can be related to the
controls of UAV, i.e. u0 = [δ, α, µ]. In the light of physical
meaning, we know that the range of throttle δ is the positive
while the attack angle α and flight-path bank angle µ have
no limit of positive or negative, so the relationship between a
and u0 is designed as

δ = Sigmoid(a1)
α = Tanh(a2)∗αv
µ = Tanh(a3)∗αµ

(11)

in which Sigmoid and Tanh are activation function of neural
network, of which the range are [0,1] and [−1,1] respectively,
corresponding to the physical meaning mentioned above;
αv and αµ are the range of α and µ.

Next section will introduce the effect of MAV on the
cooperative system through designing the reward functions
in different intentions.

B. REWARD FUNCTION OF MAV INTENTIONS
To exhibit the advantage of MAV intelligence, several typ-
ical intentions were predefined by MAV. Reward function
and constraint conditions were designed to describe different
intentions. Then the decision-making model of UAV was
trained based on the steses of x0 acquired by the sensors. As a
result, the neural networks in diverse intentions were obtained
through training, and next states could be got by executing the
action of a. The framework of air confrontation intelligent
decision-making of MAV/UAV was shown in Figure 3.

In this paper, short-range air confrontation was researched.
Assuming that the aerial cannon was adopted as the weapon
of the two sides, and the relative angle, distance, height and
velocity were selected as indicators for estimating the air
confrontation [31], where the relative angle and distance were
focus on the safety especially the condition of emit while the
energy was highlighted by the height and velocity. Obviously,
more chances for maneuvering can be got in case of high
energy. Furthermore, a positive reward was gained when the
goal of task was achieved while a negative reward was got in
failure. The four intensions were introduced as follows.

1) HEAD-ON ATTACK
The goal of the intension was to accomplish the task of strike
and tail chasing state was dispensable to carry out attacking,
so called Head-on attack. When qr ∈ qattack and d < demit,
the aerial cannon can be emitted, where d > descape and demit
were the aspect angle and distance of allowed attack; When
the blue got the identical condition or d > descape, the red
failed, in which descape was the escaped distance. Addition-
ally, exceeding the limits of UAV state was also disallowed,
which was regarded as failure. The detailed reward function
was expressed as

ra,d =


(qb − qr ) exp

(
−(

d − demit

demit
)2
)
,

qr 6 qb, d > demit and qb /∈ qattack
(qb − qr ), qr 6 qb, d < demit and qb /∈ qattack
0, else

rv = exp
(
−
vr − V0
V0

)
z

rh =


exp

(
−
1h−1h0
1h0

)
, 1h > 1h0

exp
(
1h−1h0
1h0

)
, 1h < 1h0

rresult =


1, qr ∈ qattack and d < demit

−1, qb ∈ qattack and d < demit;

or d > descape; or s 6⊂ sr
0, else

(12)

where ra,d , rv, rh and rresult represented the reward of angle
and distance, velocity, height, result, respectively;V0 and1h0
were known; sr were the range of the red states of UAV.
Specially, it was assumed that only a state of success or failure
maintained 3 seconds or more, the rresult changed to non-zero
value; If less than 3 seconds, the flags would operate to guide
for training.


d =

√
(xb − xr )2 + (yb − yr )2 + (zb − zr )2

qr = arccos {[(xb − xr ) cosψr cos τr+ (yb − yr ) sinψr cos τr + (zb − zr ) sin τr ] /d}

qb = arccos {[(xr − xb) cosψb cos τb+ (yb − yr ) sinψb cos τb + (zr − zb) sin τb] /d}

β = arccos (cosψr cos τr cosψb cos τb+ sinψr cos τr sinψb cos τb + sin τr sin τb)

(10)
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2) PURSUING
The goal of the intension was to accomplish the task of accu-
rate attacking based on flight safety, and it was also adapted
to the situation the red dominated in energy. Compared to
the Head-on attack, to accomplish the task, tail chasing was
necessary. For reward function, the difference with (12) was
described as follows

rresult =


1, qr ∈ qattack, qb ∈ q0 and d < demit

−1, qb ∈ qattack and d < demit;
or d > descape; or s 6⊂ sr

0, else

(13)

where qb ∈ q0 indicated that the aspect angle of the blue
should be in the range of q0 when the red emitted. In general,
q0 represented as an obtuse angle interval.

The Pursuing intention was a common selection for MAV
because of it was able to guarantee accuracy and stability of
strike.

3) FLEEING
The goal of the intension was to keep away the enemy’s
strike, and it was also adapted to the situation the blue had
advantage in performance or the red was immersed in trouble.
To ensure the safety of the red in air confrontation, the con-
straints qb ∈ q0 should be added besides d > descape,
which demanded that the red flee in the opposite direction
to the blue. The detailed reward function was shown in the
following

ra,d=


(qb − q0_min) exp

(
−(

d − descape
descape

)2
)
,

qb /∈qattack and d6descape
(qb−q0_min), qb /∈qattack and d>descape
0, else

rv = exp
(
−
vr − V0
V0

)

rh =


exp

(
−
1h−1h0
1h0

)
, 1h > 1h0

exp
(
1h−1h0
1h0

)
, 1h < 1h0

rresult=


1, qb ∈ q0 and d > descape
−1, qb ∈ qattack and d < descape; or s 6⊂ sr
0, else

(14)

where q0_min was the minimum of q0.

4) ENERGY-STORING
With the development of performance in aerial vehicle,
energy theory has been paid more and more attention, which
supported a amount of unconventional actions, such as large
overload maneuver, poststall maneuver and so on. The-
ses actions provided more opportunity for reversing dis-
advantages in air confrontation. As mentioned above, the
total energy, contains kinetic energy and potential energy,
was selected as the estimating indicators for the intention,

which was in favor of storing energy and waiting for the
new commands of MAV. The reward function was described
as

ra,d =


(qb − q0_min) exp

(
−(

d − demit

demit
)2
)
,

demit < d < descape and qb /∈ qattack
0, else

rv = exp
(
−
vr − V0
V0

)

rh =


exp

(
−
1h−1h0
1h0

)
, 1h > 1h0

exp
(
1h−1h0
1h0

)
, 1h < 1h0

rresult =


1, Er > ηEb and demit < d < descape
−1, qb ∈ qattack and d < demit;

or d > descape; or s 6⊂ sr
0 else

(15)

in which Er and Eb were the total energy of the red and
blue, respectively; η was the coefficient of proportionality in
energy.

Up to now, four intentions of MAV have been introduced.
To sum ra,d , rv, rh, rresult and F1, F2 by weights, the total
reward function was obtained as

r = ωa,d ra,d + ωvrv + ωhrh + ωresultrresult + ωf1F1 + ωf2F2
(16)

where weights ω were empirical values, taken differently in
respective intentions.

C. RECONSTRUCTION OF REPLAY BUFFER
In DDPG algorithm, experience replay method was adopted
and replay buffer was used as a tool to store experiences.
The means of sampling can decrease the relevance of the
experiences, which was in favor of the stability of neural
network training. However, sampling randomly may result
in the low efficiency of training and the poor performance
in convergence. To deal with the problem, reconstruction of
replay buffer was proposed in this section. Two ways were
introduced in the following.

1) MECHANISM OF EXPERIENCE JUDGMENT
Experience judgment meant that success experience and fail-
ure experience were divided into two replay buffers. If the
failure requirements of (12)-(15) were satisfied, the expe-
rience of this step would be recorded in the failure replay
buffer, which was denoted as Rf . On the contrary, other
experiences were regarded as the success storing to Rs on
temporary. As we known, time delay was existed in the
reward process of RL, so a number of experiences before
access to the failure, which stored in Rs, were also relevant
to the failure. We should extract these experiences from Rs
into Rf accordance with the proportion of ηf .
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Algorithm 1 Reconstruction of Replay Buffer
for each step do

if failure then
Store experience into Rf
Extract as amount as Nf experiences from Rs
into Rf (with proportion of ηf )
Sample η∗sMini-batch experiences from Rs
Sample (1− ηs)∗Mini-batch experiences
from Rf

else
Store experience into Rs

end if
if Rs and Rf are full then

Substitute the new experience for the past
Train the neural network withMini-batch
experiences

else
if Rs or Rf are full then

Substitute the new experience for the past
else

Continue
end if

end if
Until failure or maximum step

end for

2) IMPROVEMENT OF SAMPLING STRATEGY
In original DDPG algorithm, randomly sampling was carried
out. To make the sampling process more valid, sampling in
proportion from Rf and Rs was adopted to instead. Assuming
that the amount of sampling was Mini-batch, and the sam-
pling proportion in Rs was ηs. Taken the learning efficiency
in the earlier stage and the trouble of local optimum in the
later stage into consideration, ηs should be decreased with
progressed.

The reconstruction of replay buffer was presented in the
following algorithm.

IV. EXPERIMENTS
In this paper, Python language was selected to implement our
algorithm, and TensorFlowmodule was applied to supporting
DRL. The actor and critic network were both used simple
fully connected network architecture with a few hidden lay-
ers. It was because in the process of debugging, we found
that the effect of too deep layers was often counterproductive,
which was related to the exploration and exploitation theory
of RL. The viewpoint was proposed by Fang, and he verified
it in his thesis [32]. Finally, two hidden layers with 600 and
300 units were determined in the experiments, the learning
rate was 1 × 10−4. Moreover, each intention was trained
15000 episodes, which was about 106 steps. Significantly,
the amount of training episodes was determined by compar-
ative experiments, under which the results can be revealed
commendably. Other parameters were listed in Table 1.

TABLE 1. The parameters of DDPG Algorithm.

TABLE 2. The basic parameters of F-4C fighter.

It was assumed that the type of both sides was F-4C fighter.
The basic parameters of F-4C fighter were in the following
table.

Thrust data for the F-4C was taken from data originally
presented in [33], the maximum available thrust Tmax was
expressed in units of 1000 lb (i.e. 4436.26 N), and was
a function of the Mach number v̄u and altitude h in units
of 10000 ft (i.e. 3048 m), which was shown in

Tmax

=


1
v̄u
v̄2u
v̄3u
v̄4u


T

30.21 −0.668 −6.877 1.951 −0.1512
−33.80 3.347 18.13 −5.865 0.4757
100.80 −77.56 5.441 2.864 −0.3355
−78.99 101.40 −30.28 3.236 0.1089
18.74 −31.60 12.04 −1.785 0.09417



1
h
h2

h3

h4


(17)

CL and CD were determined by{
CL= (−0.0434+0.1369α) sinα+(0.131+3.0825α) cosα
CD= (0.0434−0.1369α) cosα+(0.131+3.0825α) sinα

(18)

A. TRAINING RESULT OF FOUR INTENTIONS
In the process of training the intensions, on one hand,
to improve the convergence performance, the blue was set
to fly in straight line; on the other hand, to guarantee the
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FIGURE 4. Confrontation maneuvering trajectory under different
intentions.

diverse of training samples, the initial states of the blue
were generated randomly. If the initial state of the blue was

FIGURE 5. Comparison of improved DDPG and original DDPG.

fixed and idealized, the learning capacity would be decreased,
which has been verified in previous experiments. The training
results were shown in Figure 4, in which the attitude of UAVs
was also expressed.

From Figure 4 (a) and (b), we can see that the success con-
dition of Pursuing was more rigorous than Head-on attack.
Compared to Head-on attack, Pursuing paid more attention to
accurate striking and flight safety via bypassing to the rear of
the blue. However, the intention may miss the optimal oppor-
tunity of striking owning to the discreetness. Combining to
Figure 4 (c) and (d), we knew that Fleeing was a direct inten-
tion to avoid striking, but little energy can be accumulated.
By contrast, Energy-storing can not only guarantee the red to
avoid striking, but also attempt to search for the opportunity
of counter-attack by accumulating the advantage of height
and velocity.

B. VERIFICATION OF THE IMPROVED DDPG ALGORITHM
To validate the reconstruction of replay buffer in DDPG
algorithm, an identical model with the same intention was
trained by the improved DDPG and original DDPG. After
15000 episodes, the success rate of task was taken as an
index to evaluate the effect of training. In order to decrease
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FIGURE 6. Result of Head-on attack intention versus Fleeing intension.

the effect of data fluctuation and highlight the tendency of
training result, data was averaged per 50 episodes to express
the success rate. The ηs was determined by

ηs = 0.9∗ exp(−i/15000) (19)

where i = 1, 2 · · · 15000 indicated the index of episodes.
Comparison of improved DDPG and original DDPG was

shown in Figure 5.
From Figure 5 (a), the success rate of both algorithms

was increased over 90% from about 10% gradually, but
the improved algorithm had faster convergence in previous
period and weaker fluctuation when access to high success
rate. Combining to Figure 5 (b), the difference of success
rate between original DDPG and improved DDPG, we can
see that the improved one had 44% ahead at most in the
first 50 sampling point. In the later of sampling, especially
the last 50 sampling point, the difference was decreased,
but the improved one possessed higher degree of stability
while the original fluctuated obviously. It was because that
the improved DDPG kept improving the neural network
during trial and error with the adjustment of ηs while the
original DDPG sampled randomly all the time. In summary,
the reconstruction of replay buffer was a valid way to improve
DDPG algorithm. Additionally, from the results we can see
that the amount of training episodes was selected reasonably.

FIGURE 7. Situation relationship for Head-on attack winning.

If it was much less than 15000, the convergence effect would
not be performed commendably.

C. DEMONSTRATION OF AIR CONFRONTATION
To demonstrate the scenarios of air confrontation, the trained
neural network in section IV.A was reloaded. Air confronta-
tion of the cooperative system was led by the virtual MAV.
Assuming that the initial relative distance was in favor of
striking for the red while the aspect angle was beneficial
to flee for the blue, and the result of Head-on attack inten-
tion versus Fleeing intension was shown in Figure 6. From
Figure 6 (a) and (b), we can see that winning or losing in
the same initial environment (only tiny stochastic noise were
drew in γ and ψ) were uncertain, where was determined
by the intellgent decision-making of the two sides. Situa-
tion relationship and history of controls in the two episodes
were shown in Figure 7- Figure 10. When Head-on attack
won, the initial aspect angle of the red was far away from
the allowed aspct angle for attack, so the red adjusted the
aspect angle in priority by means of decreasing the attack
angle with low thrust in the earlier 20 s of air confrontation.
Meanwhile, the blue increased thrust in a short time with
an attempt to enlarge the distance between the red. At the
time of 38 s and 67 s, two approaching maneuvers of the
red was carried out, especially the later (from 67 s to 81 s,
trajectory shown in Figure 6 (a) with yellow lines and border
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FIGURE 8. History of controls for Head-on attack winning.

shown in Figure 7-Figure 8 with dotted black lines), the red
continued to increase thrust, and approached to the blue in
the attitude of swooping based on the stored height energy
previously. During the period, the blue tried to alter flght-path
bank angle to avoid, but beaten by the red at the time of 81 s.
When Fleeing won, at the time of 35 s, the blue was cast into
the area of aspect angle where the red allowed to strike, but
the distance was out of allowed striking range, the red did
not take strike action. Within the following 15 s (from 35 s

FIGURE 9. Situation relationship for Fleeing winning.

to 50 s, trajectory shown in Figure 6 (b) with yellow lines and
border shown in Figure 9-Figure 10 with dotted black lines),
the blue made decisions to fly away the line of sight of the
red. Concretely, the UAV of the blue was pulled by increasing
the attack angle and flight-path bank angle rapidly, while the
red maneuvered accordingly to keep the striking advantages.
As a result, the blue fled in failure. Then the second attempt
to flee for the blue was performed, the way of increasing
thrust and swooping in negative attack angle was adopted.
Consequently, the relative distance was enlarged rapidly
and the aspect angle was changed to beneficial to avoid
striking. Finally, the blue accomplished fleeing task at the
time of 86 s.

With the same model, the effect of self-learning was veri-
fied. For comparison, current neural network of the red was
maintained while that of the blue trained further. A test would
be executed per 5000 training episodes, where contained
200 air confrontation episodes in each test. The maximum
step of each episode was set as 5000 and a draw would be
recorded once exceeding the maximum value. For the blue,
the results of air confrontation after self-learning were shown
in Table 3. As we known, the initial situation was in favor of
the winning of the red, so the number of episodes the red won
was in majority all the time. However, the fleeing possibility
of the blue was increased with the self-learning progressed,
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FIGURE 10. History of controls for Fleeing winning.

TABLE 3. The results of air confrontation after self-learning.

where the index of non-failure possibility was increased from
19% to 29%. As a whole, self-learning was a key to improve
the degree of intelligent decision-making.

V. CONCLUSION AND FUTURE WORK
In this paper, application of DLR in air confrontation intel-
ligent decision-making of MAV/UAV cooperative system is
proposed. To highlight the leading influence of MAV and
realize complementary advantages of MAV and UAV, four
typical intentions containing Head-on attack, Fleeing, Pur-
suing and Energy-storing, are elaborately designed. Corre-
sponding models are embedded into DDPG structure, which
is an algorithm of DRL adapted for solving continues con-
trols. Mechanism of experience judgment and improvement
of sampling strategy are put forward to reconstruct the replay
buffer. Several experiments are performed to test the pro-
posed approach in different situations. Results show that the
improved DDPG outperform the original in terms of conver-
gence and stability of training. And the degree of intelligent
decision-making can be improved by self-learning, which is
of significance to achieve real intelligent air confrontation in
future. Next, we will focus on the cooperative system ofMAV
with multiple UAVs, and the maneuver of high angle of attack
and post-stall will also be researched.
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