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ABSTRACT The long short-term memory (LSTM) model trained on the universal language modeling task
overcomes the bottleneck of vanishing gradients in the traditional recurrent neural network (RNN) and shows
excellent performance in processing multiple tasks generated by natural language processing. Although
LSTM effectively alleviates the vanishing gradient problem in the RNN, the information will be greatly
lost in the long distance transmission, and there are still some limitations in its practical use. In this paper,
we propose a new model called NEWLSTM, which improves the LSTMmodel, and alleviates the defects of
too many parameters in LSTM and the vanishing gradient. The NEWLSTMmodel directly correlates the cell
state information with current information. The traditional LSTM’s input gate and forget gate are integrated,
some components are deleted, the problems of too many LSTM parameters and complicated calculations are
solved, and the iteration time is effectively reduced. In this paper, a neural network model is used to identify
the relationship between input information sequences to predict the language sequence. The experimental
results show that the improved new model is simpler than traditional LSTM models and LSTM variants on
multiple test sets. NEWLSTM has better overall stability and can better solve the sparse words problem.

INDEX TERMS Gate fusion, exploding gradient, long short-term memory, recurrent neural network.

I. INTRODUCTION
Along with the transition from the traditional n-gram lan-
guage model to the neural language model, research has
revealed the potential of the statistical language model on
the basic task of natural language processing (NLP) [1].
A language model based on a neural network performs the
implicit clustering of words in a low-dimensional space,
which can be used to predict many types of signals including
language [2] and has attracted widespread research attention.
Sequence prediction and classification in natural language
processing is a ubiquitous and challenging problem that
usually requires identifying complex dependencies between
long-term inputs. The recurrent neural network (RNN), which
can model sequence data for sequence recognition and pre-
diction, shows strong performance in various NLP tasks [3].
The RNN performs the implicit clustering of words in a low-
dimensional space, accepts input vectors at each time step,
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and updates the hidden state using a non-linear activation
function. The RNN responds to time dependence through
short-term memory implemented using feedback [4], which
can effectively predict sequences at the next time step, and
its hidden state can store information as a high-dimensional
distributed representation, forming a model with rich infor-
mation. In addition, the RNN can realize effective and pow-
erful calculations by using nonlinear dynamics, which can
be applied to sequences with highly complex structures to
perform modeling and prediction tasks.

There are still many problems with using the RNN. For
example, forward and back propagation in the RNN is per-
formed sequentially, which is time-consuming during train-
ing, and vanishing and exploding gradients may occur. When
faced with long-term memory, it is difficult for the RNN to
train them effectively. Therefore, there are still many chal-
lenges in using the RNN for long sequence learning.

In recent research, many attempts have been made to
overcome these difficulties. In research in the word embed-
ding field, Takase et al. [5] constructed word embeddings
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from character n-gram embeddings and proposed an RNN
language model that uses character information combined
with ordinary embeddings. The method achieved the best
confusion on each dataset.Wen et al. [6] proposed a statistical
language generator based on joint recursive and convolutional
neural network structures, which can be trained on dialog
actions without any semantic alignment or predefined syntax
trees. Pappas and Henderson [7] studied the usability of
powerful shared mappings for output labels and proposed a
deep residual output mapping. The method performed well
at capturing the structure of the output space and avoiding
overfitting and solved the shortcoming of the lack of shared
parameters across output labels in neural language models.

The long short-term memory (LSTM) proposed by
Smagulova and James [8] is a variant of the RNN. It over-
comes the vanishing gradients in the traditional RNN by
loading information at each time step for transmission.
It improves the structure of the traditional RNN hidden layer
and solves the problem that the long-term dependence of the
encoding in the input sequence cannot be achieved due to the
vanishing gradient in the RNN [9]. In previous studies, for
general sequence modeling, LSTM has proven to be stable
and powerful for modeling remote dependencies [10]–[13].
However, although the text generated by LSTM shows long-
term correlation characteristics on reproducible scales, it does
not solve the common problem of constructing simple recur-
sive networks. Although the vanishing gradient problem of
the RNN is partially avoided, the information loss in the
long distance transmission is very serious [14]. LSTM cannot
explore the information of prediction sequences that have
significant changes over a short period of time. To improve
the network convergence speed, people add gate structures
to the standard LSTM structure to enhance the long-term
dependent learning ability of LSTM variants [15], [16].
By using a periodic function to parameterize each hidden
unit to affect the gradient information flow, the initialization
parameters need to be fine-grain adjusted. In addition, when
dealing with complex long-term and short-term dependence
problems when capturing multi-dimensional time series data
including future time steps, increasingly more attention-
based multi-time series models have been applied [17].

According to the problems existing in LSTM, this article
proposes that the NEWLSTM model is improved in the fol-
lowing three aspects. (1) The forget gate and input gate of the
LSTMmodel are integrated and processed together to reduce
the number of parameters and simplify the calculation of the
model, which reduces the complexity of the model and effec-
tively reduces the iteration time. (2) The vanishing gradient
problem in some regions is solved. (3) It pays attention to the
hidden information of the current information, emphasizes
the subject of the input information, and makes the model
pay more attention to the context.

II. RELATED WORKS
LSTM alleviates the vanishing gradient problem caused by
hindering the back propagation in the RNN. It can solve

many tasks that cannot be solved by recurrent neural network
learning algorithms. It has been widely used in speech recog-
nition, picture description, natural language processing and
other fields [18]. Yao et al. [19] proposed a convolutional
LSTM (ConvLSTM) and used it to build a trainable model of
end-to-end precipitation nowcasting. Aiming at the internal
covariate shift between time steps, Cooijmans et al. [20]
proposed the re-parameterization of LSTM, which proved the
effectiveness of the batch standardized conversion of hidden
layer to hidden layer and used batch normalization to perform
recursive network optimization. Zhang et al. [21] developed
a deep adaptive long short-term memory (DA-LSTM) archi-
tecture, which can dynamically adjust the structure based
on the information distribution without prior knowledge.
When faced with very little information, shallow structures
can be used to achieve faster convergence and consume less
computing resources. Ali et al. [22] proposed a new type of
semantic knowledge based on the Word2vec model, which
used the bidirectional long short-term memory (Bi-LSTM)
method to improve the traffic feature extraction and text
classification tasks.

Aiming at the problems of LSTM, in recent decades,
people have done much work to optimize LSTM models
[9], [14], [23], [24], [25]. Kent and Salem [23] proposed
a slim model to simplify the LSTM model by removing
certain components, thereby effectively speeding up the train-
ing and running time in the case of performance changes.
Jie and Lu [24] proposed an LSTM-CRF model guided by
dependencies. By encoding the complete dependency tree
and capturing the syntactic relationships for named entity
recognition, the study showed that there is a strong relevance.
de Lhoneux et al. [25] used the features extracted by BiLSTM
to recursively combine subtrees in a transition-based parser to
study the effect of adding tree layers to the sequential model.
The results indicate that Bi-LSTM can effectively capture
related subtrees’ information. By associating forward and
backward LSTM with functions and results with language
attributes, it is proved that the improved backward LSTM is
particularly important for the formation of the final language.

III. MODELS
A. LONG SHORT-TERM MEMORY
The RNN supports variable-length inputs. By mapping the
target vector from all previous records of previous inputs,
it overcomes the bottleneck that traditional neural network
structures can only map from the current input to the target
vector. It can capture the content of time data and make
inferences; it is also very effective at the dynamicmodeling of
continuous sequence data [18]. However, when the gradient
is calculated by RNN backpropagation, it is easy for the
gradient to diverge and disappear due to too many layers, it is
impossible to learn long-term information, and the method is
very sensitive to the length of the article.

LSTM uses multiple gates in a similar structure to the
RNN to adjust the amount of information of each node state,
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which effectively solves the problem that the previous infor-
mation disappears in the RNN because the hidden layer
continuously superimposes the input sequence in the new
time state. The disadvantage of forward propagation can
effectively overcome the vanishing gradient problem [26].
Its hidden layer update is replaced by a dedicated memory
unitCt , which performs better in the face of longer sequences
and is suitable for context-sensitive language learning [27].
Ct is essentially an accumulator of state information, which
is capable of remembering information that needs to be stored
for a long time.

In a two-layer feedforward neural network, connections
exist between adjacent layers and hidden layers, and the
nodes in the hidden layers are unconnected. The simple recur-
rent network adds a feedback connection from the hidden
layer to the hidden layer, allowing information about the state
of the hidden layer to be propagated over time. If the state of
each moment is regarded as a layer of a feedforward neural
network, the recurrent neural network can be considered as a
neural network with weights shared in the time dimension.

The LSTM model controls the transmission state through
the gated state, which can be accessed through several
self-parameterized control gates, namely, the forget gate ft ,
the input gate it , and the output gate ot . However, due to
the introduction of much content, the number of parameters
is increased, which also makes the training more difficult.
The basic unit in the hidden layer of the LSTM network is a
memory block, which contains one ormorememory units and
a pair of multiply gated units to gate all the units contained in
the hidden layer. The specific implementation of the LSTM
internal structure is as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (1)

ft = σ (Wxf xt +Whf ht−1 +Wcf ct−1 + bf ) (2)

ct = ftct−1+it tanh(Wxcxt+Whcht−1+Whcht−1 + bc) (3)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (4)

ht = ot tanh(ct ) (5)

Each time a new message xt is input, the forget gate ft
is open, and the past cell state may be discarded during
this process. Otherwise, the input gate it is activated, the
information is accumulated in the unit, and the output gate ot
judges whether it will be propagated to the final state ht . At a
certain time point in the time series, the output information
is uploaded to the memory unit to prevent the problem of
information disappearing after too long.

In recurrent neural networks, gradients can explode or
vanish exponentially over time. Therefore, the gradient either
dominates the next weight adaptation step or effectively dis-
appears.

The LSTM propagates backwards from the top, not from
the last error signal, and the error signal decreases or explodes
with the multiple layers of non-linear transformation.
However, traditional LSTM performs best on data sequences
where information is evenly distributed between steps. For a
high information flow, the transfer function from one hidden

state to the next hidden state in the LSTM is too shallow and
there is a lack of depth between the design steps, which can
be considered a single linear transformation with activation;
and the underlying structure in the sequence cannot be cap-
tured for sequences with uneven information flows between
steps [28].

B. NEWLSTM
Aiming at the problems in LSTM, this paper proposes a new
variant called NEWLSTM. NEWLSTM loads the informa-
tion at each time step for transmission. The forget gate and
input gate are fused to combine the current input information
with the cell state; the information is accumulated in the
cell; and, finally, the output gate ot determines whether the
information is propagated to the final state ht .
NEWLSTM modified the network architecture and used

the tanh activation function to compress new information to
improve the vanishing gradient problem.

tanh x =
ex − e−x

ex + e−x
(6)

The tanh function compresses the input value to the range
of−1∼1, which solves the non-zero-centered problem of the
sigmoid function. NEWLSTM saves the selective discarding
of some input information in the forget gate, which is benefi-
cial to long sequence memory information.

NEWLSTM retains the use of the tanh activation function
in the input gate, focuses on the hidden information in the
sentence, and makes the model focus on the topic of the
sentence. The specific implementation of the internal cell
structure of the NEWLSTM is as follows:

ft = σ (Wxf xt +Whf ht−1 +Wcf ct−1 + bf ) (7)

ct = ft (ct−1+tanh (Wxcxt+Whcht−1+Whcht−1 + bc) (8)

xt is an input vector at time t, which is used to store all
useful information at time t. W is the weight matrix of the
hidden state ht and is the weight of each gate. bf , bc and bo
represent the deviation vectors. ft and ot are the gated scalars
of the network, ht is the output cell state, and ct is the storage
unit state. NEWLSTM loads the information at each time step
for transmission. The input at time t depends on the output
at t− 1. At time t, when new information xt is input, if the
gate ft forgets to open, the past cell state may be discarded
during this process. Otherwise, the input gate it is activated,
the information is accumulated in the unit, and the output gate
ot judges whether it will be propagated to the final state ht .
The internal structure of NEWLSTM is as follows.
Here, x is the input element and t is the time step. x repre-

sents the elements of time t, which can represent a set of codes
for word features, dense vector features, or sparse features.
The output layer represents the probability distribution of the
label at time t, and its size is the same as the label size.
The hidden layer at time t combines the output of the hidden
layer at time t− 1 to realize the transfer of information. After
the memory unit is updated, the hidden layer calculates ht
according to the result obtained by the current output gate.
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FIGURE 1. New model block.

NEWLSTM controls the transmission through the gated
state, and combines the input gate and the forget gate to
simplify the processing of the input layer. When new infor-
mation is input each time, it is first combined with the
previous cell state to simplify the calculation of the input
gate. It forgets what it has learned and new information, and
selectively deletes or adds information to the next unit by
adjusting the information flow of the forget gate and output
gate. The current information is combined with the past cell
state, the amount of retained information is determined by
the sigmoid function, and the information to be retained in
the final state is determined according to the output gate ot .
NEWLSTM retains the dedicated memory storage unit of
LSTM and retains the dependency relationship, which facili-
tates the discovery and establishment of long-term dependen-
cies between input values.

IV. EXPERIMENTS
A. TRAINING PROCEDURE
In many applications, neural network models have shown
excellent performance and the potential to surpass other com-
puting technologies [18]. The neural network model receives
the input sequence and attempts to accurately predict the
output sequence based on the input sequence. A given neu-
ral network model can be trained using a large number of
training examples and iteratively repeated until the neural
network model can consistently draw similar inferences from
the training examples that humans may make. It is difficult to
train a recurrent neural network via back-propagation using
time [29], which is mainly because the gradient propagated
back through the network will vanish or grow exponentially.

This experiment builds a model on the basis of a neural
network commonly used in sequence tasks to predict the
probability of the next word appearing. The validity of our
model is verified by comparing the two-layer original LSTM
with two-layer LSTM variants.

By creating a dictionary using the original text, the arti-
cles, questions, and answers are mapped to a vocabulary and

further mapped in the form of a vector. The results are
imported into the two-layer LSTM through the input layer,
and then the internal features of the sentence are learned
from the information output by the LSTM using the attention
mechanism. Attention overcomes the limitations in the codec
architecture by making the network aware of the input atten-
tion position of each item in the output sequence. The final
sequence label is predicted by preserving the intermediate
outputs from each step of the input sequence of the encoder
LSTM and training the model to learn to selectively focus
on these inputs and associate them with items in the output
sequence.

1) DATA
This experiment uses 10034964 pieces of data from the Penn
Treebank Corpus. Adjacent sentences can be derived from
paragraphs or adjacent paragraphs. Due to the particularity
of the data, the output and unit state of the last hidden layer
of each batch of data are used as the input of the next hidden
layer and unit state.

In the experiment, we used perplexity (ppl) to measure the
language model, implemented a two-layer LSTM network,
and then, the LSTM results were used to predict the prob-
ability of the next word appearing. We calculate the cross
entropy of each probability and the actual next word, then
we sum them up and calculate the power of e to obtain the
confusion ppl. By calculating the ppl, the probability of a
sentence appearing is calculated based on each word, and the
sentence length is used for normalization. It is expressed as
follows:

PP (S) = P(w1,w2 . . .wn)−
1
N (9)

Here, S represents the sentence, N is the sentence length,
and P(wi) represents the probability of the i-th word. If the
ppl decreases, P (wi) becomes larger and the model becomes
more accurate.

The variation curves of the training ppl of NEWLSTM are
shown in Fig. 2, respectively. It can be seen that the initial pre-
diction accuracy rate is very low. As the number of iterations
increases, the validation ppl and training ppl first decrease
significantly, the prediction accuracy rate greatly increases,
and it finally stabilizes after the number of iterations is greater
than 5.

2) RESULTS
The evaluation index of the experiment is the perplexity,
which is calculated simultaneously for the training set and the
test set. Some of the hyperparameters used in this paper are
divided into small, medium, and large specifications, which
are mainly derived from the experience of previous paper
studies, such as the learning rate, themaximum gradient value
used to control the exploding gradient, and the dropout ratio.
In addition, some parameters are configured according to the
depth of the LSTM and hardware conditions, such as the
batch size and the number of GPUs. To verify the validity of
ourmodel, we use the three configurations of Small,Medium,
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FIGURE 2. Training ppl of NEWLSTM.

and Large for comparison. The experimental configurations
are as follows.

In our experiment, we chose the traditional LSTM and
the classic LSTM variant for the experimental comparison.
Salem and Fathi [30] proved that by simplifying the LSTM
layer, three different LSTM variants, SLIM1, SLIM2, and
SLIM3, can be obtained. It is possible to speed up the train-
ing and running time by changing the configuration of the
parameters with limited performance changes. PhasedLSTM
converges faster than traditional LSTM, improves the perfor-
mance of LSTM, and reduces the amount of calculations by
orders of magnitude at runtime [31]. HyperLSTM generates
non-shared weights for LSTM, requires fewer parameters to
learn, and obtains nearly new results on various sequence
modeling tasks [32]. DA-LSTM is beneficial for processing
sequential data with a non-uniform information distribution,
learning the potential structure of the sequential input, and
dynamically adjusting the number of operations performed,
and it can greatly reduce the amount of calculations [21].

In this experiment, the CPU of the machine operates at
2.8 GHz, and its L3 cache is 6 MB. The size of the
model and the number of training rounds are sequentially
increased according to the three different specifications of
Small, Medium, and Large. Through the prediction analysis
of the language sequence, different experimental results are
obtained.

As seen from the comparison of the results of the three dif-
ferent configurations, compared to LSTM, SLIM1, SLIM2,
and SLIM3, the NEWLSTMmodel can better solve the prob-
lem of sparse words, the prediction of language sequences
is good, and the overall performance exceeds that of the
traditional LSTM. Experiments have shown that although
the standard LSTM imposes a certain structure, the actual
performance is not as good as that of NEWLSTM. Selecting
the best hyperparameters in SLIM1, SLIM2, and SLIM3may
achieve powerful performance in each variable. However,
it can be seen that the performance of NEWLSTM in the three
specifications is relatively stable.

For PhasedLSTM, due to the incompatibility between
the underlying structure involved in the sequence and the

TABLE 1. Three configurations of the experiment.

TABLE 2. ppl in Small configuration.

time assumptions of the phased LSTM, the effect cannot
exceed that of NEWLSTM. In all experimental comparisons,
the performance of DA-LSTM is not very good. HyperLSTM
shows good performance under the small experimental con-
figuration, but as the experimental specifications increase,
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TABLE 3. ppl in Medium configuration.

TABLE 4. ppl in Large configuration.

FIGURE 3. Average time taken for each training iteration.

its perplexity also increases, and the performance of the
structure decreases.

Under the three different configuration specifications of
Small, Medium, and Large, the average time taken by each
LSTM iteration and variant during training is shown in Fig. 3.

The NEWLSTM simplifies the processing of the input gate
in the LSTM and combines it with the forget gate to simplify
the calculation complexity. As shown in Fig. 3, for the three
different specifications of the NEWLSTM configuration,
the time consumed during the iteration has been effectively
reduced In addition, the performance ismore stable than those
of SLIM1, SLIM2, and SLIM3, and the time consumed does

not fluctuate greatly. The time consumed by the traditional
LSTM has not changed significantly with the change of the
configuration specifications.

From the experiment, we can see that the convergence
time of the single-cell structure is significantly shorter than
that of the layered structure. Compared with the traditional
LSTM and multiple LSTM variants, NEWLSTM maintains
a simple structure, reduces the amount of calculations, and
greatly reduces the convergence time.

V. CONCLUSION
Aiming at the shortcomings of the complex parameters in
LSTM, the large amount of calculations, and the large loss
of information transmitted too far away, this paper proposes
an optimization model called NEWLSTM. It combines the
current input information with the cell state after processing,
and the information is loaded at each time. The steps are
transmitted, then the information is accumulated in the cell
unit, and finally the output gate judges whether the informa-
tion is propagated to the final state. NEWLSTM improves
the vanishing gradient problem of LSTM. By receiving the
input information and predicting the language sequence,
experiments prove that compared with the traditional LSTM
model, the language sequence prediction accuracy of the
NEWLSTMmodel is higher, which can effectively reduce the
iteration time. Compared with SLIM1, SLIM2, and SLIM3,
NEWLSTM does not experience large fluctuations in the
training time due to configuration parameter changes, and
its performance is relatively stable. The predictions of the
model in natural language processing show a more optimized
effect than those of LSTM and can better solve the problem
of sparse words.
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