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ABSTRACT Ant Colony Optimization (ACO) is a widely applied meta-heuristic algorithm. Little researches
focused on the candidate selection mechanism, which was developed based on the simple uniform distribu-
tion. This paper employs the Levy flight mechanism based on Levy distribution to the candidate selection
process and takes advantage of Levy flight that not only guarantees the search speed but also extends the
searching space to improve the performance of ACO. Levy ACO incorporating with Levy flight developed
on the top of Max-min ACO. According to the computational experiments, the performance of Levy ACO
is significantly better than the original Max-min ACO and some latest Traveling Salesman Problem (TSP)
solvers.

INDEX TERMS Ant colony optimization, Levy flight, Levy distribution, traveling salesman problem.

I. INTRODUCTION
A meta-heuristic is a high-level problem-independent algo-
rithmic framework that provides a set of guidelines or strate-
gies to develop heuristic optimization algorithms. Most of
them based on a metaphor of some natural or man-made
process, i.e, Particle Swarm Optimization (PSO) [1], [2] [3],
Simulated Annealing [4]–[6], Whale Optimization Algo-
rithm [7], [8], Moth-flame optimization [9], and Salps
algorithm [10].

Invented by Marco Dorigo in 1992 [11], Ant Colony Opti-
mization (ACO) is a meta-heuristic inspired by the behavior
of real ant colonies. The first example of such an algorithm
is the Ant System which was proposed using as example
application of the well-known Traveling Salesman Problem
(TSP) [12].

Many researchers conducted in-depth studies and pro-
posed various improved versions of ACO. For instance,
the variants of ACO such as Elite Ant Colony algo-
rithm [12], Rank-based Ant Colony algorithm [13],
Max-min Ant Colony Optimization algorithm (Max-min
ACO) [14] and Ant Colony System algorithm [15] were
developed. ACO algorithm was applied not only for
solving TSP [15]–[19] but also for other optimization
problems such as Vehicle Routing Problem [20]–[25],

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

Quadratic Assignment Problem [26], [27], Job-shop Schedul-
ing Problem [28]–[30], etc. In the latest ACO survey
papers [31], [32], the authors stated that the most current
research activities in this area were focusing on 1) incor-
porating ACO with other meta-heuristics such as Simulated
Annealing [4]–[6], Genetic Algorithm [33], Tabu Search [34],
Particle SwarmOptimization (PSO) [35], [36], and 2) various
applications of ACO. Max-min ACO is still one of the state-
of-the-art ACOs according to Dorigo and Stützle’s survey
paper [32] in 2019, and is selected in the benchmark of this
manuscript.

ACO is a kind of Reinforcement Learning
algorithm [15], [37]. In Figure 1 and 2, the ant, pheromone,
road network in ACO are equivalent to the agent, reward,
environment in Reinforcement Learning. A critical problem
in Reinforcement Learning is the exploration/exploitation
dilemma [38], and the proposed Levy ACO is designed to
resolve it effectively.

The ants in ACOmake probabilistic decisions according to
the pheromones and heuristic information when constructing
a feasible solution. The distribution of selection probabil-
ity used to choose the next site is critical when solving a
TSP [12]. Levy distribution has a property called fat-tailed
or heavy-tailed, which means that their tails are thicker than
other distributions. With Levy distribution, the tail portion
will have a higher probability to be chosen by Levy ACO that
leads to diversified solutions. Furthermore, an increase in the
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FIGURE 1. Ant colony optimization prototype.

FIGURE 2. Reinforcement learning diagram.

diversity of solutions would be more likely to find the optimal
solution.

Levy flight [39] is a type of random walking pattern con-
forming to Levy distribution. The step length of the Levy
flight follows Levy distribution. Levy flight has isotropic ran-
dom directions when walking in a multidimensional space.
Many animals’ foraging movements reveal Levy flight fea-
tures, e.g., they spendmost feeding time around a current food
source and occasionally travel long-distance to find the next
good food source efficiently [40], [41]. Levy flight mecha-
nism has been applied to improve some meta-heuristics such
as Particle Swarm Optimization (PSO) [1]–[3], Artificial Bee
Colony algorithm [42], Cuckoo Search algorithm [43], [44].
It can be directly employed in spatial search approaches, for
instance, PSO and Cuckoo Search algorithm, but cannot be
directly applied in ACO without appropriate design.

II. METHODS
A. RESEARCH BACKGROUND
In this paper, the classic TSP is used as the application for
the proposed Levy ACO. When solving a TSP, ACO uti-
lizes positive feedback to increase the pheromone to focus
on better solutions and negative feedback to decrease the
pheromone to reduce the impacts of historical solutions [12].
An efficient ACO algorithm should have the capability of
finding solutions as satisfactory as possible within a short
period by balancing exploration and exploitation effectively.

In the ACO algorithm, the probability of being chosen for
all possible candidate sites are derived from their pheromone
and heuristics (attractiveness of candidate edge for TSP) in

FIGURE 3. Probability of being chosen for sorted candidate sites for an
instance with 100 sites.

Formula 1. Ants select a site to visit from candidate sites
according to a selection probability which is a random num-
ber (uniformly distributed between 0 and 1). The probabil-
ities of being chosen for candidate sites is determined by
Formula 1 in which node i is the current site, node j and s are
candidate sites, τ is the pheromone, η is the attractiveness, α
and β are impact factors for τ and η, and Pij is the probability
of being chosen for node j from node i.

Pij =


(τij)α(ηij)β∑
(τis)α(ηis)β

, j, s ∈ allowed

0, otherwise
(1)

The probabilities of being chosen for candidates are expo-
nentially distributed due to the power function of attractive-
ness η in Formula 1. The candidates are sorted descending
by their probabilities of being chosen. The sorted result is
called the candidate list in this paper. Due to the property
of the exponential function, the probability of being chosen
for a candidate declines quickly and approaches when its
position increases in the candidate list. Figure 3 depicts the
probabilities of being chosen for the candidate sites in a TSP
instance with 100 sites. Since sites are sorted descending by
their probabilities of being chosen, the chances to be selected
for sites with a smaller index is relatively higher than those
with a greater index. For most sites, their probabilities of
being chosen are less than 1% which means they almost
have no chance to be selected, and this limits the selection
scope and compromises the exploration of solution spaces.
The proposed Levy ACO aims to improve the exploration
strategy and therefore improves the diversity of solutions for
achieving a better solution efficiently.

B. LEVY FLIGHT AND LEVY DISTRIBUTION
The Figure 4 illustrates the difference between Levy, normal
and Cauchy distributions. Levy distribution is a fat-tailed one,
and the possibility in its tail is larger than the probability at
the same position in normal and Cauchy distributions. The
Figure 5 from the paper [41] depicts the Brownian motions
upon uniform distribution and Levy flight following Levy
distribution. The search area covered by Levy flight is much
larger than the one by Brownian motion within the same
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FIGURE 4. Levy distribution.

FIGURE 5. Levy flight.

1000 steps. Part b in Figure 5 depicts the zoomed-in trajectory
of the correspondingBrownianmotionswhich bouncemainly
around the current spot with a step length of 1.

The flying distance is defined as the step length S for Levy
flight in this paper and can be greater than 1. The standard
Levy distribution is given in Formula 2.

S =


µ

|ν|(1/β)
, if S > 1

1, else,
µ ∼ N (0, σ 2

µ), ν ∼ N (0, σ 2
ν )

(2)

Formula 2 illustrates how to compute the step length S,
which is the most important part of the Levy flight mecha-
nism. Variables µ and ν follow a normal distribution while β
is a fixed parameter. Step length S is a non-negative random
variable following Levy distribution and associated with a
direction uniformly distributed in 2- or 3-dimension depend-
ing on particular applications. In our study, no direction needs
to be considered when Levy flight is one-dimensional that the
step length will be applied as the ratio, altering the selection
probability for choosing a candidate in Levy ACO.

Nevertheless, the calculation of a step length S for Levy
flight in Formula 2 is complicated and time-consuming due
to two normal distributions and one power function. The
computational time of Levy ACO will increase significantly
if Levy distribution is directly applied, where the Levy flight
function must be called repeatedly in the solution procedure.
And Formula 2 cannot be directly applied in ACO as candi-
date selection probability when step length S is greater than
or equal to 1. Therefore, the Levy flight mechanism needs
some special designs before adopted as an efficient candidate
selection mechanism.

C. INTEGRATING LEVY FLIGHT WITH ACO
The solution procedure of the proposed Levy ACO is similar
to the classic ACO except for the application of Levy flight
to alter the random number used to select the next site.
Algorithms 1 and 2 present the candidate selection mecha-
nisms for comparison.

Algorithm 1 The Candidate Selection Mechanism in Levy
ACO
1: Sort the sites in the candidate list by their probabilities of

being selected
2: Generate a uniform random number Pnow between 0 and

1
3: Generate another uniform random number Plevy between

0 and 1
4: if Plevy ≥ Pthreshold then
5: Pnew = 1−A ∗ 1−Plevy

1−Pthreshold ∗ Pnow
6: else
7: Pnew = Pnow
8: end if
9: return The next site be selected using Pnew from the

candidate list

Algorithm 2 The Candidate Selection Mechanism in
Max-Min ACO
1: Generate a uniform random number Pnow between

0 and 1
2: return The next site be selected using Pnow from the

candidate list

As we discussed above, sites with smaller indices in the
candidate list will be selected more frequently while the rest
sites have little chance to be selected when their probability
of being chosen are sorted in non-increasing order, which can
be observed from Figure 3. This undesired scenario can be
improved in Levy ACO by using the proposed Levy flight
mechanism.

The original uniformly distributed random number to
select the next site will be altered by the step length of Levy
flight in Levy ACO. The new random number altered by
the step length should still range between 0 and 1 and will
encourage Levy ACO to favor the candidates with lower
probabilities of being chosen (will be discussed in more detail
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below). Therefore, Formula 4 is designed to appropriately
implement the Levy flight mechanism in Formula 2. Step
length S in Formula 2 is replaced by Snew in Formula 4 that
only uses one single uniformly distributed variable Plevy for
simplifying the calculation. Formula 5 shows the conversion
to obtain the altered random variable Pnew, which is the final
selection probability for candidates. Since the sites in the
candidate list are sorted descending by their probability of
being chosen, the alteration mechanism presented by For-
mula 5 will ‘‘increase‘‘ the original random number so that
it inclines to choose those candidates not in the front of
the candidate list. As a result, these original ‘‘unfavorable‘‘
sites will more likely be selected so that diverse solutions
will be found.

Snew =


1
A
∗

1−Pthreshold
1−Plevy

, if Snew ≥ 1

1, else
(3)

1− Pnew =
1

Snew
∗ (1− Pnow) (4)

Pnew

=


1− A ∗

1− Plevy
1−Pthreshold

∗ (1− Pnow), if Plevy

≥ Pthreshold
Pnow, else

(5)

• Snew: New step length for Levy flight, Snew ≥ 1;
• A: Fixed parameter of Levy flight Altering ratio, A ≥ 0;
• Pthreshold : Fixed parameter of Levy flight threshold, 0 <
Pthreshold < 1;

• Plevy: Probability for turning on/off Levy flight altering,
a uniform distribution based variable, 0 < Plevy < 1;

• Pnow: Original selection probability before Levy flight
altering, a uniformly distributed variable, 0 < Pnow < 1;

• Pnew: Final selection probability after Levy flight alter-
ing, 0 < Pnew < 1;

Formula 4 is designed to ensure that the altered random
variable Pnew will always between 0 and 1 as a selection
probability.

In Formula 5, two predefined parameters are needed,
namely, Pthreshold (Levy flight threshold) and A (Levy flight
altering ratio). For the Levy flight mechanism, Pthreshold is
defined how often it will be turned on and A decides its
altering effect.

The original random variable Pnow is uniformly distributed
in [0, 1] for all candidate sites. The altered random vari-
able Pnew in Levy ACO decreases the probability of being
chosen for the sites with smaller indices while increases
those with larger indices in the candidate list to achieve
more diversified solutions. The probability distribution of
Pnew with Pthreshold = 0 and A = 1 is plotted in Figure 6.
Different values of Pthreshold and A should be tuned to create
a more efficient process. This paper is based on our previous
paper [45].

FIGURE 6. Density of selection probability for candidate site.

III. COMPUTATIONAL EXPERIMENTS
The computational experiments were carried out to bench-
mark the proposed Levy ACO against Max-min ACO and the
recent TSP solvers.

A. DATA AND ENVIRONMENT SETTINGS
Levy ACO was implemented on the top of the open-source
code (Http://www.aco-metaheuristic.org/aco-code/) devel-
oped by Thomas Stützle (the author of Max-min ACO). The
source code covers Max-min ACO and some other ACO vari-
ants. Though TSP is a classic and well-studied combinatorial
problem, it is an NP-hard problem used quite often for ACO
performance benchmarks. Furthermore, the Max-min ACO
source code used in this paper is merely designed for TSP
and supports the standard TSPLIB instances with best-known
solutions. Every benchmark ran 100 trials for each TSPLIB
instance with the same parameter setting when concerning
the stochastic property of ACO. Ten instances include gr202,
lin318, gr229, gil262, kroA200, ts225, kroB200, pr226,
tsp225 and pr299 from TSPLIB (http://elib.zib.de/pub/mp-
testdata/tsp/tsplib/tsplib.html) were selected for the bench-
mark. For a fair comparison, parameters used both in
Max-min and Levy ACO were the same that he parameter
vector (pheromone evaporation rate, alpha, beta, population
size) was set to be (0.1, 1, 2, 50). The running time for each
trial was set to a maximum of 86400 seconds to provide
enough running time for the best-known solutions. Source
code and running script of Max-min ACO and Levy ACO are
both available at https://github.com/akeyliu/levyacotsp/.

Both Max-min ACO and Levy ACO employ a pheromone
re-initialization mechanism. It monitors the solution proce-
dure continuously and resets all pheromones to their max
value when stagnation occurs, i.e. the solutions converge to
a common path. This mechanism attempts to escape from
local optima and find the best-known solution within enough
iterations and computational time. Thanks to this mecha-
nism, many small- or medium-scale TSPLIB instances can
obtain their best-known solutions, including all ones used in
this paper. During the benchmark, both Max-min ACO and
Levy ACO employed other improvement procedures includ-
ing nearest neighbor and the 3-opt local search. The iterations
when obtaining the best-known solutions were recorded for
performance comparisons and included the iterations of the
3-opt local search in Max-min ACO or Levy ACO. It is a
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more suitable index than the running time for algorithm per-
formance due to the latter is more dependent on the hardware
(CPU), programming language, and parallel mechanism, etc.

The computing environment for the benchmark was Win-
dows 10 × 64, CPU 8 cores at 2.7GHz, Memory 32GB. The
programming language for the implementation was C which
is used for Max-min ACO.

B. PARAMETERS TUNING FOR LEVY ACO
According to our experience, smaller Levy flight threshold
and Levy flight altering ratio will speed up the convergence
but easy to fall into local optimal solutions. On the other hand,
more exploration will help to search more solution space and
yet require prolonged searching time or more iterations. It is
critical to find a reasonable parameter setting to balance the
exploration/exploitation to find the optima more effectively.

The corresponding computational experiments were con-
ducted for tuning the parameters of Levy ACO, namely Levy
flight threshold Pthreshold and Levy flight altering ratio A in
Formula 5. Ten instances were chosen to perform parameter
tuning. For each parameter setting, 100 trials were carried out,
and a few metrics were applied to determine the quality of a
certain parameter setting.

Parameter Levy flight threshold in Formula 5 varying from
0 to 1 with a step length of 0.1 was evaluated and analyzed.
As expected, the smaller Levy flight threshold is, the more
exploration is. Parameter Levy flight altering ratio in For-
mula 5 varying from 0 to 10 with a step length of 0.5 was
evaluated as well. The result tells that the larger Levy flight
altering ratio is, the more exploration is. Please note that
Levy flight will be switched off if the Levy flight threshold
or altering ratio is set to 0 and Levy ACO degenerates to
Max-min ACO.

There were 231 parameter combinations for the Levy flight
threshold and altering ratio in the experiment. All trials found
the best-known solutions.

To measure the effectiveness of certain parameter setting,
a metrics named improvement percentage on iterations was
defined as follows:

For the given set of parameters, letNmaxmin(i) be the average
of iterations to find the best-known solution of the ith instance
in 100 trials for Max-min ACO while Nlevy(i) be the one
for Levy ACO, then the average of improvement percent-
age on iterations over K instances is defined as

∑K
i=1(1 −

Nlevy(i)/Nmaxmin(i))/K , and K was 10 in our experiment. It’s
conceivable that the higher average improvement percentage
on iterations is, the better performance of Levy ACO is for
the given parameter setting.

In Figure 7, the No.188 parameter combination is the
best one where the Levy flight threshold is 0.8 and altering
ratio is 9.5, and the following computational experiments
employed this parameter setting.

C. BENCHMARKS BETWEEN MAX-MIN ACO
AND LEVY ACO
The computational experiments were conducted by employ-
ing the ten instances and the results of Levy ACO and

FIGURE 7. Average performance improvement percentage for parameter
tuning.

FIGURE 8. Benchmark for instance of korA200.

FIGURE 9. Benchmark for instance of korB200.

Max-min ACO are plotted in Figures 8, 9, 10, 11, 12, 13, 14,
15, 16, 17 which depict the iterations when the best-known
solutions of the tested TSP instances are obtained. The aver-
age of required iterations to reach the best-known solutions
in Levy ACO is lower than in Max-min ACO, and this may
imply that Levy ACO can achieve the best-known solutions
faster than Max-min ACO does.

Three non-parametric tests called Wilcoxon, rank sums
and Mann Whitney U tests were applied to check if Levy
ACO and Max-min ACO perform similarly. For each TSP
instance, the iterations of these two algorithms to reach the
best-known solutions for all 100 trials were input to the func-
tion wilcoxon(), ranksums() and mannwhitneyu() in Python
package scipy.stat. The outcomes are presented in Table 1.
The performances of underlying algorithms are significantly
different since the associated P values are less than 0.05 or
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FIGURE 10. Benchmark for instance of gr202.

FIGURE 11. Benchmark for instance of ts225.

FIGURE 12. Benchmark for instance of tsp225.

FIGURE 13. Benchmark for instance of pr226.

even 0.001 for the ten instances. Together with the results
presented above, we conclude that Levy ACO can achieve
best-known solutions faster than Max-min ACO.

Further statistical analyses are conducted upon the
achieved results. In Table 2, the computational results are

FIGURE 14. Benchmark for instance of gr229.

FIGURE 15. Benchmark for instance of gil262.

FIGURE 16. Benchmark for instance of pr299.

FIGURE 17. Benchmark for instance of lin318.

listed for Levy ACO and Max-min ACO. The following
metrics are applied to both approaches:

• Average iterations: the average iterations to reach the
best-known solution which used to evaluate the speed
of the algorithm;
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TABLE 1. Statistical testing (P value) for the benchmark analyses.

TABLE 2. Benchmark for max-min ACO and Levy ACO.

• Iteration variance: the variance of iterations to reach the
best-known solution which applied to judge the stabi-
lization of the algorithm;

Table 2 also presents the improvement magnitude of Levy
ACO over Max-min ACO for all tested TSP instances regard-
ing the above metrics.

D. BENCHMARKS AGAINST THE LATEST TSP SOLVER
To benchmark the proposed algorithm against other ACO-
based state-of-the-art TSP solvers, PSO-ACO-3Opt [35]
and PACO-3Opt [36] which most cited recently in Google
Scholar were selected. These algorithms hybridize Particle
Swarm Optimization, Ant Colony Optimization and 3-opt.
The corresponding papers presented computational experi-
ments for a set of TSP instances, in which each instance
was solved with 20 trials and within maximal 1000 iterations
per trial to evaluate the performance. Specifically, instances
berlin52, ch150, eil101, eil51, eil76, kroA100, kroB200,
lin105, rat99 and st70 from TSPLIB were employed to per-
form the corresponding computational experiments.

To conduct a fair comparison, Levy ACO was applied
to solve the same 10 instances mentioned above. For each
instance, the iterations achieving the best-known solution
for the corresponding 20 trials are listed in Table 3, and
the best solutions found within 1000 iterations are presented
in Table 4.

TABLE 3. Iterations for Levy ACO to achieve the best-known solutions.

TABLE 4. Best solutions for Levy ACO in 1000 iterations.

PSO-ACO-3Opt and PACO-3Opt algorithms could not
reach all the best-known solutions within the given 1000 iter-
ations according to the outcomes in paper [35] and [36]. The
best solutions obtained by PSO-ACO-3Opt/PACO-3Opt and
Levy ACO within the same 1000 iterations are presented
in Table 5. With the same iterations, the proposed Levy
ACO can achieve better solutions comparing to PSO-ACO-
3Opt/PACO-3Opt.

Another latest TSP solver selected for a benchmark is the
hybrid Genetic Algorithm (GA) with Multi-agent Reinforce-
ment Learning (MARL), which also applies 2-opt and nearest
insertion into the convex hull local search (NICH-LS) [46].
The same instances were solved by the underlying algorithms

VOLUME 8, 2020 67211



Y. Liu, B. Cao: Novel ACO Algorithm With Levy Flight

TABLE 5. Best solutions obtained in 1000 iterations by compared algorithms.

TABLE 6. Best solutions obtained in 10000 iterations by compared algorithms.

TABLE 7. Best/Average solutions obtained in 500 iterations by compared
algorithms.

with the limit of 10,000 iterations, and the results presented
in Table 6 confirm the superiority of Levy ACO.

The Whale Optimization Algorithm (WOA) and two
improved versions of binary WOAs called bWOA-S and
bWOA-V in paper [8] are applied to benchmark with Levy
ACO under the same condition (30 trials, 20 agents, and
500 iterations), and the result is listed in Table 7. The Levy
ACO performances better than all of them and can deliver the
best-known solutions.

IV. CONCLUSION
The proposed Levy ACO was developed on the top of
Max-min ACO by applying the Levy flight mechanism.
The computational experiments reveal the superiority of the
proposed approach. Levy ACO can reach the best-known
solutions with fewer iterations comparing to Max-min ACO
(an average 42.03% deduction in iterations and 46.94%

deduction in iteration variance for all tested TSPLIB
instances) and some latest TSP solvers within the given
iterations.

Since ACO is a Reinforcement Learning algorithm,
the proposed Levy flight mechanism can also be employed to
other Reinforcement Learning or Multi-agent Reinforcement
learning algorithms for the exploration/exploitation dilemma.
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