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ABSTRACT Conventional geomagnetic field-based indoor positioning and localization techniques deter-
mine the user’s position by comparing the database with the geomagnetic field strength collected by the user.
However, the magnetic field strength collected from various devices varies significantly. So, the greater the
difference between the geomagnetic field strength stored in the database and user collected geomagnetic
field strength is, the lower the degree of location accuracy will be. The diversity of smartphone makes
it impossible to develop a single database which can work with all the smartphones in the same fashion.
Intending to solve these problems, this paper proposes the use of geomagnetic field patterns called MP
(Magnetic Pattern) with CNN (Convolutional Neural Networks) to perform indoor localization. The database
is constructed using the MP that occurs at the points of measurement while the location is calculated
using CNN which matches the user collected MP with the database. A voting mechanism is contrived to
combine the predictions from several CNNs and the user’s position is finally estimated. To evaluate the
performance of the proposed technique, Samsung Galaxy S8 and LG G6 are used in two buildings with
different experimental environments and path geometry. The proposed approach is tested by two male and
two female users for analyzing the impact of user heights. Experiment results show promising results;
furthermore, the comparison analysis with other magnetic indoor localization approaches demonstrate that
the proposed approach outperforms them.

INDEX TERMS Indoor localization, convolutional neural networks, magnetic field data, pedestrian dead
reckoning, deep learning.

I. INTRODUCTION
Indoor positioning and localization have emerged as a
potential area for research and development during the last
few years. The wide proliferation of smartphones initiated
the emergence of LBS (Location-Based Services) that require
precise location information of the user both outdoor and
indoor. The outdoor location can be served by GPS (Global
Positioning System) with high accuracy [1], however, its
performance in the indoor environment is limited by many
factors like signal blocking due to roofs, walls, tall build-
ings, and the availability of a low number of satellites in
tunnels and canyons. A large number of indoor positioning
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technologies have been introduced that include Bluetooth [2],
RFID (Radio Frequency Identification) [3], PDR (Pedestrian
Dead Reckoning) [4], and Wi-Fi [5]. These technologies
can be divided into two categories concerning the base
infrastructure: infrastructure-dependent systems and
infrastructure-independent or infrastructure-free systems.
Infrastructure-dependence in this study refers to the instal-
lation of additional sensors or hardware without which these
systems cannot perform fully. These technologies, however,
are expensive as they require the installation of additional
hardware in the environment where localization is to be
performed. On the other hand, infrastructure-independent
systems utilize already available resources in the form of
sensors or widely available Wi-Fi APs (Access Points) to
carry out the localization process. For example, the PDR
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system can utilize the accelerometer and gyroscope of the
smartphone to track the path of a user, still, it can provide
a relative position only and always need a starting position.
Recently, large-scale buildings have been designed which
have a complicated structure. The performance of Wi-Fi
positioning systems is affected in these complex environ-
ments due to inherent limitations of radio propagation like
shadowing, and multipath, etc. and human mobility further
deteriorates the performance of Wi-Fi systems [6], [7].

The geomagnetic field (referred to as the magnetic field in
the rest of the paper) has emerged as a potential candidate for
indoor positioning and localization. A large number of indoor
localization approaches [8]–[10] have already been presented
that take advantage of magnetic field data to locate a person
in the indoor. These approaches work on the fingerprinting
technique wherein the magnetic field magnitude is stored as
fingerprints. The fingerprints are collected using the embed-
ded magnetic sensor of the smartphone. The magnetic field
is a non-radio wave resource, so it can solve the problem of
radio wave interference and other similar limitations found
in Wi-Fi-based localization. Additionally, it uses the natural
phenomenon and resources unique to the earth, so, no addi-
tional infrastructure is required. However, the performance
of magnetic field based localization systems is restricted
by many factors. Existing geomagnetic field-based indoor
positioning technology determines the position of the user
by comparing the intensity of the geomagnetic field collected
by the user with the database. However, the embedded mag-
netometer of the smartphone is sensitive and the collected
magnetic field intensity may be very different for different
smartphones. This is so because different smartphones have
a different company’s built-in magnetometer which results
in different magnetic intensity, even for the same position.
Moreover, various heights of the user result in a different
magnetic intensity as well which decreases the positioning
accuracy.

This study proposes the use of MP (Magnetic Pattern)
and CNN (Convolutional Neural Network) to resolve the
pointed out issues. The CNN is trained on MP formed
at particular locations and predictions are made using the
magnetic data collected by the user during the positioning
phase. The contribution of this study can be summarized as
follows:
• An indoor localization method is proposed which makes
the use of magnetic patterns to locate a person in the
indoor environment.

• CNN models are formulated to predict user indoor loca-
tion. The training carried out on the magnetic patterns
formed by the magnetic field intensity.

• An algorithm is devised which incorporates the predic-
tions made from the CNNs to estimate a person’s current
location in the indoor.

• Extensive experiments are carried out which involve
four users (two males and two females) to analyze the
impact of user heights on localization performance. The
training data is collected from Galaxy S8. The device

dependence is evaluated using the magnetic data from
Galaxy S8 and LG G6.

The composition of this paper is as follows. Section II
describes the research works related to the current study.
Section III gives a brief overview of geomagnetic field
characteristics and its challenges while Section IV dis-
cuses the details of the proposed indoor localization
approach. Section IV-D shows the details of the experimental
setup used for the evaluation of the proposed method. Results
are discussed in Section 3 while the conclusion is drawn in
Section VI.

II. RELATED WORK
With the wide expansion of modern smartphones with
embedded sensors, many indoor localization solutions have
emerged, such as those utilizing activity recognition and
user navigation [11]. Similarly, magnetic field-based indoor
positioning systems rely on the use of a smartphone built-
in magnetic sensor [12]. For example authors in [8] employ
the smartphone’s built-in magnetometer to collect magnetic
signatures inside a building to develop the database. Later,
the user collected magnetic signature is utilized to locate
the user in the indoor. The proposed approach can obtain an
accuracy of 2 to 6 m with a walk of 5 to 35 s. Research works
[13]–[15] utilize the fingerprinting approach for indoor local-
ization wherein the magnetic field data have been employed
to make the fingerprint database. Authors in [16] investigate
the methods to make distinguishable magnetic fingerprints
for magnetic field-based positioning systems. A feature dis-
tinguishability measurement technique is proposed which
evaluates the performance of different feature extraction
methods for magnetic fingerprints.

These geomagnetic field-based indoor positioning systems
use the KNN (K-Nearest Neighbor) algorithm to estimate
the user’s position. Indoor positioning using KNN gets K
number of position candidates through matching the user
magnetic signature against the magnetic database and uses K
position candidates to predict the user’s current location [17].
Although these techniques require a small amount of calcu-
lation and can measure the position of a user fast, yet, they
suffer from lower accuracy. The accuracy decreases when
the techniques are applied on heterogeneous devices, as the
intensity of the geomagnetic field changes even at the same
points in the positioning space. Such limitations have been
investigated and several improvements have been suggested
in this regard. Sensor fusion is a potential solution where the
data from an accelerometer and gyroscope can be utilized to
improve the localization accuracy.

Authors in [18] propose an approach that takes the ben-
efit of a smartphone accelerometer and gyroscope to find
user heading and distance information. This information is
then joined with the magnetic data to increase the posi-
tioning accuracy. The approach is evaluated with heteroge-
neous devices and the reported positioning accuracy is 4 m
at 75%. Authors in [10] leverage the use of smartphone
sensors, as well as, the use of Wi-Fi APs to locate a user
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in the indoor. The Wi-Fi APs are used to narrow down the
search space in the magnetic database which helps to lower
the localization error and elevate positioning performance.
Research work [19] proposes the use of an accelerometer
and gyroscope with the magnetic sensor to find the loca-
tion of an indoor user. First, step detection is performed
using accelerometer data. Later, the heading direction from
the gyroscope and step length is fed to a magnetic field
based location estimation algorithm which determines the
user location. The performance is evaluated using different
smartphones. Research work [20] proposes a hybrid mea-
surement model that combines a newmagnetic fingerprinting
model and the existing magnitude fingerprinting. It improves
system performance and does not require the calibration
of different smartphone magnetometers. A refined motion
model is presented as well for dynamic step length estimation
to enhance the accuracy of positioning. To overcome large
errors in motion estimation and improve the robustness of
particle filter, the particle filter is augmented with a dynamic
step length estimation algorithm and a heuristic particle re-
sampling algorithm. The performance and results of the pro-
posed model are promising.

Recently, the use of deep learning techniques has
been reported for magnetic field-based indoor localization.
Authors in [21] present an indoor localization approach that
is based on the magnetic field data. It utilizes the smart-
phone sensors to develop the database containing finger-
prints of Wi-Fi and magnetic data. Images are captured as
well at each step, during the fingerprint collection. These
images are then used to recognize a specific scene with
the help of a Caffe trained CNN model. The recognized
scenes serve as the initial estimated location which helps
Wi-Fi and magnetic modules to estimate a refined posi-
tion. A particle filter is later implemented to refine the
location from Wi-Fi and magnetic fingerprints. Similarly,
a CNN based multi-floor indoor localization approach is
presented in [22] which works on multi-sensor fusion. The
magnetic database is built using magnetic patterns to achieve
device independence. The magnetic database search space is
restricted with the CNNmodel which is used for floor, as well
as, particular place recognition. A modified KNN approach
helps to refine the localization accuracy by removing distant
neighbors.

The discussed research works are limited by one or
many of the following factors. The hybrid systems that use
Wi-Fi to either estimate the initial location or refine the
location, increase latency and are thus less appropriate for
real-time localization. Moreover, with the Android 9 (Pie),
the restriction on Wi-Fi scans (four scans per 2 min for
foreground applications) limits the localization capability of
Wi-Fi systems. Factors including obstacles, furniture, and
human mobility affect the localization process of such a
system as well [23], [24]. Wi-Fi positioning systems are
sensitive to random noise, path loss, multipath interference
and shadowing as well [25]. Moreover, iOS restriction on
the Wi-Fi data from smartphones makes Wi-Fi positioning

systems less attractive at the moment. Many of the above-
mentioned works require a longer amount of data to calculate
user position. Additionally, heterogeneous smartphonesmake
it very complicated to design a method that can work seam-
lessly with different devices and provide similar positioning
accuracy.

We, therefore, seek to minimize such limitations with
the help of magnetic data and do not depend on Wi-Fi
APs to perform localization. The magnetic data patterns are
used to train CNN classifier which can predict the user
location.

III. EARTH’S MAGNETIC FIELD
This section gives an overview of the magnetic field and its
components, as well as, discusses the challenges in using the
magnetic field data for indoor localization.

A. OVERVIEW OF THE MAGNETIC FIELD
The omnipresent phenomenon of the magnetic field on
earth’s surface is called the geomagnetic field and the global
magnetic field intensity is distributed between 20 µT to 65
µT. The magnetic field intensity remains similar within a
short space, in particular, in the outdoor. However, the pres-
ence of ferromagnetic materials like iron, steel, and steel-
reinforced concrete, etc. in the indoor makes the magnetic
field intensity diverse and disparate. The impact of these
structures becomes more dominant as the distance to such
structures decreases. These disturbances are called magnetic
anomalies and have been investigated to be used as unique
signature [26]. The magnetic field components are shown
in Figure 1a while Figure 1b shows the three axes of the
magnetometer sensor built into the smartphones.

The magnetic field possesses direction and magnitude and
requires three parameters to represent the magnetic field at
a particular point. The x, y, and z represent the north, east
and downward components, respectively. An alternate rep-
resentation is through the total intensity F, the inclination I,
and the declination D [27], which are calculated as follows,
respectively:

MagF =
√
Mag2x +Mag2y +Mag2z (1)

I = arctan(
z
H
), H =

√
x2 + y2 (2)

D = arctan(
y
x
) (3)

B. CHALLENGES IN MAGNETIC DATA-BASED
LOCALIZATION
A brief overview of the challenges in the magnetic field-
based indoor localization is desirable and an analysis of the
magnetic data from Galaxy S8 and LG G6 is performed in
this section. These smartphones have embedded magnetic
sensor and the description of each is given in Table 1. In this
paper, we collect the magnetic field data at 10Hz sampling
rate (new magnetic field sample every 100ms) using Google
device driver API.
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FIGURE 1. Details for magnetic field. (a) The components of earth’s
magnetic field, (b) axes of smartphone embedded magnetic sensor.

1) IMPACT OF TIME ON MAGNETIC FIELD
Previous research [8], [10] as well as, our experiment revealed
that the magnetic field is more stable in time than that
ofWi-Fi. However, themagnetic field is slightly mutated over
time and hence the world magnetic model is modified every
five years to accommodate the changes.

2) HOW VARIOUS SMARTPHONES BEHAVE?
The smartphones are equippedwith a built-inmagnetic sensor
than can measure the magnetic field values at any given point,
although, the values may not be the same when collected over
different times. It is, however, not the impact of time, rather,
the embedded magnetic sensor shows dis-similar behavior
and so, the magnetic values may change during data collec-
tion and localization process. The data displayed in Fig. 2
confirms the same. However, the magnetic sensor alone is
not responsible for such changes in the data, besides, shaking
smartphones while walking can cause such deviations as
well. The diverse behavior of the magnetic sensor and user
hands’ slight movements lead to different magnetic values,
as can be seen as a circled area in Fig. 2. Such variations
may seem slight but can potentially reduce the localization
accuracy.

The magnetic field is stable over time, yet, very sensi-
tive to the measurement device and process. Although, the

FIGURE 2. Magnetic field strength MagF collected during different time
with Samsung Galaxy S8.

TABLE 1. Details of the magnetometer sensors used for the experiment.

measurement mechanism is the same for all devices, even
so, the embedded magnetic sensors in various smartphones
are various companies manufactured and possess different
sensitivity and error tolerance which makes them prone to
display the different magnetic field data, even for the same
location. Fig. 3 shows the magnetic data collected using
Galaxy S8, and LG G6 during the same time by a person
following the same trajectory, yet, the magnetic values are
very different. As shown in Table 1 that the sensitivity and
error tolerance for two embedded sensors are different, so,
it results in different magnetic field values. Such variations
in the magnetic data establish that devising a single magnetic
database that can work with various smartphones seamlessly,
is not appropriate as it may show various localization results
even when the same localization algorithm is used.

3) IMPACT OF INDOOR STRUCTURE AND AREA
Localization accuracy of fingerprint database systems relies
heavily on the uniqueness of the collected ‘fingerprint’ and
large spaces make unique magnetic fingerprints more diffi-
cult. This is the case, especially, where the indoor structure is
uniform and symmetric. The larger the area is, the higher the
probability that a magnetic value may repeat itself in various
locations. This phenomenon is shown in Fig. 4 where the
magnetic values are shown for various locations. The circles
on the graph show the locations, where the magnetic value is
the same.

4) USER HEIGHT AND THE MAGNETIC DATA
Besides various smartphones, user height also has a sub-
stantial impact on the magnetic field data. Fig. 5 shows
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FIGURE 3. Magnetic field strength using Galaxy S8 and G6. (a) Magnetic F , (b) Magnetic x , (c) Magnetic y , (d) Magnetic z ,.

FIGURE 4. Magnetic field data showing same values for various locations.

the magF collected from users with different heights.
It displays two different phenomenons: consistent change
in magnetic data and sudden change in the magnetic data.

FIGURE 5. Magnetic field data collected by users of different height.

The former is on account of the user height, while the latter
may occur due to either user handmovement or sensor flawed
behavior.
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FIGURE 6. Magnetic field data using Galaxy S8. It shows only magnetic F , (a) Magnetic pattern with 1 m, (b) Magnetic pattern with 2 m,
(c) Magnetic pattern with 3 m, (d) Magnetic pattern with 4 m, (e) Magnetic pattern with 5 m, and (f) Magnetic pattern with 6 m.

The discussed limitations of the magnetic field data make
it very challenging to formulate a system using the magnetic
field data, especially with a magnetic fingerprint database.

IV. PROPOSED METHOD
This section describes the details of the proposed method
and the working process. We consider the magnetic field
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FIGURE 7. Magnetic field data collected by users of different height.

localization problem from the image processing perspective
and benefit from the CNN for that purpose. The localization
is followed in training and testing phases which are described
separately here.

A. TRAINING PHASE
The training phase comprises of data collection, pattern mak-
ing, and training using the CNN.

1) DATA COLLECTION
The data collection involves determining the ground truths
and collecting the data at an appropriate sampling rate. For
this purpose, we have divided the indoor area into a grid
of 1 m and data is collected at 10 Hz. An accurate data
collection for training can potentially improve the localiza-
tion accuracy, so, instead of collecting data while walking,
we collect the data at ground truth points and later perform
spline interpolation to generate the intermediate values. This
ensures accurate training data as against the continuous data
collection which may result in different lengths and magni-
tude of data when collected from users of various heights.

One important aspect of training data is to determine
the fingerprint which means that we need to determine the
size of the data to be used as a feature set for a particular
location. The most important quality of a fingerprint is its
distinguishability or uniqueness. Increasing the size of the
data to represent a location will increase the uniqueness, but
it will increase the training as well as the localization time.

FIGURE 8. Samples of magnetic field patterns with Samsung Galaxy S8.

on the other hand, smaller data size reduces the time but
affects the fingerprint uniqueness and ultimately degrades the
localization accuracy. Hence, a proper fingerprint size is very
critical. We analyzed various lengths of the data to determine
the distinguishability and found that themagnetic data pattern
is distinguishable with a 5 m pattern.

Fig. 6 shows that 1 m magnetic patterns are almost similar
andmake the distinction very difficult. However, as the length
of the patterns is increased they become discernible. It is clear
that P1 and P2 become dissimilar even with a length of 2 m
but P3 and P4 look almost identical when pattern length
is 3 m. With 4 m length, they become more perceptible in
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FIGURE 9. Magnetic field data collected by users of different height.

shape while 5 m patterns are distinguishable. For this reason,
we used 5 m magnetic patterns to train the CNN used in this
study.

2) PATTERN MAKING PROCESS
Patternmaking process aims at building themagnetic patterns
from the interpolated magnetic magnitude and storing it as
images that are later used for training and validation. Fig. 7
shows the pattern making process. For a particular location,
ground truth values for magnetic F , x, y, and z are taken and
spline interpolation is performed to generate the intermediate
values.

The displayed patterns shown as red, green, blue and yel-
low are then annotated with the location and used as the
training data. Fig. 8 shows a few samples which are used for
training. The patterns are stored from top to bottom starting
withmagneticF and followed by x, y, and z in the given order.

3) TRAINING USING THE CNN
In this paper, the training on the magnetic field pattern (MP)
is carried out using the CNN. CNN is a type of deep neural
network which has shown excellent performance in recogni-
tion tasks such as computer vision [28], [29]. CNN consists
of multiple layers of convolutional, pooling, and fully-
connected layers, and includes activation functions, batch
normalization layers, and dropout layers. Fig. 9 shows the
architecture of the modeled CNN which is used in this study.

In conventional CNN, since the classification is performed
using a fully connected layer as the last layer, a large amount
of computation is required and the correlation between spa-
tially adjacent data disappears. Therefore, the last layer of the
proposed method classifies the input data using global aver-
age pooling (GAP), which maintains the correlation of the
spatial data extracted from the previous layer. The magnetic
field pattern MP is 640× 96×3 in size and all convolutional
layers are composed of a convolutional layer, an activation
function ReLU (Rectified Linear Unit), and a batch normal-
ization layer. In the end, a Softmax layer outputs the predicted
position (Pos N). Batch normalization is performed using
Algorithm 1 that was proposed in [30].

The dataset is divided into training, validation and test-
ing subsets for two buildings where the experiments are
conducted. Training data is collected with Galaxy S8 while
testing is performed with Galaxy S8 and LGG6. The division
of the dataset and details about the number of samples are
given in Table 2.

Algorithm 1 Batch Normalization [30]
Input: Values of x over a mini-batch: B = {x1,...,m};

Parameters to be learned: γ, β
Output: {yi = BNγ,β (x− i)}
µB ←−

1
m

∑x
i=1xi //mini-batch mean

σ 2
B ←−

1
m

∑x
i=1(xi − µB)2 //mini-batch variance

x̂i←−
xi−µB√
σ 2B+ε

//normalize

yi←− γ x̂i ≡ BNγ,β (xi) //scale and shift

TABLE 2. Details of dataset used for experiments.

B. TESTING PHASE
The testing phase carries out data collection and normaliza-
tion, and location prediction which is discussed here.

1) DATA COLLECTION AND NORMALIZATION
Test data is collected considering various perspectives includ-
ing device diversity, user diversity, and time diversity, etc. The
data collection conditions of the geomagnetic field for indoor
positioning are set as follows:
• Use Samsung Galaxy S8 for training data and Galaxy
S8 and LG G6 for testing.

• Four different users (181cm, 177cm, 165cm, 158cm),
two males and two females, respectively. The users are
called ‘User 1’, ‘User 2’, ‘User 3’, and ‘User 4’ to show
the results.

• The height of the smartphone is fixed near the user’s
belt level, the direction is the direction to which the
pedestrian walks arbitrarily, and the trajectory is fixed
as shown in Fig. 10

• Collecting magnetic field data with large temperature
differences (summer, winter), and time zones (morning,
afternoon, evening).

The data collected for testing contain noise caused by the
user hand’s slight shaking/movements as well as, sensor’s
sensitivity level which needs normalization/cleaning as it may
adversely affect the localization prediction. In this paper,
we use the wavelet denoising technique to remove noisy
data that reduces the positioning performance [31], [32].
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FIGURE 10. The path used for experiments. (a) IT building, (b) RIC
building.

Fig. 11a shows the noisy data and Fig. 11b shows the data
after applying wavelet denoising. Once the data is clean,
we can transform the data into MP and feed it to the CNN
model for prediction. But before we can do that we need
to determine the length of the magnetic pattern, as, the MP
should be from 5 m magnetic data.

The length of the MP is determined with the help of dis-
tance calculation d traveled by the user, which is achieved
with two sub-procedures: step count and step length estima-
tion. Sli shows the step length of detected step i, while Sn rep-
resents the total number of steps which are 1, 2, . . . , n. Step
detection and heading estimation h are calculated using the
algorithm proposed in [18] and is based on peak detection in
the smartphone accelerometer data. After step detection, step
length of ith step Sli is estimated with Weinberg model [33]:

Sli =
k
√
amaxi − amini (4)

where amaxi , and amini stand for the maximum and minimum
acceleration, respectively and k is the step constant whose
value is pre-determined during the data collection. Once step
length estimation, step detection and heading estimation h is
done, the distance of MP can be calculated as:

d =
∑n

i=1

√
(Si × Sli × cos(h)+ Si × Sli × sin(h))2 (5)

Once the length of MP has been determined and it is at
least five m long, then it is used as an input to the trained
CNN models. The output of these models is later utilized to
estimate the current position of the user in the indoor using
Algorithm 2.

C. INDOOR POSITIONING TECHNIQUE USING
CONVOLUTIONAL NEURAL NETWORK
This study makes use of five CNNs for user position pre-
diction. Algorithm 2 approximates the user’s current position
with the help of predictions from those CNNs.

Line 1-2: Initially, m predictions from n CNNs are taken
where bothm and n are five. The number ofm is an empirical
value where the experiments revealed that top m predictions
have a high probability of predicting the correct position of
the user. So, Pr contains m × n values where each value
represents an (x, y) position.

Line 3-8: After taking m predictions from CNNs, they
need to be consolidated such that a single position can be
estimated. For this purpose, a criterion similar to hard voting
is defined where the frequency of each predicted position is
counted. The predicted positions from one CNN are taken and
compared with predictions from the rest of the CNNs to find
the distance between predictions:

dis =
√
(xiCNN1 − xiCNN2 )2 + (yiCNN1 − yiCNN2 )2 (6)

where, dis represents the distance/error in the predictions of
different CNNs. Now the frequency is increased with the
following defined criteria:{

if dis ≤ ε add frequency
otherwise donot add

(7)

where ε shows the error margin considered to count the fre-
quency of a predicted position. Its value is important because
a higher value would increase average positioning error but
likely to reduce the maximum error and a smaller value is
highly prone to higher maximum error but can substantially
reduce the average error. If we set the value too high, we may
be unable to have multiple occurrences of the same prediction
which would ultimately affect the positioning accuracy. The
value set for ε is 1 for this study and based on the empirical
finding.

Algorithm 2 Position Estimation With CNN
Input: Predictions from CNNs.
Output: User’s current position (x, y)

1: get m predictions Pr from n where m, n = 1, 2, . . . , 5
2: get Ps for each Pr
3: for i←− 1 to m do
4: for j←− 1 to n do
5: dis←− calDis(Pri ,Prj )
6: Pc←− findFreq(dis,Pri , [Psi ,Psj ])
7: end for
8: end for
9: Cp←− makeCluster(Pc)

10: Cw←− defClustWt(Cp)
11: Pp←− estimatePos(Cw,Cp)
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FIGURE 11. Collected magnetic field data. (a) noisy data, (b) cleaned data.

FIGURE 12. Graphical description of Algorithm 2, starting from predictions of CNNs to users current position estimation.

Line 9: When the count of occurrence of each prediction
is completed, the predictions are clustered into Cp clusters
based on their spatial closeness Sc which is the Euclidean
distance between two given positions from Pc. The number
of clusters depend on the sparsity of the predicted positions
from CNNs. To make clusters, following criteria is used:{

if Sc ≤ δ add to Cpi
otherwise add to µ

(8)

where µ represents a set of all predictions which are sparse
and do not fit in any cluster. These predictions are not con-
sidered further to estimate the user’s position. The value of δ
is defined empirically and set to 2, in case of larger value the
cluster becomes sparse and positioning accuracy deteriorates,

while the lower value may result in very small clusters which
are not suitable for position estimation.

Line 10: Cluster weight is defined with two parameters:
number of predictions NPc in a cluster Cpi and average
frequency fa. Average frequency is calculated as follows:

fa =
1
NPc

N∑
i=1

Pc(Cpi ) (9)

Line 11: The estimated position is the centroid of the
cluster with higher weight. In the case of a tie, it is resolved
with Ps which represents the probability score of each pre-
diction from CNNs. At line 6 of Algorithm 2, the probability
score of predicted position is added as well. The cluster
with a higher average of Ps is selected for the final position.
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FIGURE 13. Location estimation process, (a) Top m predictions from all CNNs, (b) Unique predictions, (c) Clustered and
unclustered positions, and (d) Cluster chosen for position estimation and final predicted position.

A working example and results are shown in Fig. 12 and
Fig. 13, respectively.

D. EXPERIMENT SETUP
Experiments have been conducted in two buildings of a
University campus which are separated by one kilome-
ter. The first building is the department of Information
Technology (IT) whose dimensions are 92 × 34 m and it
contains a corridor in the center which is approximately
3 m wide. Testing is performed using the corridor area
which is a straight path with five left turns and four right
turns. The trajectory used for the IT building experiment
is shown in Fig. 10a. The second building is the Industry-
Academic Cooperative Technology (IACT) building and
28 m wide and 44 m long. The test corridor is 2.4 m
wide and the trajectory of the experiment path is shown
in Fig. 10b.

Experiments are performed with two smartphones of vari-
ous brands: one from LG and is LG G6 ((LGM-G600L), and
one from Samsung and is Galaxy S8 (SM-G910S). Training
data is collected with Galaxy S8 alone while the testing
is performed with both the smartphones. Training data is
collected by ‘User 1’, and ‘User 3’, which are a male and

a female, respectively and testing is performed for each user
separately.

During the training data collection, the position of the
smartphone is fixed, whereby the user can move in any
direction but he is not allowed to change the orientation of
the smartphone. The same restriction is valid for test data
and this assumption has been considered by the majority of
works that use the magnetic field data [10], [34], [35]. The
user starting position is not known for our technique and the
user may choose any arbitrary position and direction to start
the walk along the defined trajectory.

V. RESULTS
A. PERFORMANCE ANALYSIS OF THE PROPOSED
INDOOR POSITIONING TECHNIQUE
In this paper, various experiments are performed to eval-
uate the performance of the proposed technique with two
perspectives: impact of different smartphones on position-
ing accuracy, and how different heights of various users
can influence the positioning performance. So, experimental
results are shown separately for various smartphones, as well
as, all users who participated in the experiments. Fig. 14a
and Fig. 14b shows the results for IT building with Galaxy
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FIGURE 14. Positioning cumulative distributive function with MINLOC for individual users, (a) IT building S8, (b) IT building G6, (c) IACT building S8,
and (d) IACT building G6.

S8 and LG G6, respectively, while Fig. 14c and Fig. 14d
displays IACT building results, for both smartphones, respec-
tively. There is a marginal difference in prediction accuracy
when the proposed approach is tested from different users,
even with the same device. Such changes may happen on
account of one or more of the following reasons. First of
all, we have seen in Fig. 5 that the change in magnetic
patterns may occur due to change in the heights of the users
which can affect the positioning accuracy of the approach
slightly. Secondly, since training data contains the data col-
lected by two users only, so in the case of data which is from
those who did not take part in training can cause changes
in the positioning accuracy. Thirdly, it is not guaranteed that
every time we collect the data, it makes the same patterns.
Magnetic patterns may vary due to the speed of the user,
as well as, hands unsteady movement which can cause dif-
ferent positioning accuracy, every time. However, the impor-
tant point is that the differences in mean and maximum
errors for various users are not sky-high, rather they are
almost negligible which shows the agility of the proposed
approach.

TABLE 3. Details of results for IT and IACT buildings for individual users.

Fig. 14b shows the results for IT building with LG G6 and
reveals that the positioning error is slightly higher than that
of Galaxy S8, both in terms of mean and maximum value.
We have already discussed that the user of various devices
causes changes in the magnetic patterns on account of the
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FIGURE 15. Positioning results for all users, (a) IT building, (b) IACT building.

sensitivity of the embedded magnetometer which can lead to
different positioning accuracy when experiments are carried
out with various smartphones. Moreover, Lg G6 data has not
been included in the training process and hence the position-
ing error is higher. However, the proposed approach shows
excellent results and the difference in positioning accuracy
is marginally high for Lg G6 than that of Galaxy S8, i.e. a
maximum error of 2.16 m and 1.94 m for two smartphones,
respectively.

Table 3 shows the details of the results for each user
separately for two buildings and two smartphones. Results
show that the maxim positioning error for the IACT build-
ing is higher by a margin of 0.24 m for Galaxy S8 and
0.84 m for LG G6, respectively. The change in positioning
accuracy when experimented within various buildings may
occur due to a variety of factors. First, the trajectory used for
the experiments may affect the positioning performance of a
technique both positively and negatively. Secondly, the area
of a building has an impact on the performance as well,
wherein, larger areas tend to increase the positioning error.
Thirdly, for the magnetic field-based localization approaches,
the indoor structure of a building plays a very important role.
The symmetry of the indoor environment may lead to very
similar magnetic field signatures which lead to smooth and
less varying magnetic patterns. As a result, the uniqueness of
magnetic patterns is reduced which causes poor positioning
performance. The area of the IACT building is smaller than
the IT building and the most probable rationale for higher
errors in IACT building is the similarity of magnetic patterns
at multiple locations. Even so, the performance is very good
and the maximum error in the IACT building is 2.18 m and
3.00 m for Galaxy S8 and LG G6, respectively.

Fig. 15a and Fig. 15b shows the results for all the users
for IT and IACT buildings, respectively. Statistics for mean,
maximum and standard deviation are shown in Table 4. The
proposed approach can localize a user within 0.68 m at 50%

TABLE 4. Positioning results for IT and IACT buildings.

FIGURE 16. Comparison of the proposed approach with mPILOT [18], and
GUIDE [19]. Results are for IT building.

with two different smartphones. The localization error at 75%
is 1.01 m irrespective of the smartphone used for localization
with various user heights.

B. COMPARISON OF MINLOC PERFORMANCE
The positioning performance of the proposed approach is
compared with two other approaches called mPILOT [18],
and GUIDE [19] which are based on the magnetic field
data. These approaches utilized magnetometer, as well as,
gyroscope and accelerometer data just like the proposed
approach does. The results for the IT building are shown
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FIGURE 17. IACT building localization results comparison of the proposed
approach with mPILOT [18], and GUIDE [19].

TABLE 5. Positioning results for IT and IACT buildings.

in Fig. 16. Results show that the proposed approach performs
exceptionally better than both mPILOT and GUIDE. It is
also noteworthy to point out the amount of data used for the
proposed approach is less than half of what has been used by
the compared techniques. Two important aspects to achieve
the better results are the use of CNNwhich can performmuch
better when trained with large datasets than that of traditional
techniques, and the voting mechanism that is presented in
Algorithm 2.

Similarly, IACT building localization results shown
in Fig. 17 reveal that localization results are better than
mPILOT and GUIDE. Seemingly the results of GUIDE with
Galaxy S8 look very similar to that of MINLOC, but mean,
max, as well as 50% and 75% localization error, are much
smaller for MINLOC. Detailed statistics for all approaches
are shown in Table 5 which makes it clearer and easier to
grasp the performance of all the approaches.

VI. CONCLUSION
This paper presents the use of CNN (Convolutional Neural
Networks) to perform indoor localization with the magne-
tometer data from smartphones. The objectives are tomitigate
the impact of various smartphones on localization accuracy
and increase the performance of magnetic field based local-
ization systems. Multiple CNNs are utilized for this purpose

and their predictions are then voted with a devised technique
to finally estimate the user’s current position in the indoor.
Contrary to traditional use of magnetic data intensity, mag-
netic patterns are generated and fed into CNN for training.
The knowledge of the user’s starting position is not required
for the proposed approach. The impact of heights of various
users is further investigated to analyze its impact on local-
ization performance. Extensive experiments are performed
to evaluate the performance of the proposed approach called
MINLOC. Results demonstrate that MINLOC can localize a
user within 1.01 m at 75%, irrespective of the smartphones
(Galaxy S8, and LG G6) used and the height of the user.
Results from two other approaches mPILOT and GUIDE
are compared with MINLOC which shows that the pro-
posed approach performs exceptionally well than that of other
approaches. Currently, the orientation of the smartphone is
fixed which can pose challenges for real-life localization, so,
the localization with various orientations like call listening,
phone in pocket, etc. is under study for future work. Although
the proposed approach is tested with two smartphones, but we
strongly believe that it has the potential to achieve identical
performance for other smartphones.
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