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ABSTRACT It has become an urgent problem to be solved that how to make electric vehicle (EV) give full
play to shift the power grid peak load through the regulation of demand response (DR). Game theory is often
used to provide a new solution for the optimal decision-making among multi-stakeholders. As a dynamic
game, differential game can describe the dynamic changes of time-sharing electricity price (TOUprice) about
power grid and charging power about EV in real time. Considering the problem of ‘‘peak on top of peak’’
caused by a large number of electric vehicles’ disordered charging, this paper makes the dispatching strategy
of EVs entering the grid based on the TOU price, and establishes a dynamic differential game model for the
power grid and EV decision makers. The model is solved by taking the TOU price of power grid and the
charging power of EV as the strategy, and smoothing the peak valley difference of power grid and minimizes
the charging cost of EV as the goal. In the end, DR for optimizing power grid load and reducing user’s low
cost is adopted to simulate the proposed model. The simulation results show that the peak-valley difference
rate of the optimized power grid is reduced by 6.93%, and the cost of EV users is reduced by 71.52%. The
simulation results verify the peak load regulation effect and the economic benefit of the differential game
model on the power grid side.

INDEX TERMS EV, peak load shifting, DR, differential game, feedback nash equilibrium.

NOMENCLATURE
r1 (t) Grid TOU price (grid strategy)
r2i (t) EV charging power (EV strategy)
xi (t) EV battery capacity at time t
PT (t) Peak time load
PD (t) Valley time load

I. INTRODUCTION
In order to cope with climate change and global warming and
reduce greenhouse gas emissions, the development of sustain-
able energy has become a hot issue in academia and indus-
try. With the gradual deepening of environmental protection
awareness, electric vehicles (EVs) with the advantages of
no pollution, high energy efficiency, simple structure and
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convenient maintenance have replaced fuel cars step by step,
and become an inseparable part of people’s daily life [1].
In the past few years, the production and use of EVs have
increased significantly, driven by the new energy vehicle
subsidy policies and other related promotion policies issued
by governments in various countries and regions. From Jan-
uary to November 2017, the sales volume of global EVs
exceeded the scale of one million for the first time, reaching a
number of 1.0391×106, with a year-on-year growth of 55%.
Chinese EV market is still the largest one, accounting for
more than 40% of the world’s sales of EVs [2]. However,
the charging load of EVs also brings unprecedented chal-
lenges to the power grid. In [3], the influence of EV charging
on power grid load in Vermont under the optimal charging
mode and night charging mode had been studied. And the
above research shows that the Power Grid can support a
number of 1 × 106 EVs charging at night, while the peak
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load charging will cause great problems in the power supply.
Meyers et al. [4] studies the capacity of the entire U.S.
power grid to charge EVs, and studies two scenarios, i.e.,
24h rechargeable and 12h rechargeable. The results show that
the existing power grid in the United States can withstand
up to 73% of the EV load. At the same time, the large-
scale disordered load resulting from EV charging will cause
excessive load impact on the power grid [5], which makes
the peak load rise significantly, and the phenomenon of peak
adding appears [6]. All above will lead to the decrease of
power quality and economic operation index [7]. Therefore,
it is of great significance to make the charging operations of
EVs being ordered and optimized.

Obviously, a reasonable EV charging strategy is highly
critical for the EV users to guide their charging behaviors
in an orderly manner [8]. Of course, the charging strategy is
required to firstlymeet the energy supply demand of EVs, and
then disperse the charging load of EVs to non-peak hours,
furthermore relieve stress on the peak supply capacity of
the power grid [9]. Under the time-sharing electricity price
(TOU price) strategy, most of EV users would adjust their
charging habits to increase the charging ratio in the valley
period, as which can play a role in cutting peak and filling
valley and reducing peak-valley difference for the whole
power system [10].

The demand response (DR) caused by power consumers is
based on price signals or incentivemechanisms [11], in which
the power consumers can change their traditional electric-
ity consumption mode [12]. The important parts of imple-
menting a DR project are the response behavior of power
consumers to incentive measures from power companies and
the changement of the load characteristic, which is caused
by power consumers’ adjustment of their own power con-
sumption behavior [13]. Moreover, the way and intensity of
response behavior depends on the power consumers’ own
response characteristics. According to the different response
ways of power consumers, the DR measures can be divided
into two types: price-based demand response (PBDR) and
incentive-based demand response (IBDR). The price has a
major influence on the power consumption behavior of con-
sumers in the PBDR project. For this reason, combined with
PBDR, the mechanism of TOU price is used to regulate
the charging behavior of EV users, balance the peak valley
difference [14], and achieve the role of peak load reduction,
which can effectively reduce the power generation pressure
of the grid and avoid a series of emergency situations due
to the shortage of supply. At the same time, this mechanism
can also be applied to effectively reduce the cost of EV users
(including the cost of charging and the cost of battery loss),
and greatly stimulate EV users to participate in the charging
during non-peak hours.

In order to simulate energy trading process(the transaction
process of power grid selling to EV), between electric power
grid and EV users (G2V) [15], researchers have proposed
several feasible solutions, among which game theory is con-
sidered as a more efficient method to solve the DR problem

of EVs about the virtual energy trading process [16]. The
DR mechanism is applied to the EV charging management
to control the power transaction between the grid and the
EV. Hu et al. [17] constructs a two-tier optimization model
guided by electricity price, and utilizes genetic algorithm to
solve the two-tier optimization model iteratively, so as to
obtain the optimal dispatching plan of the upper model and
the optimal charging price of the lower model. In the study
of Shinde1 et al. [18], the researcher proposes a game model
of multiple utility companies (UCs), EV users and DR users
based on the actual situation. And the distributed algorithm
is used to solve the game problem and maximize the benefits
among the three users. Guo and Zhou [19] uses Stackelberg
game to model EV discharge process, and uses KKT method
to solve the utility function of Stackelberg game to obtain
the optimal Stackelberg equilibrium. However, the above
literature does not combine the EV user side economy and
grid side benefits (peak load shifting) for discussion and
analysis, but only consider the benefits of one side. On the
power grid side, a large number of EVs will increase the
load fluctuation and increase the load peak valley difference,
which is not conducive to the stable operation of the power
grid. Consequently, the power grid urgently needs to use
the means of cutting peak and filling valley scientifically.
For EV users, the pursuit of lower charging cost is one of
their goals. Therefore, when DR is applied to the competition
between power grid and EV, the power grid changes the
charging behavior of EV users by adjusting the electricity
price. EV users will reduce their own charging cost due to
choosing to charge in the low period. At the same time,
the load fluctuation of power grid is also slowed down due to
the change of EV users’ charging habits, and the peak valley
difference is significantly reduced.

Hence, Wang [20] has considered the benefits of both
EV users and the power grid, and establishes an EV charg-
ing non-cooperative game model on real-time floating price.
Yu et al. [21] constructs an EVs charge-discharge cooperation
model based on the alliance game theory. And it is verified
that the peak valley difference of power grid load is signifi-
cantly reduced and the plug-in hybrid electric vehicle (PHEV)
users are satisfied with the lower charging cost and the higher
charging state of vehicle batteries. Liu et al. [22] investigates
the charging behavior of four kinds of EVs in Shanghai, and
uses bass diffusion model to predict the inventory growth of
EVs. Then, the peak valley difference is balanced and the
charging cost of EV users is reduce by arranging the charging
plans of EVs reasonably. In the study of Yang et al. [23],
a robust non-cooperative Stackelberg game approach is pro-
posed to solve the problem of energy charging scheduling
between aggregator and multiple EVs under the condition of
uncertain demand and the author addresses the solution by
building the variational inequality theory and the Lagrange
dual decomposition method (LDDM). It is proved that the
robust scheduling algorithm can improve the performance
with the increase of vehicle number under the condition of
uncertain load demand. Wu et al. [24] studies how to use
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multiple EV batteries as distributed energy storage system
to provide the auxiliary service of frequency regulation for
power grid. By adopting a smart pricing policy as part of the
game, the study shows that the same optimal performance
can be achieved by the distributed behaviors of self-interested
EVs as the centralized control system. However, the above
literatures [20]–[24] did not take into account the internal loss
of battery that the internal loss of battery will directly affect
its service life in the process of charging and discharging,
and did not consider the charging and discharging of EVs as
dynamic change problem (The charging and discharging of
EV and the change of power grid load will vary over time,
which belongs to the dynamic change problem. Accordingly,
we should study it in the way of the dynamic game theory
according to the actual situation.), and also did not evaluate
the economy of charging behavior in combination with the
satisfaction benefits of EV users for adjusting their charging
habits (The economy of charging behavior can be directly
reflected by the satisfaction of EV users. The satisfaction
benefit of EV users is the cost difference before and after EV
users adjust charging behavior).

For this purpose, this paper regulates the EV charg-
ing behavior by the electricity price, combining the DR.
As a dynamic game, the differential game can describe the
dynamic changes of players in real time. On the basis of
DR, in order to consider the benefits of both grid and EV
users, as well as the dynamic changes of grid load and EV
charging, differential game is a better way to describe the
change of players over time. This paper constructs a grid EV
differential game model for the purpose of achieving better
choice between the two participants through mutual game.
Hence, with the model’s combining with the influence of the
internal loss of the battery on EV, and the users’ satisfaction
return brought by regulating their own charging behavior, this
paper studies how the model can optimize the grid load and
minimize the cost of EV users (charging cost and battery loss
cost) from the perspective of dynamic game model.

Main contributions of this paper are as follows:
Under the framework of DR, this paper uses differential

game model to solve the problem of EV disorder charging.
The advantage of this model lies in that it can effectively
harmonize the relationship between the grid and EV, and can
effectively help the grid reduce the peak valley difference
while reducing the EV cost.

(1) Build a differential game model for G2V. DR can
help to make the game decision more in-depth and more
intense. The game between grid and EV can fully mobilize
the enthusiasm of market DR. Considering that the load of
the power grid and the charging of EV are both dynamic
processes, differential game, as a dynamic game, can better
describe the changes of game participants over time.

(2) Analyze the benefits of G2V under the framework of
differential game. For the power grid, the effect of peak-
valley difference and charging power on the power grid is
considered. From the perspective of EV users, the satisfaction
benefits of EV users (charging cost reduction caused by EV

users’ adjusting charging behavior), charging cost and battery
loss cost of EV are comprehensively analyzed.

(3) Combined with the actual application, the simulation
analysis is carried out to evaluate the performance of the
model. Taking a city as an example for simulation analysis,
the peak-valley difference for the power grid is significantly
improved, and the effect of ‘‘peak load shifting’’ is obvious.
After the optimization of the user side of the EV, the cost of
the owners is greatly reduced and the economy is improved.
To this end, the validity of the model is verified.

The paper is organized as follows: The first section is
the introduction part, in which we analyze and discuss the
negative impact of large-scale disordered charging of EVs on
the power grid, and explain the current scholars’ solutions and
problems in this regard. Therefore, the importance of building
the model is introduced. In the second section, aiming at
the above problems, the differential game model of power
grid to EV is constructed to explore the mutually beneficial
coexistence relationship between them, so as to minimize
the cost of EV users while optimizing the power grid load.
In the third section, the model is solved to find the optimal
strategy in the mutually beneficial coexistence relationship,
so as to maximize the utility of both sides of the game;
In the fourth section, the effectiveness of the optimization
algorithm is verified by numerical simulation; In the fifth
section, the paper is summarized and we briefly describe the
following problems needed to be studied in the future.

II. THE CONSTRUCTION OF G2V DIFFERENTIAL
GAME MODEL
When a large number of EVs are widely used, there will be a
large number of charging loads connected to the grid. The
charging loads are bound to have a certain impact which
the problem of peak load growth is particularly serious on
the operation of the grid. This problem is mainly reflected
in aspect of randomness, mobility and aggregation about
charging load of EVs. On the power grid side, if the EV
charging plan is unreasonable, it is very likely that the EVwill
be charged in disorder during the peak load of the grid, and its
charging load may coincide with the peak load of the original
grid. This will lead to extreme peak load of the power grid,
and further increase the peak valley difference of the power
grid. Thus the above problems will threaten the economic
operation and security of the power grid. Therefore, based
on the reasonable DR to guide the charging behavior of EVs,
the ‘‘peak staggering’’ measure is adopted to appropriately
transfer the charging pressure in the peak period to the low
period, so as to relieve the power supply pressure of the
grid and avoid various system problems caused by overload.
On the user side of EVs, the pursuit of the minimum charging
cost is one of the goals of the owners. Owners can reasonably
change their charging habits, actively participate in the regu-
lation of DR mechanism, and reduce their charging costs by
charging in the low period. For this reason, considering the
benefits for power grid and EV users and the characteristics of
maximizing interests of both sides in real time for differential

VOLUME 8, 2020 66107



Y. Zheng et al.: Intelligent Regulation on Demand Response for Electric Vehicle Charging

FIGURE 1. The structure of G2V differential game model.

game, we construct the G2V differential game model. In the
process of EV charging, the charging power and the load of
the grid vary over time. In order to describe the dynamic
changes of grid load and EV charging power in real time,
we need to use differential game as a dynamic game to make
the charging method more suitable for the actual situation.
Finally, by using the feedback Nash equilibrium to solve the
gamemodel, we can obtain the optimal strategies and benefits
of both sides. The specific model structure is shown in Fig. 1.

We divide a day into 24 periods, and set the grid strategy
as TOU pricing expressed in r1(t). The goal of power grid
is to optimize its own load and balance the peak valley
difference. The power grid feeds back the price information to
the EV users. Based on the price setting for different periods,
the power grid can compute its own optimal strategy to maxi-
mize its revenue under the current EV charging situation. The
strategy r2 (t) =

{
r21 (t) , r22 (t) , · · · r2i (t) , · · · , r2n (t)

}
of

EV (r2i (t)represents the strategy of the i
th EV) is the charging

power corresponding to the electricity price of each time
period, and the goal of the strategy is tominimize the charging
cost of EV. According to the electricity price given by the
grid, EV users compute the most favorable charging time
period to minimize its cost. Let xi(t) represent the battery
capacity of EV in period t , and xi(t) is defined as the state
of the system. dxi(t)dt represents the change of system state, i.e.
the change rate of EV battery power. The change of system
state is related to the strategies r1 (t) and r2i (t) of both sides
and the state of the system itself. In detail, it includes: (1) The
impact of grid strategy r1 (t) (TOU price) on the change rate
of EV battery power. When the grid load appears in peak
period, the tariff is relatively high, and the charging power of
EVs is relatively low. And then the change rate of EV battery
power will also be affected, which is indirect. (2) The impact
of EV strategy r2i (t) (charging power) on the change rate
of EV battery power. The EV charging power will directly
affect the change rate of EV battery power, and the change
rate of battery power will become faster with the increase
of EV charging power, and vice versa. (3) The influence of
system state xi (t) on the change rate of EV battery power. The
greater the charging efficiency of EV battery is, the higher the

energy conversion efficiency of EV in the charging process
is, and the faster the change rate of EV battery is. To sum
up, the dynamic change of the state of the system can be
described by the following differential equation:

dxi(t)
dt
= ρr1(t)+ r2i (t)+ µxi(t) (1)

In (1), ρ represents the probability that EV users choose to
charge in each time period in order to save charging cost,
and its value range is 0 to 1. The µ represents the charging
efficiency of EV batteries [25].

In the process of the game between the two sides, the power
grid aims to adjust the charging habits of EV users by regu-
lating the TOU price, so as to make their own load optimal.
The factors that affect the grid load include the peak valley
difference of the grid, the charging power of the EV per unit
time and the total charging capacity of EV in game time.

Firstly, the influence of peak valley difference on power
grid load is considered. Let PT (t) and PD(t) represent peak
time load and valley time load respectively. Peak valley differ-
ence can be expressed as PT (t)−PD(t), and then min[PT (t)−
PD(t)]is equivalent to min

[(
PT (t)− PD(t)

)2]. And the load

is assumed to beQ = PT (t)−PD(t). According to the relation
Q = α1P + β1 of load and electric price (P representing
electric price) [26], it can be obtained that the minimum
peak valley difference Q = α1r1 (t) + β1 can be equivalent
to min

[
(α1r1 (t)+ β1)2

]
, where α1 and β1 are parameters

representing the relation between load and electric price.
Secondly, for the charging power is different in different

periods and different electricity prices, we take the influ-
ence of unit time charging power on grid load into consider.
By studying the charging power in different periods of a day,
we can know the charging habits of EV users for different
electricity prices on that day, which will provide reference for
the adjustment of electricity prices on the next day. Therefore,
parameter θ1 is introduced here, which represents the unit cost
of charging power in the game time. It is used to describe the
charging situation of EV under the unit cost. r1 (t) r2i (t) is
the charging cost of EV, so the charging load(W) per unit time
shall be equal to θ1r1 (t) r2i (t).

Finally, we should consider the impact of the total charging
capacity of EVs on the grid load in the game time, because
the overall charging capacity of EVs in the grid will directly
affect the fluctuation of the grid load. At the same time, how
to balance the power consumption of EV and other purposes
(such as household power, industrial, commercial power, etc.)
is also a problem for the grid. In this paper, xi (t) is introduced
to indirectly describe the electric quantity that EVs need to
purchase from the grid.

According to the above factors, the objective function of
the grid is given as follows:

J1 = min
{∫ T

t0

[
(α1r1(t)+ β1)2 + θ1r1(t)r2i (t)+ xi(t)

]
× exp [−a(t − t0)] dt

}
(2)
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In (2), a represents the discount rate of grid [27], and the value
range is 0 to 1.

EV users can select the optimal charging power to mini-
mize the cost by referring to the given grid price information
and combining with their own charging requirements. The
cost of EV consist of three parts, i.e., the satisfaction income
of EV users, the charging cost of EV and the battery loss of
EV. The satisfaction income of EVs reflects the reduction of
EV user’s charging cost by adjusting their charging behavior.

First of all, we consider the impact of EV users’ satis-
faction benefits on EV costs. From the relationship between
load and electricity price Q = α1P + β1, the electricity
price P =

(
Q−β1
α1

)
can be obtained, which is equivalent to

P =
(
r2i (t)−β1

α1

)
, where r2i (t) is the charging power. Then,

charging cost can be expressed as r2i (t)
(
r2i (t)−β1

α1

)
, where α2

is the correction factor for regulating the EV user’s electric
behavior. So, the expression α2r2i (t)

(
r2i (t)−β1

α1

)
is used to

show that EV users reduce their charging cost by adjust-
ing their charging behavior. Where, the value range of α2
is [0-1]. The higher the value is, the more satisfied EV users
are with regulating their charging behavior, whichwill greatly
encourage EV users to participate in this action.

Then, the influence of EV charging cost is considered.
Here, r1 (t) r2i (t) is used to represent the charging cost of EV,
which directly reflects the charging expenditure of EV users,
and provides a reference for EV users to adjust their charging
behavior. If the charging cost is too high to the average of a
day, EV users will adjust their charging mode appropriately,
try to stagger the peak charging, and even choose to charge in
the low period in order to minimize the charging cost.

Last, the influence of EV battery loss on EV user cost
is considered. EV will lose battery during charging, which
will affect battery life. Here, β2 [xi (t)− x0 (t)] is used to
represent the battery loss cost of EV, in which β2 is the EV
battery loss rate [28]. The parameter β2 represents the battery
loss caused by the unit charge, and is used to measure the
battery attenuation degree in the charging process.

In conclusion, the objective function of EVs is as follows:

J2i = min
{∫ T

t0

[
−

(
α2r2i (t)

(
r2i (t)−β1

α1

))
+r1 (t) r2i (t)

+ β2 [xi (t)− x0 (t)]] exp
[
−b (t − t0)

]
dt
}

(3)

In (3), b is the discount rate of EV [27], and the value range
is [0-1].

III. THE PROCESS OF EQUILIBRIUM SOLUTION
TO THE G2V MODEL
In the light of the optimization model established in section 2,
we will study the optimal strategies of grid and EV respec-
tively in this part, so as to achieve the optimal objective
function for both of them.

For power grid, the strategy set r∗1 (t) = φ∗(t, xi) are
the feedback Nash equilibrium of game models (1) and (2).

If there is a continuous differentiable function u(t, xi) :
[t0,T ]×Rn→ R, the following Isaac Bellman equation [27]
is satisfied.

−ut (t, xi)

= min
r1(t)

{[
(α1r1 (t)+ β1)2 + θ1r1 (t) r2i (t)+ xi (t)

]
× exp [−a (t−t0)]+uxi (t, xi)

[
kr1 (t)+r2i (t)+µxi (t)

]}
(4)

By taking the first partial derivative of (4) with respect to
r1 (t), we can get

φ∗ (t, xi) = −
2α1β1 + θ1r2i (t)+ uxi (t, xi) ke

a(t−t0)

2α21
(5)

For EVs, strategy set r∗2i (t) = ϕ∗i (t, xi) are the feedback
Nash equilibrium of game models (1) and (3). If there is
a continuous differentiable functionvi (t, xi) : [t0,T ] ×
Rn→ R, the following Isaacs Bellman equation is satisfied

−vit (t, xi)

= min
r2i (t)

{[
−

(
α2r2i (t)

(
r2i (t)− β1

α1

))
+ r1 (t) r2i (t)+ β2 [xi (t)− x0 (t)]

]
× exp [−b (t−t0)]+vixi (t, xi)

[
kr1 (t)+r2i (t)+µxi (t)

]}
(6)

Taking the first partial derivative of (6) with respect to
r2i (t), one can have

ϕ∗i (t, xi) =
α1
[
vixi (t, xi) e

b(t−t0) + r1 (t)
]
+ α2β1

2α2
(7)

By substituting (5) and (7) into (4) and (6) respectively,
we can obtain the following propositions:
Proposition 1: If the state equation of the system satisfies

the stochastic differential equation (1) and the objective func-
tion satisfies (2) and (3), then there is a set of solutions for the
partial differential equations (4) and (6), namely:

u (t, xi) = exp [−a (t − t0)] [A (t) xi + B (t)] (8)

vi (t, xi) = exp [−b (t − t0)] [Ci (t) xi + Di (t)] (9)

Taking the partial derivative of (8) with respect to t and xi
respectively, we get

ut (t, xi) =
{
−a [A (t) xi + B (t)]+ A′ (t) xi + B′ (t)

}
× exp [−a (t − t0)] (10)

uxi (t, xi) = A (t) exp [−a (t − t0)] (11)

By taking the partial derivative of (9) with respect to t and
xi respectively, we have

vit (t, xi) =
{
−b [Ci (t) xi + Di (t)]+ C ′i (t) xi + D

′
i (t)

}
× exp [−b (t − t0)] (12)

vixi (t, xi) = Ci (t) exp [−b (t − t0)] (13)

VOLUME 8, 2020 66109



Y. Zheng et al.: Intelligent Regulation on Demand Response for Electric Vehicle Charging

Proof: It is proved that, for power grid, the following
expressions are valid in combination with (4), (5), (7) and (8)

aA (t) xi + aB (t)− A′ (t) xi − B′ (t)

= α21
(
φ∗ (t, xi)

)2
+ β21 + 2α1β1φ∗ (t, xi)

+ θ1φ
∗ (t, xi) ϕ∗i (t, xi)+ xi

+A (t) ·
[
kφ∗ (t, xi)+ ϕ∗i (t, xi)+ µxi

]
(14)

By substituting (5), (7), (11) and (13) into (10), we can get
the following equation (15), as shown at the bottom of this
page.

From (15), let the coefficients of xi (t) on both sides of the
equation be equal, and we can get the following equation:

aA (t)− A′ (t) = 1+ A (t) µ (16)

From (16), we solve differential equation about A (t) and
get the following equation:

A (t) =
e(a−µ)(t−t0) + 1

a− µ
(17)

For EVs, the following formula can be obtained by
combining (6), (7) and (9)

bCi (t) xi + bD (t)− C ′i (t) xi − D
′ (t)

=

{
−
α2
[
ϕ∗i (t, xi)

]2
α1

+
α2ϕ
∗
i (t, xi) β1
α1

+φ∗ (t, xi) ϕ∗i (t, xi)+ β2 [xi (t)− x0 (t)]

}
+Ci (t)

[
kφ∗ (t, xi)+ ϕ∗i (t, xi)+ µxi

]
(18)

By substituting (5), (7), (11) and (13) into (18), we can get

bCi (t) xi + bDi (t)− C ′i (t) xi − D
′
i (t)

=−
α21 [Ci (t)+r1 (t)]

2
+α22β

2
1+2α1α2β1 [Ci (t)+r1 (t)]

4α1α2
+β2 [xi (t)− x0 (t)]+ Ci (t) µxi

+
Ci (t) [α1Ci (t)+ α1r1 (t)+ α2β1]

2α2

−

[
2α1β1+θ1r2i (t)+A (t) k

]
·[α1Ci (t)+α1r1 (t)+α2β1]

4α21α2

+
α1β1Ci (t)+ α1β1r1 (t)+ α2β21

2α1

−
Ci (t) k

[
2α1β1 + θ1r2i (t)+ A (t) k

]
2α21

(19)

Then, we can get

bCi (t)− C ′i (t) = β2 + Ci (t) µ (20)

Then, we solve differential equation about Ci (t) and get
the following equation:

Ci (t) =
e(b−µ)(t−t0) − β2

b− µ
(21)

To sum up, for the power grid, its optimal strategy is

r∗1 (t) = −
2α1β1 + θ1r∗2i (t)+ A (t) k

2α21
(22)

For EVs, the optimal strategy is

r∗2i (t) =
α1Ci (t)+ α1r∗1 (t)+ α2β1

2α2
(23)

Substituting (17) into (22) and (21) into (23), we solve
equations about (22) and (23), and get the following equation:

r∗1 (t) = −
4α2β1

4α1α2 + θ1
−
θ1e(b−µ)(t−t0) − θ1β2
(b− µ) (4α1α2 + θ1)

−
θ1α2β1

α1 (4α1α2 + θ1)
−

2α2ke(a−µ)(t−t0) + 2α2k
α1 (a− µ) (4α1α2 + θ1)

(24)

r∗2i (t) =
α1e(b−µ)(t−t0) − α1β2

2α2 (b− µ)
−

2α1β1
4α1α2 + θ1

−
α1θ1e(b−µ)(t−t0) − α1θ1β2
2α2 (b− µ) (4α1α2 + θ1)

−
θ1β1

8α1α2 + 2θ1

−
ke(a−µ)(t−t0) + k

(a− µ) (4α1α2 + θ1)
+
β1

2
(25)

According to the proof of proposition 1, the Nash equi-
librium solution of differential game model (2) and (3) is
derived, that is, the optimal strategy of power grid and EV.
By substituting (17) and (18) into (2) and (3), the optimal
cost of power grid and EV can be obtained.

aA (t) xi + aB (t)− A′ (t) xi − B′ (t)

= α21 ·

{[
2α1β1 + θ1r2i (t)

]2
+ A2 (t) k2 + 2A (t) k

[
2α1β1 + θ1r2i (t)

]
4α41

}
−β21 −

β1θ1r2i (t)
α1

−
β1A (t) k
α1

+ xi + A (t) µxi

− θ1 ·

{[
2α1β1 + θ1r2i (t)+ A (t) k

]
· [α1Ci (t)+ α1r1 (t)+ α2β1]

4α21α2

}

−
A (t) k

[
2α1β1 + θ1r2i (t)+ A (t) k

]
2α21

+
A (t) [α1Ci (t)+ α1r1 (t)+ α2β1]

2α2
(15)
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TABLE 1. Related numerical simulation parameter.

IV. NUMERICAL SIMULATION
In this section, an example is given to verify the validity of the
model and solution. A city with a population of millions is our
research object, which has a good application environment
and development prospect of EVs. It is predicted that 2%
of the total population will be taken as the possession of
EVs, that is, the slow charging load of 3 × 104 EVs will be
analyzed. The calculation example sets the battery capacity
of each EV as 40kW · h [29]. In order to prolong the battery
life, the initial state of EV battery usually needs to retain a
certain amount of electricity and the minimum threshold is
10% of the full battery capacity [30]. The initial time t0 is
equal to 1, and the end time of the game T is equal to 24.
Other simulation parameters are set as shown in Table 1 and
Table 2 respectively.

At first, we analyze the benefits of the grid side in this
paper. Firstly, compared with the original, the optimized TOU
price and EV charging power are analyzed and we study the
peak load reduction effect of EV strategy r2i (t) (EV charging
power) under the regulation of grid strategy r1 (t) (optimized
TOU price). Secondly, we further study the influence of EV
charging power adjustment on the grid side combined with
the change of the total load of the grid and the trend of the grid
load in each game round. Finally, compared with the original,
the peak to valley ratio of EV and grid after optimization is
analyzed to explore the peak regulation effect of the proposed
model.

Then, we analyze the benefit of EV user side in this paper.
First of all, the optimized cost of EV users is analyzed com-
pared to the original, which directly reflects the income of
EV users under the article model. Last, the cost of EV users is
analyzed by combining the correction factors α2 of EV users’
charging behavior, to understand the impact of EV users’
satisfaction with their charging behavior on their cost.

This paper utilizes the differential game model to optimize
the charging load of EV in a city. The optimization results are
shown in Fig. 2 and Fig. 3.

One can see from the purple curve (the original electricity
price) in Fig. 3 that during the period of 8-15, the original
EV charging load is at the peak of charging. In order to
stagger the demand of EV users and other users, and avoid
the phenomenon of peak adding, the power grid can adjust the

TABLE 2. The parameter of θ1 at Time 1 to 24.

FIGURE 2. The original and optimized TOU price.

charging behavior of EVs by raising the price of electricity
to achieve the purpose of ‘‘peak cutting’’. From 23:00 p.m.
to 24:00pm and 1:00am to 7:00 a.m. the next day, the power
consumption is relatively low, and the electricity price can be
appropriately reduced as a charging reward to stimulate the
charging behavior of EV users by power grid. By improving
the enthusiasm of EV users in charging at night, the goal
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FIGURE 3. The original and optimized load of EVs.

of ‘‘filling the valley’’ is achieved. And the corresponding
adjustment can be directly reflected by comparing with the
curve before and after the optimization in Fig. 2. The opti-
mized price (blue curve) of 23h to 24h and 1h to 7h is lower
than the original price (purple curve), but the opposite trend
appears in 8h to 15h. The effect of tariff adjustment on EV
charging load can be seen in Fig. 3. After optimization, the
charging load of EV at night (23h-24h and 1h-7h) shows
an overall upward trend, and the average charging load in
this period increases from 811MW to 1112MW, increased by
301MW. However, in the peak period of 8h to 15h, EV users
reduce their own charging demand for price raising measures
made by power grid. Before optimization, the peak value
appears at t = 12h and t = 20h, with the peak value
of 1400MW and 1300MW respectively. After optimization,
it is maintained at about 700MW, which obviously leads to
the effect of ‘‘peak cutting’’.

For the sake of making the optimized effect more clear
and intuitive, and highlighting the validity of the arti-
cle model, the comparison chart of TOU price difference
and EV charging load difference of each game round before
and after optimization is given below, as shown in Fig. 4 and
Fig. 5 respectively. It can be clearly seen from Fig. 4 that the
difference between the price before and after optimization
is positive in the time ranging from 1:00 a.m. to 7:00 a.m.,
which indicates that the price after optimization is lower
than that before optimization, while the difference between
the loads in Fig. 5 is negative, which also indicates that the
charging load of the optimized EV is higher than that before
optimization. In the time range of 8:00 a.m. to 15:00 p.m.,
the difference between the price before and after optimization
is negative, which indicates that the price after optimization is
higher than the price before optimization. However, the dif-
ference between the loads in Fig. 5 is positive, which also
indicates that the charging load of the optimized EV is lower
than the load before optimization.

In order to explore the influence of EV charging load
adjustment on the overall load of power grid and verify the

FIGURE 4. The optimized TOU price difference value comparing to the
original TOU price.

FIGURE 5. The optimized load of power grid difference value comparing
to the original load of power grid.

effectiveness of the differential game model constructed in
this paper on the grid side, the following will further explain
the improvement of the grid load pressure under the regu-
lation of the G2V game strategy. Fig. 6 and Fig. 7 show
the changes of the total load of the grid before and after
optimization and the changes of the load of the grid in each
game round respectively.

It can be intuitively seen from Fig. 6 that by adjusting
the charging behavior of EVs, the total load of the power
grid is reduced by 2505MW. This can provide corresponding
assistance for stabilizing the load fluctuation of power grid.
And the benefits of ‘‘peak load shifting’’ of EV charging load
brought by regulation and control of electricity price can also
be reflected on the grid side in Fig. 7. As shown in Fig. 7,
the peak value of power grid load before and after opti-
mization appears simultaneously in 13h. Before optimization,
the peak value of power grid is about 7700MW, while after
optimization, the peak value decreases to about 7200MW,
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FIGURE 6. Change of total load.

FIGURE 7. Change of grid load in each game round.

and the peak value decreases by about 500MW. At the same
time, the valley value of the power grid before optimization
appears in 5h, which is about 4600MW,while the valley value
of the power grid after optimization appears in 6h, which is
about 4800MW. The valley value of the power grid is 200MW
higher than that before optimization. And in the period of
23:00-07:00, the load of the optimized power grid is always
higher than the load before optimization, while in 8h-15h,
the blue curve is always below the purple curve, which shows
that the load of the optimized power grid is always lower than
the load before optimization in this period.

To sum up, the effect of peak shaving and valley filling is
obvious, which verifies the validity of the model in the power
grid side.

Next, the load characteristics before and after optimization
are further analyzed in combination with the peak valley
difference rate of load, as shown in Fig. 8 and Fig. 9.

From Fig. 8, it can be seen that after optimization, the peak
valley difference rate of EVs has been reduced by 14.1%
from 57.14% to 43.04%; Similarly, the peak valley difference

FIGURE 8. The optimized EV peak-valley difference ratio compared to the
original.

FIGURE 9. The optimized power grid peak-valley difference ratio
compared to the original.

rate of power grid has also been reduced from 40.77% to
33.84% and reduced by 6.93%. The peak valley difference
rate decreased significantly. On one hand, it reduces the
problem of too many times of start and stop of generating
units in the grid caused by too great peak valley difference,
and reduces the cost of system regulation; on the other hand,
reducing the peak valley difference can effectively suppress
the fluctuation of grid load and ensure the safe and stable
operation of the grid.

The benefits of the model for EV users can be further
shown in Fig. 10, which shows the histogram of the cost and
the difference between the two before and after the optimiza-
tion. It can be seen clearly and intuitively from Fig. 10 that the
cost expenditure of EV users will be reduced by 8524.38RMB
compared with that before optimization. The measures will
greatly stimulate the enthusiasm of EV users to participate
in intelligent charging, and effectively respond to the DR to
adjust the grid load by adjusting the electricity price.
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FIGURE 10. The optimized benefits of EV users compared to the original.

FIGURE 11. Cost for EV users in different α2 cases.

In order to further understand the impact of EV users’
satisfaction with intelligent charging behavior on their costs,
this paper analyzes EV users’ costs under different α2 (the
correction factor that regulates EV users’ charging behavior)
environments, and the results are shown in Fig. 11. As can
be seen from Fig. 11, with the increase of α2, the cost of
EV users shows a decreasing trend. The cost of EV users has
been reduced from 3008.3RMB to 2205.5RMB, reducing by
802.8RMB, which indicates that the higher the satisfaction
of EV users to participate in adjusting self-charging behav-
ior and the greater the satisfaction benefit is, the lower the
cost is. And the rationality of the construction of the above-
mentioned cost model for EV users is also verified.

V. CONCLUSION
This paper presents a differential game model of G2V to
optimize the power grid loading and minimize the cost for
EV users. The 24 hour electricity price of a city and the
charging load of EVs are taken as the main research objects
for simulation analysis. The results show that the reasonable
charging of EVs can be realized by the guidance of TOU
price. Ascribed to this method, the scale of improvement of
peak valley rate increases significantly. The effect of peak
reducing and valley filling is remarkable, which effectively

eases the grid load fluctuations, and reduces the cost for the
electric car owners. Finally, based on this differential game
model, the power grid and the benefit of the EVs’ users are
well guaranteed at the same time, and both finally achieve
mutually beneficial win-win situation. Based on this work,
by considering the actual situation, a follow-up research of
studying the impact of EV discharge phenomenon on the
power grid and EV will be carried out in the next step.
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