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ABSTRACT Self-calibration of time-of-arrival positioning systems is made difficult by the non-linearity of
the relevant set of equations. This work applies dimension lifting to this problem. The objective function
is extended by an additional dimension to allow the dynamics of the optimization to avoid local minima.
Next to the usual numerical optimization, a partially analytical method is suggested, which makes the
system of equations overdetermined proportionally to the number of measurements. Results with the lifted
objective function are compared to those with the unmodified objective function. For evaluation purposes,
the fractions of convergence to local minima are determined, for both synthetic data with random geometrical
constellations and real measurements with a reasonable constellation of base stations. It is shown that the
lifted objective function provides improved convergence in all cases, often significantly so.

INDEX TERMS Dimension lifting, self-calibration, time-of-arrival (TOA).

I. INTRODUCTION

Knowledge about the position has always been a key tech-
nology for exploring unknown territories. Without reference
points like stars or the Earth’s poles, it would not be fea-
sible to cross the ocean. In the last century, more precise
and nature-independent base stations have been developed.
In some cases, it is necessary to obtain the locations of the
base stations just by distance measurements without further
measuring equipment. This method receives the name of self-
calibration. In the case of the time-of-arrival measurement
technique (TOA), it is possible to obtain the geometrical con-
stellation of the base stations only by the distance measure-
ments between the base stations and the transponders [1]-[3].
Linear approximations are not always reliable due to noise
and nonlinear sensor constraints. For this reason, nonlin-
ear optimization algorithms are the method of choice. The
main disadvantage of nonlinear optimization algorithms is
the possible convergence to a local minimum if the initial
estimates are not close to the global minimum [6]. The effect
of degrees of freedom on the probability of convergence to
local minima during the self-calibrated time of arrival by
nonlinear least square optimization is the main aspect of this
work. In [17] we demonstrated that an additional degree of
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freedom can transform the local minimum of the squared
TOA objective function with known base station positions
to a saddle point. Our approach was inspired by dimension
lifting [18], [19]. Dimension lifting introduces an additional
dimension to solve a specific problem. The only other known
publication that dealt with the effect of degrees of freedom
and self-calibration was [20]. In contrast to our work, the
topic was about the difference in dimension between the
affine subspaces spanned by the relative positions of base
stations and transponders. Our approach is to increase the
dimensions of the original model by an additional degree of
freedom for every unknown base station and tag. We show
that the lifted objective functions perform better than the
general objective function. The test scenarios are based on
real measurements and synthetic data.

This paper is organized as follows. The first section of this
article introduces the TOA self-calibration problem, followed
by the second section previous work. In the third section
of this article our dimension lifting approach is presented.
The fourth section is dedicated to the implementation of the
modified objective function for the self-calibration problem.
The fifth and sixth section demonstrate the performance of
our approach by experiments with synthetic and real mea-
surements performed. The results of the experiments are
discussed in detail in the last section. The notations used in
this article are presented in Tables 1 and 2.
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TABLE 1. Notation used in the text and in equations.

Notations Definition
B; Base stations, 1 < < N
D Number of dimensions
M Number of independent measurements 7T’
N Number of base stations B;
Ra Number of equations / Number of unknowns
T; Tags,1 <j <M

TABLE 2. Notations used in the equations.

Notations Definition State
b; = (a;, bi,ci)T Position of base station B; Unknown
tj =(z;,95,2)7 Position of transponder T; Unknown
d; Distance between B; and T} Known
):i Additional dimension of B; Unknown
Aj Additional dimension of T’ Unknown

A. CONTRIBUTION

This article presents a method to transform the objective
function of the TOA in order to reduce the risk of becom-
ing trapped in a local minimum during a nonlinear opti-
mization. In [17], we have proven for time-of-arrival (TOA)
that if the positions of the reference stations are known,
the dimension lifting transforms the local minimum into a
saddle point. This article aims to adopt this approach for the
TOA self-calibration with unknown reference station posi-
tions. The presented approach is analyzed with synthetic and
real TOA measurements, respectively. To our knowledge,
no previous researchers have done this before; nor was the
linear variable estimation applied inside the nonlinear opti-
mization iteration step for the TOA self-calibration in this
article, the so-called partially analytical method.

Il. RELATED WORK

In [4] it was shown that the minimum number of base stations
(N) and transponders (M) for the TOA self-calibration in the
two-dimensional space are (M = 3, N = 3) and for the three-
dimensional space (M = 4,N = 6),(M = 5N = 5)
and M = 6,N = 4) [4]. The roles of the base stations
and the transponders are interchangeable; hence it does not
matter if six base stations and four transponders are used or
vice versa. The number of transponders (M) could refer either
to a number of seperate physical transponders in fixed loca-
tions, or a single physical device that moves to M different
locations, or some combination. In [7] and [8] it was pro-
posed to use semidefinite programming (SDP) as an initial-
ization for the maximum likelihood (ML) estimator. Alterna-
tively, non-iterative methods can be used. A two-dimensional
non-iterative method was proposed for the case with three
transponders and three receivers in [9]. The solution for the
three-dimensional case was the subject of the investigation
in [10], [11]. The authors provided a non-iterative solution
for(M =5,N =5),(M =6,N =4)(M = 10,N = 4).
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In the case of one base station position coinciding with one
of the transponders, a closed-form solution was described
in [12], [13]. The publication [14] presented non-iterative
methods for self-calibration with the minimum configuration
using the Groebner basis method and Macaulay2 software.
A solution less sensitive to noise is presented based on the use
of only low-degree monomials in contrast to methods like the
Groebner basis [15]. On the other hand, this method requires
a higher number of stations than the minimum number
(M = 4, N = 7). Other linear solutions require constraints,
like that the distances between the base stations and the
transponders are considerably larger than between the base
stations [16].

Regarding dimension lifting, our group has previously
applied that approach to other aspects of TOA positioning.
In [17], we demonstrated that an additional degree of freedom
transforms the local minimum of the squared TOA objective
function with known and stationary base stations positions to
a saddle point. Furthermore, no other local minima appear for
non-trivial constellations. This hypothesis was also numeri-
cally verified for the TOA objective function [17]. In [23] we
showed that in the presence of noise, it is advisable to use the
objective function with an additional dimension to provide
initial estimates and to use the general objective function
Equation without the additional dimension in the next step.
The objective function with the additional dimension reduces
the risk to converge to a local minimum and the general
objective function minimizes the effect of noise, due to the
higher ratio between the number of equations to unknown
variables.

A. LIMITATIONS OF THE PREVIOUS WORK

The previous work about the TOA self-calibration is limited
to specific conditions like the minimum number of base sta-
tions [10], [11], [14] or the requirement that one base station
position coinciding with one of the transponders [12], [13].
In [16] the limiting factor is the distance between the base
stations. However, with nonlinear constraints are the most
approximation methods not applicable. Our dimension lifting
approach can be applied on any TOA self-calibration prob-
lem, without the need of additional modifications [17].

lll. TIME OF ARRIVAL MEASUREMENT MODEL

The time-of-arrival (TOA) measurement technique provides
distance measurements between base stations and transpon-
ders. Customarily, the positions of the base stations are known
and the positions of the transponders have to be estimated
by triangulation. Self-calibration is concerned with the case
where the positions of the base stations are unknown and
only the distance measurements between the base stations
and the transponders are available. Figure 1 shows three base
stations B; and three transponders 7; in unknown positions.
The distances d;; between base stations B; and transpon-
ders T; are determined through distance measurements. Dis-
tances between the base stations B; are unknown. The aim of

65727



IEEE Access

J. Sidorenko et al.: Self-Calibration for the Time-of-Arrival Positioning

B2

FIGURE 1. The figure shown three base stations B; and three
transponders T; as circles and squares, respectively. The distance
measurements are only possible between the base stations and the
transponders. Distance measurements from one specific base station to
one specific transponder are represented by black, green and red dashed
lines.

self-calibration is to obtain the relative coordinates between
all base stations.

A. MATHEMATICAL FORMULATION

The I/, norm in the usual objective function is extended by an
additional coordinate ):i for the base stations and A; for the
tags. This means that if the problem is two-dimensional (the
tag and the base stations are located on a two-dimensional
plane), the objective function is expanded by a third dimen-
sion. The approach can be illustrated geometrically by imag-
ing two circles. The both intersection points are the minima,
one of them the local minimum and the other the global
optimum. If the optimization algorithm starts close to the
local minimum and it remains in the two-dimensional plane,
it is not able find an alternative path. With the additional
dimension, the optimization algorithm is able to move along
the intersection line of the spheres from the local minimum
to the global optimum. The self-calibration will only use the
changing tag position to estimate the unchanging position of
the base stations. Every position change of the tag increases
the number of equations as well as the number of unknowns
xj,y; and z;. Since the positions of the base stations are
unknown, the constellation can only be determined up to
rotation and translation.

Classic approach:

Xj a;

=y b;=| b;

3j Cj

Our lifted approach:

Xj a;

. b;

tj = i b; = l

Zj Ci

Aj Ai
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IV. SELF-CALIBRATION WITH DIMENSION LIFTING

The TOA self-calibration deals with the case that the posi-
tions of the base stations and the transponders are both
unknown.

In presence of noise and nonlinear constraints the nonlinear
optimization is the solution of choice. The relative coordi-
nates between all base stations can be obtained by minimizing
the objective function (equation 1) with non-convex opti-
mization algorithms. It is necessary to keep in mind that the
lambda coordinate of the start values must not be zero.

The measurements d; ; are defined as a set of Euclidean
distances obtained through two-way ranging between the
base stations B; and the transponders 7;. With the classic
approach, it is very likely that the optimization converges to
a local minimum if the initial estimates are far away from the
global optimum [6].

It is assumed that the additional dimension of the base
stations and the transponders, reduces the risk to converge to
a local minimum especially if the initial values for the base
station or transponder positions are close to the correct geo-
metrical constellations. The additional dimension is also part
of the analytical position estimation in the partially analytical
method.

N M
argmin ZZ[||T1_Bi||_di’/]2 . D
i=1 j=1

A. FULLY NUMERICAL METHOD

The first method uses the objective function (1) for the self-
calibration. Equation (2) describes the ratio between the num-
ber of equations and the unknown dimensions. The ratio must
be at least one. The ratio is approaching % with M — oo.
At a certain number of transponders, the change of the ratio
becomes very small.

N-M

“=Dw+Mm) @

B. PARTIALLY ANALYTICAL METHOD
Equivalent to the fully numerical method, the aim of the
partially analytical method is to obtain the relative coordi-
nates of the base stations B;. The main difference to the fully
numerical method is that now only the base station posi-
tions are obtained by nonlinear optimization. The transponder
positions are estimated analytically in every iteration step.
The analytical solution is obtained by a linear least squares
approach [22].

The ratio eq. (3) Ra linearly increases with M. With this
method, the ratio increases indefinitely with the number of
measurements.

Ra=—> 3)

Figure 2 shows the ratio Ra for the fully numerical method
and the partially analytical method. It can be observed
that the second method leads to a higher ratio Ra than
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FIGURE 2. Ratio of the fully numerical and the partially analytical method
with increasing number of transponders. The yellow line represent the
partially analytical method the red line the fully numerical method with
four base stations and the blue line the fully numerical method with six
base stations.

the first method. With increasing number of base sta-
tions is also the ratio Ra higher for the fully numerical
method.

C. BACK TRANSFORMATION

The lifted objective function for the self-calibration provides
the result in the coordinate system with the additional dimen-
sion. The back-transformation rotates the result into the orig-
inal subspace . = 0. In Figure 3, a possible result of the
self-calibration in R? space can be observed. The red corners
are the positions of the base stations in the coordinate system
with the additional dimension A.

1) BACK TRANSFORMATION BY SVD

The singular value decomposition (SVD) can be used for
the back-transformation to the same dimensional space in
which the measurements were obtained. In the follow-

ing, we show how
R? to R2. In the
the matrix Z it is
the center-of-mass

to perform a back transformation from
first step of the back transformation
filled with the coordinates relative to
coordinates of the base stations @, b

and A.

(@a—-a (hh—b) (M —21)
(a—a) (br—b) (r2—2)

“

(ay —a) (bN — Z?) ()\N — )_»)

the next step, the matrix Z is factorized of the form
UXV* = Z. With U as a unitary matrix, X as a rectan-
gular diagonal matrix with non-negative real numbers on the
diagonal and V an unitary matrix. The diagonal entries of
XY are known as the singular values o of Z. Figure 3 shows
the singular values o1, oo and o3. If all base stations are
located on a plane, then the singular value o3 is close to
zero. A multiplication between the matrix U and X' leads
to a position matrix, where the additional dimension A is
close to zero. The disadvantage of the SVD is that it is
computationally expensive and not able to deal with missing
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Base station (x,y)
«— Base station (x,y, )

FIGURE 3. The red corners are the base station positions provided by the
optimization algorithm. The blue corners are the base station positions
after the back transformation in the coordinate system with 1 = 0. 5y to
o3 are the singular values of the SVD, with o5 too small to be drawn as an
arrow.

data. Therefore, we present a back transformation approach
based on optimization in the next section.

2) BACK TRANSFORMATION BY OPTIMIZATION

We denote rotation matrices by the coordinate directions
of the planes in which they act. In R3 with (X, Y, ) the
planes are (XY, XX, YA). With the overall rotation matrix
R = Rxy (o) -Rx) (B) - Ry, (y) and the position vector b; the
minimization objective function for the rotation becomes:

N ) ai 0
Z I:sz .R- e:l — argmin b= b; | e=|0
i=1 i 1

In the R* space we have the dimensions (X, Y, Z, A) and
the overall rotation matrix changes to R = Ryy («) - Rxz (B) -
Rx;. (¥) - Ryz (8) - Ryx (€) - Rz (n).

The position vector b; become:

a; 0

| bi 10
b; = i e = 0
Ai 1

V. RESULTS WITH SYNTHETIC DATA

The tests were carried out with the MATLAB Levenberg-
Marquardt algorithm without noise and bias. The base sta-
tions B;, the transponder 7; and the initial estimates were
randomly generated in a 10 x 10 x 10 cube. For each N
and M, 10,000 constellations were created. The evaluation of
the dimension-lifting methods are done by the mean square
error between all objects provided by the optimization and
the ground truth distances. The evaluation of the improved
function has to take the additional dimension A into account.

A. TWO-DIMENSIONAL POSITIONING

Table 3 shows the number of false results for the different
methods. With more transponders, the number of equations
and the number of unknowns increases. More measurements
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TABLE 3. False convergence rates for a 2-D model with synthetic data. The false results represent an RMS error larger than 0.1 m.

N=4M=12 | N=4, M =24 | N=4,M = 36
Ra: Fully numerical 1 1.14 1.2
Ra: Partially analytical 4 8 12
False results: Fully numerical [%] 65.27 75.56 80.93
False results: Partially analytical [%] 26.74 22.40 21.27
False results: Lifted fully numerical [%] 20.65 14.11 13.43
False results: Lifted partially analytical [%] 0.09 0.04 0.06

TABLE 4. False convergence rates for a 3-D model with synthetic data. The false results represent an RMS error larger than 0.1 m.

N=5M=20| N=5M=40 | N =5 M =60
Ra: Fully numerical 1 1.11 1.15
Ra: Partially analytical 5 10 15
False results: Fully numerical [%] 57.29 69.72 76.21
False results: Partially analytical [%] 11.69 15.76 17.20
False results: Lifted fully numerical [%] 51.52 41.04 37.21
False results: Lifted partially analytical [%] 0.14 0.20 0.10

increase the number of equations but also the number of
unknown dimensions (a;, b;, ¢;, Xj, i Zj, ):,-, Aj). The oppo-
site occurs in the partially analytical method. The number
of unknown variables does not increase but the ratio Ra
increases. Therefore, the results improve with more transpon-
ders. The methods with the additional dimension behave
differently. The additional dimension has the effect that the
number of false results decreases for the lifted partially ana-
lytical and the lifted fully numerical method.

B. THREE-DIMENSIONAL POSITIONING

In Table 4, it can be seen that for the three-dimensional model,
the results have the same characteristics as with two dimen-
sions. The only difference to the two-dimensional example is
the higher false rate for the lifted methods. It is likely due to
the higher number of unkown variables.

VI. RESULTS WITH REAL MEASUREMENT DATA

The following section deals with the previously presented
methods applied to real distance measurements. The selected
hardware is the EVB1000 system from DecaWave. This
system is based on ultra-wideband and complies with the
IEEE802.15.4-2011 standard [24]. It supports six frequency
bands with center frequencies from 3.5 GHz to 6.5 GHz and
data rates of up to 6.8 Mb/s. The bandwidth varies with the
selected center frequencies, ranging from 500 up to 1000
MHz. This system is able to operate in time-of-arrival and
in time-difference-of-arrival mode. In our case, the time of
arrival measurement technique is used with the restriction
that measurements of distances between base stations are not
performed. Table 5 and Figure 4 show the constellations of
the base stations with the identification numbers one to four.
The base stations are not changing their positions, only the
tag. Distance measurements of the DecaWave transceiver are
affected mainly by three parameters, namely the clock drift,
the signal power and the antenna delay. The antenna delay
can be obtained by self-calibration or with the knowledge
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TABLE 5. Coordinates of the stations.
Station ID | X-Axis [m] | Y-Axis [m] | Z-Axis [m]
1 0 0 0
2 0 1.613 0
3 1.028 1.710 0
4 1.055 0.017 0

FIGURE 4. Experimental setup with Decawave UWB. The four UWB base
stations with the identification number one to four are mounted on a

tripod. The tag is located on the left side in the picture.

about the ground truth distance. This article deals with the
effect of an additional dimension on the TOA self-calibration
and the following example should be as simple as possible.
Therefore, the antenna delay and the other erros have been
already corrected for the distance measurements. The ground
truth distances have been obtained by a laser distance sensor.

In the first test scenario, the position of the transponder
changes 23 times. Every distance measurement is based on
the mean of 2000 measurements in one position. The standard
deviation is around 0.0185 m. Figure 5 shows the constella-
tion of the base stations and the transponder positions. The
optimization is repeated 10,000 times, with random initial
estimates and the random selection of 12 measurements out
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TABLE 6. False convergence rates for real 2-D measurements with a stationary transponder. The false results represent an RMS error larger than 0.1 m.

N=4,M=12 | N=4,M =23
Ra: Fully numerical 1 1.14
Ra: Partially analytical 4 7.7
False results: Fully numerical [%] 25.85 42.04
False results: Partially analytical [%] 21.86 21.06
False results: Lifted fully numerical [%] 0.11 0
False results: Lifted partially analytical [%] 0.41 0.52

TABLE 7. False convergence rates for synthetic 2-D distance measurements with noise. The constellation of the base stations and transponders is equal
to the table 6. The false results represent an RMS error larger than 0.1 m.

N =4, M =12
[ oc=0m [ U:0.0259m[U=0.05m
False results: Fully numerical [%] 27.13 24.07 24.12
False results: Partially analytical [%] 12.44 9.33 10.30
False results: Lifted fully numerical [%] 0 0 0
False results: Lifted partially analytical [%] 0.08 0.41 2.61
3 . . : : : : 25 . . : ; ;
x  Transponders x x  Transponders
25F O Base stations ol HRXXXX O Base stations |
.l x
15¢
o x ©
— 151 —
E < - £
> 4l x x . >
x x 051
051 x x .
0 o N o * of
05 . 05 . . . . .
1.5 1 0.5 0 0.5 1 1.5 2 -1 0.5 0 0.5 1 1.5 2
X [m] X [m]

FIGURE 5. Constellation of the real base stations and stationary
transponders represented by red circles and by blue crosses, respectively.

of the 23 available measurements, without selecting the same
set of measurements twice. In the next test N = 4 and
M = 23, all of the 23 available measurements are used
for the optimization. The results of the optimization of both
test cases are presented in table 6. Similar to the synthetic
data, the results of the lifted objective function are better
than those of the regular objective function. The false rate
is much smaller compared to the synthetic data. The reason
is probably that the constellation of the base stations is well
suited for self-calibration. It can be observed that similarly
to the synthetic data, the number of false results increases
with more measurements for the fully numerical method, but
decreases for the partially analytical method. The false rate
with the regular objective function is about 30 percent and
for the lifted objective function is 0.1 percent. In contrast to
the synthetic data, the lifted fully numerical method is better
than the lifted partially analytical method. This could be due
to the fact that the analytical solution is more affected by noise
compared to the fully numerical solution. This assumptions
is checked by repeating the self-calibration with synthetic
distances for the same station configuration and random ini-
tial estimates. Table 7 shows the results of the optimization
with N = 4 and M = 12 with increasing Gaussian noise.
It can be observed that the results of the fully numerical
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FIGURE 6. Constellation of the real base stations and one moving
transponder represented by red circles and by blue crosses, respectively.

and the lifted fully numerical method without noise comes
very close to the real measurements, most likely due to the
good geometrical constellation. The false result rate of the
lifted partially analytical method increases with noise. The
noise of the real measurements has a standard deviation of
0.0259 m. Optimizations performed with real and synthetic
measurements have similar false rates close to this deviation.
For both of the non-lifted methods, a slight improvement
can be seen as the noise increases. This could be due to
the extra noise “lubricating” the iterative/gradient-descent
optimization process.

The number of measurements can be significantly
increased by using a moving transponder. This requires a
good data filter and outlier detection. Figure 6 shows the path
of the transponder in our experiment. In some areas the data
is missing due to outlier removal.

Generally, it is advised to filter the raw data before the
trilateration. Otherwise, it is possible that the nonlinear pro-
cess transforms the Gaussian noise to non-Gaussian [25]. The
outlier effect has been reduced by pre-filtering of the data.
In order to remove outliers was in the first filtering step,
a moving average filter with a time frame of 100 measure-
ments used. Every raw measurement with a distance greater
than 10 cm from the moving average has been assumed to be
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TABLE 8. False convergence rates for real 2-D measurements with a moving transponder. The false results represent an RMS error larger than 0.1 m.

N=4,M=12 | N=4,M =23
Ra: Fully numerical 1 1.14
Ra: Partially analytical 4 7.7
False results: Fully numerical [%] 47.20 58.09
False results: Partially analytical [%] 37.50 37.88
False results: Lifted fully numerical [%] 2.81 0
False results: Lifted partially analytical [%] 0.39 0.40

Distance [m]

1 . . . . . . . .
0 100 200 300 400 500 600 700 800

Measurements

FIGURE 7. Filtered distance measurements d; ; between the base
stations and transponders. The different colors stands for base stations
with the ID one to four.

an outlier. After the outlier elimination, the remaining raw
data was filtered with a moving average filter with a width
of 5 values. The higher size of measurements was selected
to make the filter less dynamic for the outlier detection.
The second filtering was performed with a smaller window
size to reduce the risk of over smoothing.

The results can be seen in Figure 7. After filtering, the mea-
surement data was split into different path sections. The
number of path sections is equal to the number of transponder
positions M. In every optimization test, one measurement of
the filtered data from each of the path sections was randomly
selected for the optimization.

The results of 10,000 tests can be seen in Table 8. The lifted
objective function performed much better than the regular
objective function.

The optimization time depends on the hardware / software
environment. With a higher number of dimensions, the com-
puting time also increases. With an Intel Core i7-6600U
2.60 GHz, 16 GB RAM and 80 unknown variables, the opti-
mization with the lifted approach took up to half a second
longer. The time difference between the two approaches can
be further reduced by parallel optimization.

VII. CONCLUSION

In this paper, we have presented a dimension lifting approach
to the non-linear optimization for solving the self-calibration
problem in time-of-arrival positioning. The objective func-
tion has been extended with an additional coordinate for all
position vectors. It has been compared to the unmodified
objective function with two different optimization methods:
using a numerical method to optimize all unknown parame-
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ters (fully numerical), and only applying it to the base sta-
tion positions and determining the tag positions analytically
(partially analytical). The lifted objective function has been
evaluated with both methods for both synthetically generated
random geometrical constellations and real measurements
using an ultra-wideband positioning system. The evaluation
criterion was the percentage of non-convergence to the known
correct solution under varying initial estimates.

In all cases the modified objective function performed
better than the conventional one. For synthetic data with
arbitrary random geometry, the partially analytical method
was superior, with an improvement of a factor between 83 and
560 compared to the unmodified objective function. For noisy
measurement data with a reasonable base station constella-
tion, the fully numerical method converged correctly for any
initial estimate for a sufficient number of measurements. With
the partially analytical method, the improvement compared
to the unmodified objective function was between 40 and 96.
We conclude that our dimensional lifting approach to TOA
self-calibration improves the convergence properties of the
objective function considerably. Combined with the partially
analytical optimization method, this advantage persists for
arbitrary geometrical constellations of base stations, while
the fully numerical method can be more robust to noise for
reasonable constellations. This approach has already been
applied to positioning itself and is worth considering for other
non-linear optimization problems that do not lend themselves
to linear approximations.
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