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ABSTRACT To research the problems of the rolling bearing fault diagnosis under different noises and loads,
a dual-input model based on a convolutional neural network (CNN) and long-short term memory (LSTM)
neural network is proposed. Themodel uses both time domain and frequency domain features to achieve end-
to-end fault diagnosis. One-dimensional convolutional and pooling layers are utilized to extract the spatial
features and retain the sequence features of the data. In addition, an LSTM layer is employed to extract the
sequence features. Finally, a dense layer is applied for fault classification. To enhance recognition accuracy
under different noises and loads, three techniques are applied to the proposed model, including taking time–
frequency domain signals as input, using the CNN–LSTM model, and adopting the mini-batch and batch
normalizationmethods. The CaseWestern Reserve University andDrivetrain Diagnostics Simulator data sets
are used to construct experiments under different conditions, including varying loads and different noises.
The proposed model can achieve a high fault recognition rate under variable load and noise conditions as
well as satisfactory anti-noise and load adaptability.

INDEX TERMS Time-frequency features, CNN, LSTM, bearing fault diagnosis, anti-noise and variable
load adaptation.

NOMENCLATURE
CNN Convolutional neural network
LSTM Long short term memory
WConv Wide convolutional layer
TF- Time domain and frequency domain
CWRU Case Western Reserve University
DDS Drive train Diagnostics Simulator
OSDM Oversampling Data Enhancement
BN Batch Normalization
STFT the short-time Fourier transform
1-D one-dimensional
VMD Variational mode decomposition

The associate editor coordinating the review of this manuscript and

approving it for publication was Dong Wang .

PARAMETERS
Keep_pro The parameters of dropout
Lr The learning rate of neural networks
Epochs The training iteration
num_classes The number of the model’s outputs
train-test_rate The rate of training set and test set
BatchNormal The parameters of Batch

Normalization
Output Shapes The shape of model’s outputs
Numbers The number of the convolutional

kernel
Activation function The activation function of neural

networks
Padding The parameters of pooling layer
γ scaling parameters
β translation parameters
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I. INTRODUCTION
The fault monitoring of mechanical equipment is critical and
determines whether they can operate safely. Rolling bear-
ings are the core components of mechanical equipment and
are susceptible to damage. According to statistics, 30% of
mechanical equipment malfunction are caused by bearing
failures [1]. Failure of rolling bearings can lead to mechanical
system collapse, which can cause huge economic losses and
endanger the safety of personnel in serious cases. In industrial
applications, rolling bearings generally operate under differ-
ent loads and noises. These interference factors further com-
plicate fault diagnosis and require fault diagnosis methods to
stably and efficiently identify faults under different loads and
noises and ensure the safe operation of industrial equipment
[2].

A vibration signal is commonly used for fault diagnosis
of rolling bearings. Such a signal is a type of time-series data
that changes periodically [3]. Traditional fault diagnosis tech-
niques use signal processing methods, such as fast Fourier
transform (FFT), variational mode decomposition (VMD),
and wavelet decomposition, to identify faults by determining
periodic impact components of signals [4]–[6]. However,
when disturbed by noise, a signal will cause the periodic
impact feature to be submerged in the noise. At present,
research on bearing fault diagnosis with noise interference
mainly focuses on signal feature extraction methods [7]. Such
schemes are often used in conjunction with denoising tech-
niques to extract features that reflect bearing conditions and
are insensitive to noise and operating conditions. To achieve
intelligent fault diagnosis, these methods must be used in
conjunction with a machine learning algorithm [8]. Amar
et al. [9] proposed a novel vibration spectrum imaging feature
enhancement program for low signal-to-noise ratio (SNR)
conditions and implemented fault recognition through ANN.
Wang and Yan [10] used an SVM to classify the working state
of a bearing according to the energy of eachmodal component
after VMD decomposition

With the development of modern industries, the sampling
point and sampling period of a fault monitoring system con-
tinue to increase as well as the amount of data collected.
Therefore, the ability to process large amounts of data has
become a necessity for modern fault diagnosis methods [11].
Although the above method can effectively solve the problem
of bearing fault diagnosis for small samples, the following
phenomena still exist for large samples and complex inter-
ferences. 1) A fault diagnosis method is divided into four
isolated parts, namely, denoising, feature extraction, dimen-
sion reduction, and classification. Such an approach destroys
the coupling relationship between the parts and causes par-
tial loss of fault information. 2) Artificial feature extraction
requires certain prior knowledge, exhibits poor generalization
ability under variable loads and noises, and experiences dif-
ficulty processing extensive data.

In recent years, deep learning algorithms have been effec-
tively used for image recognition, speech recognition, and
fault diagnosis [12]–[14]. For fault diagnosis, deep learn-

ing algorithms tend to employ end-to-end fault diagno-
sis schemes that use only one model for denoising, fea-
ture extraction, dimensionality reduction, and classification,
which is called the adaptive feature extraction fault diagnosis
method [15]. In [16], a deep CNNmodel with strong domain
and anti-noise adaptability was established, which is an end-
to-end fault diagnosis technique. In [17], an unsupervised
learning method based on sparse filtering and softmax was
proposed to solve the problem of fault diagnosis against the
background of big data.

Among deep learning algorithms, the CNN is widely used
in image processing, voice recognition, video processing,
and fault recognition [18]–[20]. In bearing fault diagnosis,
the input of the CNN fault diagnosis model generally employs
a two-dimensional (2D) time–frequency map [21], [22] or
one-dimensional (1D) time-series data [23]. Li et al. [24].
proposed a bearing fault diagnosis method based on STFT
and DCNN, which extracts time–frequency map features
through STFT and uses DCNN to achieve end-to-end fault
diagnosis. Zhang et al. [25], developed a WDCNN method
with the first layer of a wide convolution kernel, which was
used in conjunction with an adaptive batch normalization
(BN) algorithm to enhance the domain and anti-noise adapt-
ability of the model.

Although the above methods perform well in dealing
with fault diagnosis under slight noise, they exhibit low
recognition accuracy for strong noise conditions, mainly
for the following reasons. (1) The models use only time-
domain or frequency-domain data as input, thereby resulting
in the insufficient extraction of data features. (2) The models
can fully extract spatial features of data but cannot extract
temporal features.

Long short-term memory (LSTM) is a special recurrent
neural network (RNN) structure that can effectively process
sequence data [26]. Yildirim [27], proposed a method for
processing ECG signals using a wavelet sequence and a
bidirectional deep LSTM network. An LSTM network can
extract the temporal features of time-series data and enhance
the generalization ability of a model through a gate structure
[28]. However, in the case of a large amount of data, an LSTM
networkwill encounter difficulty extracting nonlinear charac-
teristics of data and exhibit slow convergence speed [29].

To address the above problems, a time–frequency dual-
input model based on a CNN and LSTM network (TF-
WConvLSTM) is proposed in this study. The main contribu-
tions of this research are as follows:

1. An end-to-end bearing fault diagnosis model is devel-
oped. The model uses a time–frequency dual-input structure
and combines a CNN and LSTM network to fully extract the
spatiotemporal characteristics of bearing vibration data.

2. The algorithm uses time-domain and frequency-domain
data, thereby effectively expanding the feature extraction
range and improving the generalization ability of the model.

3. The algorithm performs well in noisy environments and
directly processes an original noise signal without a pre-
denoising method.
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4. The algorithm has a strong load adaptation ability and
can achieve 90%+ accuracy under different workloads and
mixed variable loads.

The load adaptability and anti-noise characteristics of the
proposed FT-WConvLSTM method are evaluated by a con-
stant load test, a variable load test, and a noise test using
the CaseWestern Reserve University (CWRU) andDrivetrain
Diagnostics Simulator (DDS) data sets. The recognition accu-
racy of the proposed method can reach 90%+ under different
workloads, and accuracy can reach 86% in different noise
interference environments.

II. CONVOLUTIONAL NEURAL NETWORK AND
LONG-SHORT-TERM MEMORY RECURRENT NEURAL
NETWORK
A CNN is a feedforward neural network that can efficiently
extract the spatial features of a sample. The CNN structure
includes a convolution layer, a pooling layer, a BN layer,
and an activation layer. LSTM is a special type of RNN that
is used to process and predict sequence data and can fully
extract the temporal features of data. In this study, a 1D CNN
is employed to extract the spatial features of time-domain
signals and time-frequency maps, and LSTM is utilized to
extract temporal features.

A. 1D CONVOLUTIONAL OPERATION
A convolutional operation can be divided into 1D and 2D
convolutions according to the dimensions of the input data.
2D convolution is typically used to process images. It is a
convolution operation along the XY dimensions of an image
that uses a 2Dfilter to extract spatial features. However, it will
cause temporal features to be lost when processing sequence
data. By contrast, 1D convolutional employs only convolution
operations along a single dimension of data. If this dimension
is the timeline, then the temporal characteristics of the data
are retained. For time-series data, 1D convolution employs
multiple filters to move along the timeline to extract features.
After the bias is added, an activation function is utilized to
obtain the feature map of the retained time feature [30]. The
specific formula is as follows:

Ql+1i (τ ) = f

 F l∑
i=1

ωlij (τ ) ∗ Q
l
j (τ )+ b

l
i


= f

 F l∑
i

 T l∑
t=1

ωlij (t)Q
l
i (τ − t)

 , (1)

where Ql+1i (τ ) is the feature map i in layer l, f represents the
nonlinear function, F is the number of feature maps,W is the
convolutional kernel, and T is the size of the convolutional
kernel.

B. 1D POOLING OPERATION
The pooling layer lies behind the convolutional layer and
employs a down-sampling operation to reduce the dimension
of the feature map. We use the max-pooling operation in
this research. Suppose that the output feature maps of the

convolution layer are X ∈ RM ,N ,D. The max-pooling layer
uses the patch of w∗d to move along a single direction in the
feature map with step S and divides each feature map Xd into
multiple regions Rdm (1 < m < M ). Meanwhile, the patches
employ a pooling operation to output the maximum value of
the neurons in each region [31].

Pdm = max
i∈Rdm
{xi} , (2)

where X represents the activation value of each neuron in
region R.

C. BATCH NORMALIZATION
The BN method [32] is a layer-by-layer normalization
method for reducing the internal covariance migration phe-
nomenon. It can normalize any intermediate layer of a neural
network and reduce sample differences between layers. Thus,
this technique can reduce training time and avoid the effects
of gradient disappearance and gradient explosion. The BN
method is commonly set between convolution and activation
layers. The specific formulas are as follows:

µB =
1
M

M∑
m=1

xm, σ 2
B =

1
M

M∑
m=1

(xm − µB)
2, (3)

x̂m =
xm − µB√
σ 2
B + ε

, (4)

where xm represents the value of x over a mini-batch, M =
{x1, x2, · · · , xm}, µB represents the mean value of the mini-
batch samples, and σ 2

B is the variance of the mini-batch
sample. The BNmethod introduces scaling parameters γ and
translation parameters β to enable BN results to be adaptively
extended and translated. The specific formula is as follows:

ym = γ x̂m + β ≡ BNγβ (xm) . (5)

D. LONG-SHORT-TERM MEMORY OPERATION
The internal structure of a hidden layer of RNN is relatively
simple. For large data volumes, the RNN model will involve
gradient disappearance or gradient explosion. To solve the
above problems, LSTM [33] introduces input gate, forgetting
gate, and output gate structures, thereby increasing the func-
tion of information long- and short-term selection memory.
A gate is an operation that includes a sigmoid network and
bitwise multiplication. A sigmoid network can output a value
between 0 and 1, which represents whether the input value
can go through a gate.

The aim of the forgetting gate is to make the LSTM net-
work forget previously useless information.

ft = σ
(
W [xt , ht−1,Ct−1]+ bf

)
. (6)

The function of the input gate is to determine current state
Ct according to current input [ht−1, xt ,Ct−1] and CtCt−1.

it = σ (W [xt , ht−1,Ct−1]+ bc)

Ct = ft · Ct−1 + i1 · tanh (W [xt , ht−1,Ct−1]+ bc) . (7)
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The output gate determines output ht at the current moment
according to current stateCt , current input xi, and output ht−1
at a previous time.

ot = σ (W [xt , ht−1,Ct ]+ bo)

ht = tanh (Ct) · ot , (8)

where σ () is a logistic function whose outputs are in the scale
of (0,1), xt is the input at the current time, and ht−1 represents
the state at a previous time.

E. STFT
STFT is defined as a fixed-width Fourier window function
that moves along the time axis of the signal to intercept it.
The signal is intercepted into several sub-signals of equal
length, with each sub-signal approximately stationary. Then,
the Fourier transform of the sub-signal is used to obtain the
local spectrum set at each time t, thereby forming the 2D
time–frequency diagram. The formula is as follows:

STFT =
∫
+∞

−∞

X (t)F (t − τ) e−jωtdτ , (9)

where X (t) is the original signal, and F(t − τ ) is the Fourier
window centered at time τ . According to [22], the width of
the STFT window will affect the time–frequency resolution
R of the time–frequency image. Simultaneously, R deter-
mines the information contained in the time–frequency image
and includes useful fault information and noise. Therefore,
the reasonable selection of T and F can make fault features
significant and reduce noise interference.

T =
[
Xs − Xr
Xw − Xr

]
,

F =


Nx
2
+ 1, Nx is even number

Nx + 1
2

, Nx is odd number,
R = T × F . (10)

F. SNR
SNR represents the ratio of signal to noise. The smaller the
SNR, the greater the proportion of noise contained in the
signal.

SNR = 10 log10

(
esignal
enoise

)
, (11)

where esignal represents the energy of the signal, and enoise
represents the energy of the noise.

III. PROPOSED INTELLIGENT DIAGNOSIS METHOD
A. TF-WConvLSTM NETWORK
The flow of the TF-WConvLSTM bearing fault diagnosis
method is shown in Fig. 1. For fault diagnosis under complex
interference, including variable loads and different noises,
improving the recognition accuracy of the model is a key
issue. Three methods address the above issue. First, a dual-
input model is established using the time and frequency
domain features of a bearing vibration signal to enhance
feature extraction. Second, an interference training technique

FIGURE 1. The overall framework of proposed TF-WConvLSTM.

FIGURE 2. The structure of the model.

combining mini-batch and BN methods is applied, and BN is
used between each convolutional and active layer. In addition,
BN can be combined with the mini-batch training method to
interfere with the training of the model, thereby improving
its anti-interference ability. Third, a CNN–LSTM model is
employed, which can effectively extract and utilize the spa-
tiotemporal features of the input and enhance the general-
ization ability of the model using an LSTM gate structure.
Fig. 2 shows the schematics of the model.

As shown in Fig. 2, themodel is a dual-input network struc-
ture that includes a time–frequency domain. Specifically,
the time-domain input is a time-series signal with a structure
of [1200,1]. Meanwhile, the frequency-domain input is a
time–frequency diagram with a time–frequency resolution
of 65∗65. The first layer of the time- and frequency-domain
branches adopts a convolutional layer with a wide convolu-
tion kernel and can effectively increase the receptive field
of the CNN, thereby reducing the influence of noise. After
the convolution layer, a 1D pooling operation is employed
to reduce the dimension of the feature map. Then, the sec-
ond and third layers adopt stacked convolution and pooling
operations with small convolution kernels, which increase the
depth of the network model and enhance feature extraction.
The fourth layer uses LSTM to extract the temporal features
of the feature map. Finally, the outputs of the FLSTM and
TLSTM layers are concatenated and classified by a dense
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FIGURE 3. Visualization of time domain signal.

FIGURE 4. Visualization of frequency domain signal.

layer. The use of BN between the convolutional and active
layers of the model serves to hasten the training process and
reduce the effects of interference. Dropout is used between
the convolutional and pooling layers to prevent overfitting.

B. USE OF TIME–FREQUENCY FEATURES TO IMPROVE
THE MODEL
The bearing vibration signal is a time-series data that contains
extensive information in time-domain and frequency-domain
features. As shown in Figs. 3 and 4, periodic shock compo-
nents can be clearly observed from the time domain of a sig-
nal. In the frequency domain, different types of fault signals
are concentrated in various frequency bands. Therefore, time-
domain and frequency-domain information are employed as
input to construct a two-input fault diagnosis model, which
can enhance feature extraction and anti-interference.

(1) Time-domain data use raw vibration data acquired by
an accelerometer. As shown in Fig. 3, the bearing vibration
signal changes periodically. One rotation of a bearing is one
cycle. Therefore, the number of signal points collected by a
cycle is T, which can be obtained according to the sampling
frequency of the sensor and the rotational speed of the motor,
that is, T = Fs× (60/S). To avoid data skew, three consecu-
tive periods are utilized as a sample to build the time-domain
data set.

(2) Frequency-domain data involve time–frequency maps
transformed by STFT. According to the frequency-domain
characteristics of the bearing vibration signal, the length of
the sample can be determined by a one-fold fault frequency,
and the width of the STFT window is determined according
to a two-fold fault frequency.

FIGURE 5. The process of 1D convolution.

The 1D convolution is applied to extract spatial features
of time-domain signals and time-frequency figures. And it
can retain the sequence features of the data. The specific
process is shown in Fig.5, the convolution kernel of the 1D
convolutional layer only moves along the t-axis of the time-
domain signal and time-frequency figures to extract their
spatial features.

C. CNN AND LSTM
A CNN can adaptively complete feature extraction and data
dimension reduction through convolution and pooling and
exhibits better generalization ability than traditional feature
extraction methods. In bearing fault diagnosis, a bearing sig-
nal is generally converted into a time-domain map or a time–
frequency map and then processed by a 2D CNN. However,
a 2D convolutional operation can only extract the spatial
features but ignores the temporal features of a signal, thereby
causing the above model to perform poorly under complex
interferences. The characteristics of the bearing vibration
signal are considered, and a 1D convolutional operation is
used to extract features along the time-axis convolution of
the signal, thereby ensuring feature extraction while retaining
temporal features.

LSTM has unique advantages when dealing with time-
series data. However, it exhibits poor feature extraction per-
formance for large-volume samples and requires substantial
computation time to achieve satisfactory results. Therefore,
this study uses a CNN–LSTM structure. First, convolutional
and pooling layers are used to extract the spatial character-
istics and reduce the dimensions of data. Then, an LSTM
network is utilized to further extract the time characteristics
of the data.

The LSTM network adopts a gate control unit structure,
as shown in Formulas (6) and (7). Among the gates, the input
and forgetting gates can effectively control the input of
sample information and the forgetting of information. The
input gate determines features it to be retained according
to [ht−1, xt ,Ct−1], while the forgetting gate determines the
features that must be forgotten in Ct . As shown in Formula
(7), input gate it and forgetting gate ft can be regarded as
filters. Meanwhile, input

_

C t and previous state Ct−1 are fil-
tered to screen out effective fault information to contribute to
denoising. Therefore, the CNN–LSTM structure can improve
the anti-noise performance of the model.

CNN network shows excellent spatial feature extraction
ability, while LSTM network shows excellent sequence
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FIGURE 6. Data enhancement.

feature extraction ability. The bearing vibration signal is a
kind of time series data with periodic changes. This requires
that the bearing fault diagnosis model should contain both
excellent temporal and spatial feature extraction capabili-
ties. Therefore, 1D convolutional neural network and LSTM
network are both used in bearing fault diagnosis model.
It extracts the spatial features through 1d convolutional layer,
and retains the temporal features. Then, it extracts the tem-
poral features through LSTM network. Therefore, this model
can extract the features of bearing vibration data more com-
pletely.

D. OVERSAMPLING DATA ENHANCEMENT (OSDM)
Deep learning algorithms often experience overfitting owing
to few samples during training. To avoid this phenomenon,
data set enhancement techniques are often used. A bearing
vibration signal is a 1D time-series data. This study uses an
oversampling method to enhance the data set. A sampling
window, with a width of w and a repetition rate of wide as
well as a step size of S, is resampled along the time axis. The
specific process is shown in Fig. 6.

IV. VALIDATION OF PROPOSED TF-WConvLSTM
A. DATA DESCRIPTION
1) CWRU BEARING FAULT DIAGNOSIS DATA SET
The test data are derived from the simulated bearing failure
test rig of the CWRU [34]. The test rig includes a 2 HP
motor, an encoder, and a dynamometer. The test bearing is
a SKF6205 motor bearing. A single-point fault with multiple
pitting diameters is introduced by the EDM technology, and
the fault diagnosis data of the drive section and fan section are
collected by an acceleration sensor. The experimental data are
shown in Table 1. The data of the drive section, with a load
of 0 HP, 1 HP, 2 HP, and 3 HP and a sampling frequency
of 12 kHz, are selected. To verify the performance of the pro-
posed model, data of 10 different fault levels, including inner
race, outer race, ball, and normal, are selected for the test.
As shown in Table 1, each fault type collects 800 samples,
and 1200 signal points constitute a group of samples.

2) DDS BEARING FAULT DIAGNOSIS DATA SET
To verify the performance of the model in actual conditions,
an experiment is performed using the DDS test bench shown
in Fig. 7.

The DDS test rig is a complete powertrain system that
includes a variable speed drive motor, a primary gearbox,
a secondary parallel gearbox, a torque sensor, an encoder,
a programmable magnetic brake, and a sensor acquisition

FIGURE 7. Drive train Diagnostics Simulator test bench.

system. This test bench can study the vibration characteris-
tics, noise characteristics, and diagnostic techniques of the
gearbox. In this study, the rolling bearings of normal, inner-
ring, outer-ring, and rolling-element faults are tested by the
DDS.

B. EXPERIMENTAL SETUP
1) CONTRAST MODEL
To verify the advantages of the proposed TF–WConvLSTM
model under complex interference conditions compared with
traditionalmachine learning, feature extraction deep learning,
and common single-input end-to-end fault diagnosis meth-
ods, it is compared against the SVM, CNN, WDCNN, TF-
CNN, WConvLSTM, and VMD-LSTM models. WDCNN is
a deep CNN method in which the first layer is a wide convo-
lution kernel and the second layer is the proposed common
convolution kernel. VMD-LSTM is a bearing fault diagnosis
method proposed by our team using VMD-TEO window
extraction features and deep bidirectional LSTM network
modeling. The parameters of the model are shown in Table 2.

2) PARAMETERS OF PROPOSED TF–WConvLSTM MODEL
The TF–WConvLSTM network used in the experiment is a
dual-input model. The time-domain and frequency-domain
branches of the model consist of a wide convolution layer,
two 1D convolution pooling layers, and an LSTM layer.
Classification is achieved by one concatenating layer and two
dense layers. The first convolution kernel has a width of 64,
and the others have a width of 2. The number of LSTM cells
is 100, and the number of Dense1 cells is likewise 100. A total
of 10 Dense2 cells is present according to the data set sample
type. The pooling layer adopts a maximum pooling layer, and
BN operations are used between the convolutional and active
layers. The convolutional, LSTM, and Dense2 layers sequen-
tially use the Relu, tanh, and softmax functions as activation
functions, which are trained by the Adam algorithm. The
specific parameters are shown in Table 2. The test platform
is a Win10 + matlab2016b and a Ubuntu16.04 + python3.5
+ tensorflow11, and the CPU is an Intel (R) CORE(TM) i7-
7500u.
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TABLE 1. CWRU bearing fault data set.

TABLE 2. Parameters of the model.

FIGURE 8. The diagram of the model training process.

Fig. 8 shows the accuracy graph of training under four dif-
ferent structures of TF-WConvLSTM models. The accuracy
of the original model fluctuates greatly during the conver-
gence process, which can only reach 65%. Meanwhile the
model has a high recognition accuracy of the training set,
and the recognition accuracy of the verification set and the
test set is low. This is an overfitting phenomenon caused
by less training data. Therefore, to avoid this phenomenon,
Dropout, BN, mini-batch methods and OSDE data enhance-
ment methods are added to the original model. The results
show that the accuracy of the model after adding dropout and
BN is obviously improved, reaching 98%. However, the con-
vergence rate of the model is slow, and the convergence
process is accompanied by small fluctuations; after adopting

FIGURE 9. The effect of OSDE.

themini-batch trainingmethod, the convergence rate has been
improved. Although the above method improves the perfor-
mance of the model through structural optimization, there are
still some fluctuations. Therefore, the OSDE method is used
to enhance the training set. After the OSDE, the training set
sample is increased to 7140 groups. The model is stable after
five iterations, the accuracy is 99%.

As shown in Fig. 10, mode1 is a structure that uses dropout
in both time-domain branch and frequency-domain branch.
Its convergence process contains a lot of fluctuation, and
the accuracy of fault identification can only reach 82%.
Model2 is the structure proposed in this paper, which only
uses dropout in the frequency domain branch. The con-
vergence of the model can be achieved after 10 iterations,
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FIGURE 10. Model comparison results.

TABLE 5. Alter load data set.

which fault identification accuracy can reach 99%. Therefore,
the structure of model2 is more suitable for bearing fault
diagnosis.

Finally, an optimal TF-WConvLSTM model is deter-
mined, as shown in Table 3. The remaining hyperparameters
are as follows: Keep_pro = 0.85, Lr = 0.06, Epochs =
100, num_classes = 10, train-test_rate = [0.7,0.15,0.15],
batch_size = 32, BatchNorm = True, length = 1200, and
OSDE = 7500.

Table 4 compares the computational time of the different
models. The TF-WConvLSTM model demonstrates rela-
tively fast calculation speed. Compared with CNN networks,
the proposed model shows a faster computational speed
owing to the structure of the wide convolution kernel. The
proposed model’s feature extraction and feature dimension-
ality reduction abilities are better than the VMD-LSTM
structure, thereby showing excellent operation speed. This is
because the convolution and pooling layers are used before
the LSTM layer. Compared with the WConvLSTM model,
the proposed model shows higher recognition accuracy, but
the calculation time is higher than before. This is due to both
time-domain and frequency-domain data are extracted by the
proposed model.

3) ALTER LOAD ENVIRONMENT
To verify the model under different loads, an alter load exper-
iment is designed using the CWRU data set. The test data are
shown in Table 5, where A, B, C , andD are constant load data
sets with loads of 0 HP, 1 HP, 2 HP, and 3 HP, respectively. AB
represents a data set under a two-load mixing condition, ABC
is a data set under a three-load mix, and ABCD is a four-load
mixed state data set.

The variable load experimental data set is constructed from
the above data. Data set A-B simulates the load from 0 HP to
1 HP, which is constructed using the training set of A and
the test set of B. Data set B-D\ D-B simulates the state at

FIGURE 11. Comparison of load adaptability test results.

FIGURE 12. Model convergence process under different load.

which the load transitions from 1 HP to 2 HP or from 2 HP
to 1 HP. Data sets B-ABC and B-ABCD simulate the state of
the bearing when it is running from a constant to a variable
load.

As shown in Fig. 11, the recognition accuracy of SVM
can only reach between 60% and 70%. Thus, the LSTM
model performs better, with the highest accuracy of 85%.
The WDCNN model exhibits better load adaptability than
the above model, with a recognition accuracy of 85%.
By contrast, the proposed model performs well under a sin-
gle variable load and demonstrates remarkable recognition
accuracy for complex variable load conditions. The model’s
recognition accuracy is nearly over 90%. In conclusion, the
TF-WConvLSTM bearing fault diagnosis model shows con-
siderable load adaptability.

The convergence of the model under four different loads is
shown in Fig. 12 below.

To verify the effect of the proposed model, the ROC curve
method is used to evaluate the model. This study takes the
B-D case as an example, and the specific results are shown
in Fig. 13.

To visually present the feature representation of the TF-
WConvLSTM model, t-SNE is employed to visualize the
feature representation of the Dense1 layer. Fig. 14 shows the
visualization diagram of the output by the Dense1 layer when
SNR is 2. Ten types of bearing signal data achieve effective
separation and are concentrated in a specific area. Thus,
the model has learned effective features and realized data
classification.
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TABLE 3. Detailed overview of the proposed TF-WConvLSTM model.

TABLE 4. The computational time.

FIGURE 13. The ROC curve under load B-D.

FIGURE 14. T-SNE visualization of Dense1 layer.

4) NOISE TESTING
To verify the anti-noise performance of the model, noise
interference experiments are designed using the CWRU data
set. Gaussian white noise with different intensities is added
to the original signal to simulate the bearing vibration signal
under different SNR conditions.

FIGURE 15. Bearing vibration signal diagram with SNR of −4.

As shown in Fig. 15, after noise with a SNR of−4 is added
to the original signal, the periodic impact component of the
signal weakens.

The experiment uses noise-containing signals with a SNR
of −4db∼10db to verify the anti-noise performance of the
four models. The results are shown in Fig. 16.

Although the fault recognition accuracy of the four models
reaches 90% under low-noise signals, accuracy decreases
under strong-noise interference. Specifically, the recognition
accuracy of the WDCNN methods reaches only 70% when
SNR is −4db. Moreover, the recognition accuracy of the
VMD-LSTM model performs well but reaches only 75%
when SNR is−4db. In contrast, the fault recognition accuracy
of WConvLSTM model with single-input is higher than the
above model under strong noise. However, its accuracy can
only reach 79.5 in the case of SNR = −4. By contrast,
the recognition accuracy of the TF-WConvLSTM model is
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FIGURE 16. Comparison of accuracy testing on signals with different SNR
values.

FIGURE 17. The convergence process under different noise.

FIGURE 18. The ROC curve under SNR = −4.

consistent at 86%+ when different noise intensity signals
are processed. However, under the condition of SNR < 0,
the dual-input model shows better feature extraction effect,
which can extract both time-domain and frequency-domain
features of the model. Therefore, the dual-input model is
more suitable for bearing fault diagnosis under strong noise.

The convergence of the model when SNR is −4, 2, 6, and
10 are shown in Fig. 17.

Noise can interfere with the convergence process of the
model. The model convergence process shows large fluctu-
ations when SNR is −4. In general, the model can reach
convergence after 90 trainings.

The ROC curves of the model are established when SNR
is −4 and 2, as shown in Figs. 18 and 19.

In industrial environments, complex disturbance condi-
tions consisting of variable loads and strong noise often occur.
Therefore, a variable load noise dataset was constructed by
the CWRU data set. The -4db∼10DBGaussian white noise is

FIGURE 19. The ROC curve under SNR = 2.

FIGURE 20. Comparison of accuracy testing on signals with different
loads and noise.

added to the A-C B-D B-AB and B-ABCD four sets of variable
load data sets to simulate complex conditions.

In industrial environments, complex disturbance condi-
tions consisting of variable loads and strong noise often occur.
Therefore, a variable load noise data set is constructed using
the CWRU data set. −4db ∼10DB Gaussian white noise is
added to theA-C, B-D, B-AB, andB-ABCD sets of the variable
load data set to simulate complex conditions.

The results are shown in Fig. 20. The accuracy of themodel
exceeds 95% under slight noise. With a decrease in SNR,
accuracy likewise decreases. For B-D and B-AB, accuracy is
above 98%when SNR > 4 and can reach 85%+ under strong
noise. Data set B-ABCD simulates the variable load state with
noise. When noise is low, accuracy can reach 99%. However,
as noise increases, accuracy decreases. When SNR = −4,
accuracy will reach only 75%. In general, the model exhibits
remarkable performance in bearing fault diagnosis under
variable loads and noises. However, its recognition accuracy
for variable loads with strong noise should be improved.

C. DDS DATA SET TEST
To verify the recognition accuracy of the model under actual
working conditions, including variable speeds and noise
interference, an experiment is designed using the DDS.
As shown in Fig. 21, owing to the influence of noise, the peri-
odic fault impact component cannot be clearly observed from
the signal.
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TABLE 6. DDS data set.

FIGURE 21. The original signal diagram of DDS.

FIGURE 22. The test results of the DDS data set.

The vibration data of a bearing with different speeds are
used in the experiment. In Table 6, A represents a constant
speed data set with a motor frequency of 35 Hz, that is,
1120r/min; B is a data set with a frequency of 45 Hz, that
is, 1350r/min; and AB represents the variable speed data set,
which consists of constant speed data sets A and B to verify
the variable speed adaptability of the model.

Experimental results are shown in Fig. 22. For the DDS-
A/B constant speed data set and DDS-AB variable speed data
set, the average accuracy of SVM can reach only 82.8%
while that of LSTM is under 85%. WDCNN performs well,
thereby achieving approximately 90% accuracy. Conversely,
the proposed TF-WConvLSTMmodel is muchmore accurate
than the above method, and its accuracy is 98.0%, on aver-
age. Thus, the TF-WConvLSTM model shows better anti-
noise and variable load adaptability than traditional methods.
By contrast, the structure of TF-WConvLSTMmodel is more
suitable for bearing fault diagnosis under noise and load
interference

For the DDS data, the convergence process and ROC
curves of the model are shown in Figs. 23 and 24.

FIGURE 23. The ROC curve under DDS data set.

FIGURE 24. The convergence process under DDS data set.

D. DATA VISUALIZATION
To study the structure of the model as well as the learning
process comprehensively, visualization technology is used
to explore the key content of the structure, and the hierar-
chical information of deep learning is clearly expressed to
analyze the performance of the TF-WConvLSTM structure.
This study uses T-SNE to output the characteristics of each
layer and performs dimensionality reduction visualization.
As shown in Fig. 25, most of the features of the input data
are effectively separated and aggregated after feature extrac-
tion by three convolutional layers, thereby indicating that
the convolutional layers can effectively extract fault features.
However, several features remain unseparated in the convf
output; thus, the time features of the feature map are further
extracted by LSTM. Feature extraction exhibits improved
results after the LSTM layer. Furthermore, dense output visu-
alization shows that the model can learn effective features and
effectively distinguish fault categories.
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FIGURE 25. T-SNE visualization of model.

V. CONCLUSION
To address the problem of bearing fault diagnosis under
variable loads and different noise interferences, an adaptable
TF-WConvLSTM model is proposed. The proposed model
adopts a time–frequency dual-input structure to enhance
the feature extraction effect. The spatiotemporal charac-
teristics of the model can be effectively extracted using
the CNN–LSTM structure. In addition, through the LSTM
gate structure, the temporal features of the model can be
fully utilized, and the noise immunity of the model can be
improved. With the help of data enhancement, the proposed
model can achieve 90%+ accuracy under variable loads.
Moreover, accuracy can reach 86%+ under noise and vari-
able load environments. In the fourth section of the paper,
an optimal model is determined experimentally, and the TF-
WConvLSTM model is proven to be robust. In addition,
the internal mechanism of the model is studied via network
visualization. Compared with commonly used denoising pre-
processing algorithms and domain adaptive algorithms that
require additional information, our algorithms do not require
any auxiliary algorithms.

Although the TF-WConvLSTM model exhibits remark-
able anti-interference capability compared with other meth-
ods, recognition accuracy under strong noise should be
improved. Therefore, themodel’s anti-noise andmodel adapt-
ability methods must be studied further.
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