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ABSTRACT This paper investigates the performance of the coefficient of variation chart in the presence of
measurement errors for finite production horizon. We study a two-sided Shewhart coefficient of variation
chart with measurement errors for detecting both increase and decrease in the coefficient of variation for
short run processes using an error model with linear covariate. The performance of the coefficient of variation
chart is evaluated by the truncated average run length and the expected value of the truncated average run
length. The numerical results indicate that the precision error and the accuracy error have negative effect
of the measurement errors on the performance of the coefficient of variation chart. In addition, the constant
coefficient B in the linear covariate error model reduces the negative effect of the measurement errors on
the performance of the coefficient of variation chart. However, taking multiple measurements per item in
each sample is not an effective method to enhance the performance of the coefficient of variation chart.
An example is provided to illustrate the implementation of the coefficient of variation chart. In addition,
the economic criterion is also added to study the effect of measurement errors on the expected inspection
cost. The result shows that an increase in the precision error reduces the expected inspection cost.

INDEX TERMS Coefficient of variation, measurement errors, short production runs.

I. INTRODUCTION
Control chart for monitoring the coefficient of variation (CV)
is a useful tool for statistical process control when the mean is
proportional to the standard deviation so that the ratio of the
standard deviation to the mean is a constant. Kang et al. [1]
proposed Shewhart-type control chart for monitoring the CV.
Castagliola et al. [2] proposed a Shewhart CV control chart
with variable sample size (VSS) and they designed the CV
chart with VSS to obtain the optimal design parameters by
minimizing the out-of-control average run length or average
sample size. Tran and Tran [3] presented a method to monitor
the squared CV by using the cumulative sum chart and they
studied the run length properties of the proposed chart using a
Markov chain approach. You et al. [4] presented a side sensi-
tive group runs chart for monitoring the CV and the proposed
chart surpasses the Shewhart CV, runs rules CV, synthetic
CV and exponentially weighted moving average (EWMA)
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CV charts by means of average run length and standard
deviation of run length. Khaw et al. [5] used the variable
sample size and sampling interval (VSSI) feature to improve
the performance of the CV chart and they measured the
performance of the proposed chart, in terms of the average
time to signal and expected average time to signal criteria.
Teoh et al. [6] developed a rum sum chart for monitoring the
CV and their results showed that the proposed chart outper-
forms the Shewhart CV, run rules CV and EWMACV charts.
Yeong et al. [7] proposed a VSS scheme directly monitor-
ing the CV, instead of monitoring the transformed statistics.
The advantage over the VSS chart based on the transformed
statistics is the proposed chart provides an easier alternative
as no transformation is involved. Yeong et al. [8] proposed
an EWMA chart with variable sampling interval (VSI) to
monitor the CV. The comparative studies showed that the VSI
EWMACV chart outperforms other competing charts such as
Shewhart CV, synthetic CV, VSI CV and EWMA CV charts.
Muhammad et al. [9] proposed a VSS EWMA CV chart and
the performance comparison showed that the proposed chart
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outperforms the Shewhart CV, EWMA CV, synthetic CV,
run rules CV and VSS CV charts in almost all scenarios.
Yeong et al. [10] proposed a variable parameters chart to
monitor the CV. The variable parameters CV chart consis-
tently outperforms the five alternative CV charts, which are
the VSSI CV, VSI CV, VSS CV, synthetic CV and Shewhart
CV charts for all the given shift sizes. Zhang et al. [11]
proposed a new EWMA chart for monitoring the CV. They
presented the implementation and optimization procedures
for the proposed chart. Chen et al. [12] proposed a gener-
ally weighted moving average control chart with adjusted
time-varying control limits for monitoring the CV. As demon-
strated by extensive simulation results, the proposed chart is
clearly more sensitive than other competing procedures in the
literature.

The presence of measurement errors affects the perfor-
mance of control charts. Since the measurement errors do
exist in practice, many researchers studied the measure-
ment errors on the performance of various control charts.
Daryabari et al. [13] investigated the effect of measurement
errors on the performance of the maximum exponentially
weighted moving average and mean squared deviation con-
trol chart for jointly monitoring the process mean and vari-
ance. Maleki et al. [14] presented an overview for the effect
of measurement errors on different aspects of statistical pro-
cess monitoring. They reported an extensive survey of the
research on control charts with measurement errors and they
also provided some directions to motivate the future stud-
ies. Tran et al. [15] examined the performance of Shewhart
median control chart in the presence of measurement errors
by assuming the measurement error model as in Linna and
Woodall [16]. Based on their results, it is obvious that mea-
surement errors greatly affect the performance of Shewhart
median chart. Yeong et al. [17] proposed the CV chart with
a linear covariate error model and they found that using
the control limits computed by ignoring the presence of
measurement errors leads to erroneous conclusions regard-
ing the average run length. Amiri et al. [18] incorporated
the measurement errors into a hybrid method based on the
generalized likelihood ratio and EWMA control charts for
simultaneously monitoring the multivariate process mean and
variability. They also suggested four remedial approaches
to decrease the effect of measurement errors on the perfor-
mance of the proposed control chart. Cheng and Wang [19]
investigated the effect of measurement errors on the EWMA
median and cumulative sum median charts. Their results
indicated that the presence of measurement errors signifi-
cantly affect the performance of the monitoring procedure.
Cheng and Wang [20] presented a VSSI median control chart
with estimated parameters in the presence of measurement
errors. Their results showed that the VSSI median chart
performs better than the Shewhart median, VSS median and
VSI median control charts in terms of the average time to
signal. Tang et al. [21] investigated the performance of an
adaptive EWMA chart when measurement errors exist using
the linear covariate error model. The comparisons with the

classical EWMA scheme confirmed the superiority of the
adaptive EWMA scheme in detecting a wide range of shifts
in the presence of measurement errors. Nguyen et al. [22]
proposed a VSI Shewhart chart for monitoring the squared
CV, denoted by VSI CV chart. Their numerical simulations
showed that the precision error and the accuracy error do have
negative influences on the VSI CV chart. Sabahno et al. [23]
evaluated the effect of measurement errors on the overall
performance of the VSS Hotelling’s T 2 control chart and
they used an optimization algorithm to find the minimum
overall values of the performance measure for two dif-
ferent models. Tran et al. [24] studied the performance of
the CV Shewhart-type control chart and the one-sided CV
EWMA-type control chart using a model with linear covari-
ate. Their results showed that the precision and accuracy
errors significantly affect the performance of both control
charts. Tran et al. [25] examined the performance of syn-
thetic median chart in the presence of measurement errors
by assuming the measurement error model as in Linna and
Woodall [16]. Their results showed that the performance of
the synthetic median chart deteriorates when the measure-
ment errors increase. Tran et al. [26] investigated the effect
of the measurement errors on the performance of cumulative
sum chart formonitoring the CV. Their results showed that the
precision error and the accuracy error have negative impact on
the chart’s performance.

Ladany [27] first proposed the control chart for short pro-
duction runs where he introduced the economic optimization
of a p-chart for short runs. Since then, the design of various
control charts in a short run context is receiving increased
attention in the literature. Crowder [28] derived an algorithm
that allows the implementation of a short-production-run ver-
sion of an economic-process-control model of Bather and
Box and Jenkins. Castillo and Montgomery [29] presented
some modifications that enhance the average run length
properties of the Q chart. Castillo et al. [30] reviewed and
commented on the statistical control methods for short pro-
duction runs. Nenes and Tagaras [31] proposed the perfor-
mance measure for the statistical performance of control
charts with short production runs, where the production run
ends after H hours. Trovato et al. [32] compared different
strategies for monitoring the dispersion of a quality char-
acteristic within a stage of a manufacturing process pro-
ducing a short run of parts. Celano et al. [33] presented
the theoretical background underlying the t-chart imple-
mentation and some statistical measures of performance
have been computed to evaluate the chart statistical sen-
sitivity during the short run. Celano et al. [34] proposed
the economic design of a CUSUM t chart for monitoring
short production runs without the need of Phase I samples.
Celano et al. [35] also investigated the economic design of
an SPC inspection procedure in short production runs based
on a Shewhart control chart for monitoring the t statis-
tic. Castagliola et al. [36] presented the theoretical back-
ground that allows the statistical performance measures of
the variable sample size t Shewhart chart to be computed.
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Celano et al. [37] investigated the statistical performance of
the Shewhart, EWMA and CUSUM t charts for short pro-
duction runs when the shift size is unknown and modeled
by means of a statistical distribution. Castagliola et al. [38]
investigated the CV chart for finite production horizon and
they investigated the statistical properties of the proposed
chart when the shift size is deterministic. Amdouni et al. [39]
proposed an adaptive Shewhart chart implementing a VSS
strategy in order to monitor the CV in a short run con-
text and they obtained the optimal chart parameters by
minimizing the out-of-control truncated average run length.
Amdouni et al. [40] proposed a method to monitor the CV
in a short run context by means of one-sided run rules type
chart. A comparison analysis has been performed to show
that implementing one-sided run rules type charts is the best
decision most of the time. Celano et al. [41] compared the
performance of several control charts for observations with
a location-scale distribution in a finite horizon process for
jointly monitoring the location and scale. Celano et al. [42]
investigated the statistical performance of a nonparametric
Shewhart sign control chart for monitoring the location of
quality characteristic in a production process with a finite
horizon. Amdouni et al. [43] investigated the design and
implementation of a VSI chart to monitor the CV in a short
run context. They derived the formulas for the truncated
average time to signal. Performance comparison with the
Shewhart CV chart demonstrated the outperformance of the
VSI CV chart over the fixed sampling rate chart. Nikolaidis
and Tagaras [44] evaluated the statistical performance of
various one-sided Bayesian X̄ charts for monitoring the pro-
cess mean in finite production runs. They found out that
very often the Bayesian X̄ chart with adaptive sample sizes
performs better than other Bayesian X̄ charts from a statistical
point of view. Celano and Castagliola [45] investigated the
implementation of the EWMA sign control chart for finite
production horizon process. They evaluated the statistical
properties of the EWMA sign control chart with varying
control limits using a nonhomogeneousMarkov chain model.
Zhou et al. [46] evaluated the control chart’s performance for
four different monitoring schemes based on fractional non-
conformance for short run productions. Their results showed
that the choice of the monitoring scheme does not heav-
ily depend on the distribution of the quality characteristic.
Chong et al. [47] proposed the multivariate fixed sample size
and VSS Hotelling’s T 2 short-run charts to monitor the mean
shift in short production runs. Based on the comparison
between the control charts, the VSS Hotelling’s T 2 short-run
chart surpasses its fixed sample size counterpart for most shift
sizes. Khatun et al. [48] investigated the statistical perfor-
mance of one-sided chart for monitoring the multivariate CV
in short production runs. They found out that the upward chart
is faster in detecting the same shift size of the multivariate CV
compared to its downward counterpart.

In most practical applications, production processes are set
up to produce quantities over a short time period. In such
cases, research work has to consider the design of control

charts with a short run context since the duration of the pro-
duction runs is limited. Furthermore, the performance of con-
trol charts in the presence of measurement errors significantly
differs from their counterparts without measurement errors.
Therefore, the goal of this study is to investigate the statistical
performance of the CV chart for short production runs in the
presence of measurement errors. The numerical results show
that the measurement errors influence the performance of the
CV chart for short production runs.

II. COEFFICIENT OF VARIATION CHART FOR SHORT
PROUCTION RUNS
When monitoring the CV in a process, samples {X1, X2,
. . . , Xn} of size n are selected, then the sample CV, that is
γ̂ = S/X̄ is plotted on the CV chart, where X̄ =

∑n
j=1 Xj/n

is the sample mean and S =
√∑n

j=1 (Xj − X̄ )2/(n− 1) is

the sample standard deviation. Let F−1t (·|n − 1,
√
n/γ0) be

the inverse of the cumulative function of the non-central t
distribution with (n−1) degrees of freedom and noncentrality
parameter

√
n/γ0, where γ0 is the in-control target CV value.

We investigate a two-sided CV chart in this study, where
the detection of increasing and decreasing shifts is of equal
importance. Let p be the desired false alarm probability of the
CV chart, then the lower control limit and the upper control
limit of the CV chart are calculated as

LCL = F−1γ
(p
2
|n, γ0

)
(1)

and

UCL = F−1γ
(
1−

p
2
|n, γ0

)
, (2)

respectively, where F−1γ (ω |n, γ0) =
√
n/(F−1t (1 − ω|

n− 1,
√
n/γ0).

We assume that a small lot of N parts has been produced
during a production having finite length H and there are I
number of scheduled inspections within the production hori-
zonH . Let Fγ (x|n, γ ) = 1−F(

√
n/x|n−1,

√
n/γ ) and γ =

τγ0, where τ is the shift in the CV and F(
√
n/x|n−1,

√
n/γ )

is the cumulative function of the non-central t distribution
with (n− 1) degrees of freedom and noncentrality parameter
√
n/γ , then the truncated average run length of the CV chart

for short production runs is TARL = (1 − βI+1)/(1 − β),
where β = Fγ (UCL|n, γ )− Fγ (LCL|n, γ ). Note that τ = 1
when the process is in-control, while τ 6= 1 when the process
is out-of-control. Values of 0 < τ < 1 correspond to the
decrease in the CV, while values of τ > 1 correspond to the
increase in the CV.

III. STATISTICAL DESIGN OF COEFFICIENT OF VARIATION
CHART WITH MEASUREMENT ERRORS FOR
SHORT PRODUCTION RUNS
Recently, Tran et al. [24] investigated the effect of measure-
ment errors on a two-sided CV chart in which the production
horizon is considered as infinite. However, the production
horizon in many situations is very short, that is few hours or
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few days and this is considered as finite. Consequently, this
paper extends the work in Tran et al. [24] to study the effect
of measurement errors on the CV chart in a short run context.

In this study, we investigate a two-sided CV chart for short
production runs with measurement errors in detecting both
increasing and decreasing shifts. We use the linear covariate
error model in Tran et al. [24] to evaluate the performance
of the two-sided CV chart for short production runs. A set of
samples {Xi,1, Xi,2, . . . ,Xi,n} is selected at the ith sampling
point, for i = 1, 2, . . ., where Xi,j follows a normal distri-
bution with mean µ0 + δ1σ0 and standard deviation δ2σ0.
Here, µ0 is the in-control mean, σ0 is the in-control standard
deviation, δ1 is the shift size of the mean and δ2 is the shift
size of the standard deviation.

To reduce the effect of measurement errors, many
researchers suggested taking multiple measurements on each
item. Therefore, the true value of Xi,j in the linear covariate
error can be accessible via {X#

i,j,1, X
#
i,j,2,. . . , X

#
i,j,m}, where

m is the number of multiple measurements per item in each
sample. As suggested by Tran et al. [24], the linear covariate
error model is given as

X#
i,j,k = G+ HXi,j + Ei,j,k , (3)

where X#
i,j,k is the value observed for the kth measurement

of the jth item at the ith sampling point; G and H are the
known constant coefficients of the error model; Ei,j,k is the
random error following a normal distribution withmean 0 and
standard deviation σEM .
The mean of m measurements for the jth item at the ith

sampling point is

X̄#
i,j =

1
m

m∑
k=1

X#
i,j,k = G+ HXi,j +

1
m

m∑
k=1

Ei,j,k , (4)

where X̄#
i,j follows a normal distribution with meanµE = G+

H (µ0+ δ1σ0) and variance σ 2
E = H2δ22σ

2
0 + σ

2
EM/m (Tran et

al. [24]). Consequently, the CV of X̄#
i,j is defined as

γE =
σE

µE
=

√
H2δ22σ

2
0 + σ

2
EM/m

G+ H (µ0 + δ1σ0)
. (5)

Let ς = σEM/σ0 be the precision error, γ0 = σ0/µ0 be the
in-control target CV value and ρ = G/µ0 be the accuracy
error, then (5) becomes

γE =

√
H2δ22 + ς

2/m

ρ + H (1+ δ1γ0)
× γ0. (6)

Based on this equation, the in-control CV value with mea-
surement errors is computed as

γE0 =

√
H2 + ς2/m
H + ρ

× γ0 (7)

corresponding to δ1 = 0 and δ2 = 1, while the out-of-control
CV value with measurement errors is computed as

γE1 =

√
H2δ22 + ς

2/m
Hδ2
τ
+ ρ

× γ0 (8)

corresponding to δ1 6= 0 and δ2 6= 1 [24]. Note that H = 1,
ς = 0 and ρ = 0 if the measurement errors are not taken
into consideration. According to Tran et al. [24], the sample
CV with measurement errors at the ith sampling point is
defined as

γ̂Ei =
S#i
¯̄X#
i

, (9)

where ¯̄X#
i =

1
n

n∑
j=1

X̄#
i,j is the sample mean of X̄#

i,j and

S#i =

√
n∑
j=1

(X̄#
i.j −
¯̄X#
i )

2/(n− 1) is the sample standard

deviation of X̄#
i,j.

Let F−1t (·|n− 1,
√
n/γE0) be the inverse of the cumulative

function of the noncentral t distribution with (n− 1) degrees
of freedom and noncentrality parameter

√
n/γE0 and let α be

the type I error probability of the CV chart with measurement
errors, then the lower control limit and the upper control limit
of the CV chart with measurement errors are calculated as

LCL = F−1γE

( α
2

∣∣∣ n, γE0) (10)

and

UCL = F−1γE

(
1−

α

2

∣∣∣ n, γE0) , (11)

respectively, where F−1γE (c|n, γE0) =
√
n/F−1t (1 − c|n −

1,
√
n/γE0).

Let FγE (x|n, γE ) = 1 − Ft (
√
n/x|n − 1,

√
n/γE ), where

Ft (·|n− 1,
√
n/γE ) is the cumulative function of the noncen-

tral t distribution with (n− 1) degrees of freedom and non-
centrality parameter

√
n/γE . In general, the truncated average

run length of control charts for short production runs [31] is
computed as

TARL =
1− βI+1

1− β
, (12)

where β = FγE (UCL|n, γE ) − FγE (LCL|n, γE ) for the CV
chart with measurement errors. Here, TARL = TARL0 for
γE = γE0 when the process is in-control, while TARL =
TARL1 for γE = γE1 when the process is out-of-control (i.e.
0< τ < 1 for the decreasing shift or τ > 1 for the increasing
shift), where TARL0 and TARL1 are the in-control and out-
of-control TARLs, respectively. Once the UCL and LCL
(i.e. chart parameters) are defined based on (10) and (11),
respectively for the given values of H , m, ρ, ς , γ0 and n such
that TARL0 = I , then the TARL1 value can be numerically
evaluated for a given shift size τ .

When the shift size is not deterministic, especially when
a specific shift size cannot be determined a priori, then the
performance of the CV chart for a short run context can be
measured by the out-of-control expected value of the TARL
as follows:

ETARL1 =

∫
�

TARL1 × f (τ )dτ , (13)
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TABLE 1. LCL and UCL of the CV Chart for Short Production Runs when H = 1, m = 1, ρ = 0.05 and I = 50 for Different Values of ς .

TABLE 2. LCL and UCL of the CV Chart for Short Production Runs when H = 1, m = 1, ς = 0.28 and I = 50 for Different Values of ρ.

where f (τ ) = 1/(b − a) is a uniform distribution giv-
ing equal weight to each shift size within the interval
� ∈ [a, b] and the in-control ETARL (ETARL0) is
equal to TARL0. When designing the CV chart based on
ETARL, the UCL and LCL (i.e. chart parameters) are
determined using (10) and (11), respectively such that
ETARL0 = TARL0 = I . Then, the ETARL1 value can
be numerically evaluated for a range of shift sizes between
a and b.
Note that the sensitivity of the CV chart in shift detection

increases with a decreasing value of TARL1 (or ETARL1) for
a given value of TARL0 (or ETARL0). Therefore, the CV
chart performs better with a smaller value of TARL1 (or
ETARL1), indicating a smaller value of TARL1 (or ETARL1)
decreases the negative effect of the measurement errors on the
TARL1 (or ETARL1) performance of the CV chart for short
production runs.

IV. EFFECT OF MEASUREMENT ERRORS ON THE
STATISTICAL PERFORMANCE OF COEFFICIENT
OF VARIATION CHART FOR SHORT
PRODUCTION RUNS
In this section, we investigate the effect of measurement
errors on the performance of the CV chart for short produc-
tion runs using the linear covariate error model discussed in
the previous section. Tables 1-4 present the values of LCL and
UCL, in which the CV chart is designed such that TARL0 =

I = 50, n ∈ {5, 10, 15} and γ0 ∈ {0.05, 0.1, 0.2}, for different
parameter combinations of measurement errors (i.e. ς , ρ,
H and m). According to Tran et al. [24], it is assumed that
δ2 = 1 without loss of generality.
Tables 5-8 provide the values of TARL1 of the CV chart

with short production runs when γ0 ∈ {0.05, 0.1, 0.2},
n ∈ {5, 10, 15} and τ ∈ {0.5, 0.7, 0.8, 1.3, 1.5, 2.0}
for different parameter combinations of measurement errors
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TABLE 3. LCL and UCL of the CV Chart for Short Production Runs when m = 1, ς = 0.28, ρ = 0.05 and I = 50 for Different Values of H.

TABLE 4. LCL and UCL of the CV Chart for Short Production Runs when H = 1, ς = 0.28, ρ = 0.05 and I = 50 for Different Values of m.

(i.e. ς , ρ, H and m) based on the values of LCL and UCL in
Tables 1-4, where TARL0 = I = 50. From the numerical
results in Tables 5-8, it can be noticed that when the shift
size τ decreases (when 0 < τ < 1) or increases (when
τ > 1) for the fixed values of m, n, ς , ρ, H , γ0
and I , the value of TARL1 decreases. The tables also show
that the value of TARL1 decreases when the sample size
n increases for the fixed values of m, n, ς , ρ, H , γ0
and I .
Table 5 presents the TARL1 values for different combina-

tions of the precision error ς ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}
when H = 1, m = 1, ρ = 0.05 and I = 50 with γ0 ∈ {0.05,
0.1, 0.2}, n ∈ {5, 10, 15} and τ ∈ {0.5, 0.7, 0.8, 1.3, 1.5, 2.0}.
It can be noticed from Table 5 that as the value of ς increases
for the fixed values of ς , ρ, H , I , γ0, n and τ , the negative
effect of the measurement errors on the TARL1 performance
of the CV chart for short production runs increase. This is

to say, the increase in ς value reduces the sensitivity of the
CV chart. For instance, when H = 1, m = 1, ρ = 0.05, I =
50, n = 5, γ0 = 0.1 and τ = 1.5, we have TARL1 = 19.26,
19.28, 19.32, 19.40, 19.50 and 19.64, respectively for ς = 0,
0.2, 0.4, 0.6, 0.8 and 1.0.

Table 6 presents the TARL1 values for different combina-
tions of the accuracy error ρ ∈ {0, 0.01, 0.02, 0.03, 0.04,
0.05} when H = 1, m = 1, ς = 0.28 and I = 50 with γ0 ∈
{0.05, 0.1, 0.2}, n ∈ {5, 10, 15} and τ ∈ {0.5, 0.7, 0.8, 1.3,
1.5, 2.0}. According to Tran et al. [24], an acceptable value
for the signal-to-noise ratio is at ς = 0.28. Table 6 shows
that the ρ value gives negative influence on the TARL1 per-
formance of the CV chart for short production runs. In other
words, the larger the value of ρ in the linear covariate error
model, the larger the value of TARL1. For example, for
m = 1, H = 1, ς = 0.28, I = 50, n = 10, γ0 = 0.2
and τ = 0.5, the TARL1 values of the CV chart with linear
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TABLE 5. TARL1 of the CV Chart for Short Production Runs when H = 1, m = 1, ρ = 0.05 and I = 50 for Different Values of ς .

TABLE 6. TARL1 of the CV Chart for Short Production Runs when H = 1, m = 1, ς = 0.28 and I = 50 for Different Values of ρ.

TABLE 7. TARL1 of the CV Chart for Short Production Runs when m = 1, ς = 0.28, ρ = 0.05 and I = 50 for Different Values of H.

covariate error model are obtained as 15.20, 15.59, 15.99,
16.38, 16.78 and 17.17when ρ = 0, 0.01, 0.02, 0.03, 0.04 and
0.05, respectively.

Table 7 presents the TARL1 values for different combina-
tions of the constant coefficient H ∈ {1, 2, 3, 4, 5} when
ς = 0.28, m = 1, ρ = 0.05 and I = 50 with γ0 ∈ {0.05,

72222 VOLUME 8, 2020



M. H. Lee et al.: Effect of Measurement Errors on the Performance of CV Chart

TABLE 8. TARL1 of the CV Chart for Short Production Runs when H = 1, ς = 0.28, ρ = 0.05 and I = 50 for Different Values of m.

0.1, 0.2}, n ∈ {5, 10, 15} and τ ∈ {0.5, 0.7, 0.8, 1.3, 1.5,
2.0}. The larger H value leads to the decrease of TARL1
value. This indicates that the increase ofH value enhances the
performance of the CV chart. For example, TARL1 = 19.29,
18.00, 17.57, 17.35 and 17.22 for B = 1, 2, 3, 4 and 5,
respectively at τ = 1.5 when γ0 = 0.1, n = 5, ς = 0.28,
m = 1, ρ = 0.05 and I = 50.
Table 8 presents the TARL1 values for different combi-

nations of the number of multiple measurements per item
in each sample m ∈ {1, 3, 5, 7, 10} when ς = 0.28,
H = 1, ρ = 0.05 and I = 50 with γ0 ∈ {0.05, 0.1, 0.2},
n ∈ {5, 10, 15} and τ ∈ {0.5, 0.7, 0.8, 1.3, 1.5, 2}. The
results in Table 8 indicates that the decrease of TARL1 is
insignificant as the m value increase, in which the value of
TARL1 reduces negligibly or remains unchanged as the value
of m increases. For instance, if we consider the case n = 15,
γ0 = 0.1, τ = 1.3, ς = 0.28, H = 1, ρ = 0.05 and I = 50,
the TARL1 values are 18.68, 18.66, 18.65, 18.65 and 18.65 for
m = 1, 3, 5, 7 and 10, respectively.

Fig. 1, 2, 3 and 4 provide the impact of parameters for
measurement errors ς , ρ,H andm, respectively on the overall
performance of the CV chart for short production runs when
n ∈ {5, 10, 15} for γ0 = 0.1 and ETARL0 = TARL0 =

I = 50. Fig. 1 and 2 show that the parameters ς and ρ signif-
icantly affect the performance of the CV chart, in which larger
values of ς and ρ increase the value of ETARL1. Fig. 3 shows
that increasing the value of parameter H improves the effi-
ciency of the CV chart, while Fig. 4 shows that the m value
does not significantly affect the performance of the CV chart.

V. COEFFICIENT OF VARIAION CHART WITH
MEASUREMENT ERRORS FOR SHORT
PRODUCTION RUNS BASED ON
ECONOMIC CRITERION
During a finite horizon process with length of I, N parts
are scheduled to be produced. The parts will be loaded and

FIGURE 1. ETARL1 of the CV chart for short production runs when
γ0 = 0.1, H = 1, m = 1, ρ = 0.05 and I = 50 for different values of ς .

worked within a workstation at one stage of the process and
then released to an adjacent inspection area individually or
in small groups of pallet size B. Let T be the number of
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FIGURE 2. ETARL1 of the CV chart for short production runs when
γ0 = 0.1, H = 1, m = 1, ς = 0.28 and I = 50 for different values of ρ.

scheduled inspectionwithin the production horizon I, then the
last inspection is scheduled at the end of the production run
and the sampling interval between two consecutive inspec-
tions is h = I/(T + 1) (Celano et al. [35]).
The occurrence of an assignable cause when the process

is shifted to an out-of-control state for the short production
runs is assumed to be Poisson distributed with an exponen-
tially distributed inter-arrival time having the mean of 1/v,
where v is the failure rate. In general, the parameters for
the economic design of a control chart are the inspection
interval (h), the rate of production (rPR), the rate of inspec-
tion (R), the failure rate (v), the production horizon (I ),
the total number of inspection during production horizon (T ),
the demand of parts during production horizon (N ), the pallet
size (B), the fixed inspection cost (f ), the hourly cost of the
inspection resource (cLR), the out-of-control loss rate (W ),
the fixed set-up cost (cF ), the cost per false alarm (L0) and
the cost of search and restoration (L1). In this study, α0 =
1 − FγE (UCL|n, γE0) + FγE (LCL|n, γE0) is the type I error

FIGURE 3. ETARL1 of the CV chart for short production runs when
γ0 = 0.1, ς = 0.28, m = 1, ρ = 0.01 and I = 50 for different values of H .

probability of the CV chart and α1 = 1−FγE (UCL|n, γE1)+
FγE (LCL|n, γE1) is the power of the CV chart. The expected
inspection cost E(TC) of the CV control chart for short
production runs is given as follows:

E(TC) = C1 + C2 + C3 + C4 + C5, (14)

where C1 = cF dN/Be is the work-holding set-up cost with
dxe denotes the smallest integer greater than or equal to x;
C2 = (f + cLRn/R)T is the sampling cost; C3 = C31 + C32
is the expected out-of-control production cost, where C31 =

Wh(1 − e−vh)
T−2∑
i=0

F(i)
{
1−α1
α1

[
1− (1− α1)T−1−i

]}
and

C32 = W
(
vh−1+e−vh

v

) T−1∑
i=0

F(i); C4 = L0α0e−vh
T−1∑
i=0

F(i)

is the expected cost of false alarms; and C5 = L1(1 −

e−vh)
T−1∑
i=0

F(i)[1− (1− α1)T−i] is the expected search and

restoration cost. Here, F(0) = 1 and F(i) = F(i −
1)[e−vh + (1 − e−vh)α1] + [1 − F(i − 1)]α1. The detailed
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FIGURE 4. ETARL1 of the CV chart for short production runs when
γ0 = 0.1, H = 1, ς = 0.28, ρ = 0.01 and I = 50 for different values of m.

derivations of C1, C2, C3, C4 and C5 are presented in
Celano et al. [35].
In the study, when designing the CV chart with short

production runs based on the economic criterion, the values
of B, T , n, UCL and LCL should be selected by minimizing
the expected inspection cost in (14), subject to the following
constraints: (i) α0 < 0.01 is the statistical constraint for the
economic optimization, in order to limit the expected number
of false alarms issued by the CV chart; (ii) 0 < T ≤ bN/Bc is
related to the maximum allowable number of inspections to
be scheduled during the rolling horizon; (iii) 0 < n ≤ bN/T c
is related to the maximum allowable sample size; and (iv)
0 < B ≤ 20 is related to the maximum pallet size, where
bxc denotes the largest integer less than or equal to x.

In this section, the effect of measurement errors on the
parameters for the economic design of the CV chart with short
production runs is investigated. The values of the parameters
for this design based on the economic criterion are v = 0.01,
L0 = 10, rPR = 1, R = 30, cF = 5, f = 0, cLR = 20 and
W = 100, where N = rPRI and L1 = 1.5L0.
Fig. 5, 6, 7 and 8 provide the impact of ς , ρ, H and m,

respectively on the economic performance of the CV chart
for short production runs when I = 50, γ0 = 0.1 and
τ = 2.0. Fig. 5 shows that the parameter ς affects the eco-
nomic performance of the CV chart, in which a larger value
of ς slightly reduces the value of the expected inspection cost
E(TC). Fig. 6, 7 and 8 show that the values of ρ, H and m,
respectively, do not significantly affect the E(TC) value.

VI. ILLUSTRATIVE EXAMPLE
Castagliola et al. [38] provided an example for the implemen-
tation of the CV chart in short production runs. This example

FIGURE 5. E(TC) of the CV chart for short production runs when γ0 = 0.1,
H = 1, m = 1 and ρ = 0.05 for different values of ς .

FIGURE 6. E(TC) of the CV chart for short production runs when γ0 = 0.1,
H = 1, m = 1 and ς = 0.28 for different values of ρ.

FIGURE 7. E(TC) of the CV chart for short production runs when γ0 = 0.1,
ς = 0.28, m = 1 and ρ = 0.01 for different values of H .

FIGURE 8. E(TC) of the CV chart for short production runs when γ0 = 0.1,
H = 1, ς = 0.28 and ρ = 0.01 for different values of m.

considers actual data from a die casting hot chamber process
provided by a Tunisian company manufacturing zinc alloy
parts for the sanitary section. The quality characteristic of
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TABLE 9. Illustrative Example From A Die Casting Hot Chamber Process
(Adopted from Nguyen et al. [22]).

interest is the weight (X in grams) of scrap zinc alloy material
to be removed between the molding process and the continu-
ous plating surface treatment. Then, Nguyen et al. [22] con-
sidered the example in Castagliola et al. [38] for the CV chart
with variable sampling interval in the presence of measure-
ment errors. This section illustrates the use of the CV chart
for short production runs under the presence of measurement
errors by considering the example in Nguyen et al. [22],
where ς = 0.28, ρ = 0, H = 1 and m = 1 for the
parameters of the linear covariate error model. From the
Phase I data, the in-control CV is estimated as γ0 = 0.01.
The dataset with sample size of n = 5 in Phase II is listed
in Table 9. The first 17 samples are supposed to be in-control
while the last 23 subgroups are supposed to be out-of-control
with an increase of 20% (i.e. τ = 1.2) of the CV when
designing the CV chart for a short run production of 31 hours
calling for I = 30 inspections, that is an inspection every
hour. Consequently, the out-of-control CV is determined as
γ1 = τγ0 = 1.2(0.01) = 0.012. For detecting a shift from
γ0 = 0.01 to γ1 = 0.12, the LCL and UCL of the CV chart
are found to be 0.002947 and 0.018666 using (10) and (11),

respectively. Then, the TARL1 and ETARL1 are computed as
14.38 and 13.71 using (12) and (13), respectively.

FIGURE 9. CV chart for the illustrative example.

The sample CV in Phase II are plotted on the CV chart
in Fig. 9. At the 18th, 19th and 23rd sampling points, the sam-
ples are plotted above UCL, indicating the CV chart detects
an out-of-control situation at each of these sampling points.
This confirming the occurrence of an assignable cause for
each of these sampling points and corrective actions will be
taken to bring the process back to the in-control situation.

VII. CONCLUSION
This study evaluates the statistical performance of the CV
chart with measurement errors for short production runs. The
performance measures used to investigate the performance
of the CV chart are TARL and ETARL. The effect of mea-
surement errors on the performance of the CV chart for short
production runs is studied by assuming a linear covariate error
model.

From the numerical results, it can be noticed that mea-
surement errors affect the performance of the CV chart in
detecting the out-of-control situation for short production
runs. The performance of the CV chart for short production
runs deteriorates when both the precision and accuracy errors
increase. In addition, increasing the constant coefficient B in
the linear covariate error model can reduce the negative effect
of measurement errors on the CV chart for short production
runs. Although usingmultiplemeasures per item is a common
approach to compensate the effect of measurement errors but
the results in this study show that the efficiency of the CV
chart for short production runs is not reduced significantly by
increasing the number of multiple measurements per item in
each sample. Furthermore, a lower expected inspection cost
is expected when the precision error value increases based on
the economic criterion.

The property of the CV chart for short production runs
with linear covariate error model developed in this study
is under the assumption that the observations are normally
distributed. Thus, this study can be extended to the CV chart
under non-normality for future work. Furthermore, advanced
strategies such as synthetic-type chart and adaptive-type chart
can also be considered under the presence of measurement
errors.
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