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ABSTRACT Due to the widespread of diabetes mellitus and its associated complications, a need for early
detection of the leading symptoms in the masses is felt like never before. One of the earliest signs is the
presence of microaneurysms (MAs) in the fundus images. This work presents a new technique for automatic
detection of MAs in color fundus images. The proposed technique utilizes Genetic Programming (GP) and a
set of 28 selected features from the preprocessed fundus images in order to evolve amathematical expression.
Through the binearization of the fitness scores, the optimal expression is evolved generation by generation
through a stepwise enhancement process. The best expression is then used as a classifier for real world
applications. Experimental results using three publically available datasets validate the usefulness of the
proposed technique and its ability to outperform the state of the art contemporary approaches.

INDEX TERMS Automatic microaneurysms detection, diabetic retinopathy, fundus images, genetic pro-
gramming.

I. INTRODUCTION
As the world’s human population continues to multiply,
the need for finding efficient automated health solutions for
the masses is felt like never before. Among some of the most
prevalent ailments in the world is diabetes mellitus, and its
associated complications. In a 2014 estimate by the World
Health Organization (WHO) [1], approximately 422 million
people in the world were suffering from diabetes, which is
predicted to reach 592 million by 2035 [2]. In 2016, an esti-
mated 1.6 million people died worldwide due to diabetes [1].

One of the most persistent complications attributable to
diabetes is Diabetic Retinopathy (DR). It is the leading
cause of blindness among adults between the ages of 20 to
60 years [3]. Vision impairment due to DR is progressive
with almost no early complaints by the patients. However,
if DR is detected and treated at the earlier stages, vision loss
is preventable. One of the earliest signs of DR is the presence
of microaneurysms (MAs), which are tiny red circular spots
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on the surface of the retina in the human eye [4]. They are very
minute with a diameter range of 10µm to 100µm [5]. MAs
are out-pouches of capillaries and sometimes result from the
leakage of tiny blood vessels in the retina. They are the only
lesions which are present at the earliest stage of the disease
and remain until the development of the DR [6]. Therefore,
early detection of MAs for the detection and treatment of DR
is of prime importance.

An ophthalmologist uses fundoscopy or fundus images,
captured with a specialized camera, in order to detect MAs.
However, there are several difficulties associated with the
manual screening of the masses. Firstly, the availability
of ophthalmologist is not guaranteed everywhere, espe-
cially in remote locations. Secondly, manual screening of
a large population is a cumbersome and time-consuming
work. Thirdly, it is not cost-efficient and is sometimes prone
to errors. Hence, an automated computer-aided diagnosis
tool is required for accurate detection and classification of
MAs. There are certain other elements in fundus images
that resemble MAs which makes it difficult to differentiate
them from MAs. Examples of these include small circular
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spots at the crossing of thin blood vessels, noise, and other
external distortions introduced during transmission of the
images. In addition, MAs that are irregular in shape, clustered
together, close to the periphery of the image or in the macula,
are also difficult to detect.

One of the earliest works on the automated detection of
MAs was by Baudoin et al. [7] who proposed a mathematical
morphology based technique using fluorescein angiograms
(FAs). This method was costly, time-consuming, invasive
and not suitable for everyone due to FAs. Based on FAs,
Spencer et al. [8] proposed a technique that utilized adaptive
filters to calculate several features of MAs such as shape,
size, and intensity in order to detect MAs. In another work
[9], Spencer et al. used a bilinear top-hat transformation
and Gaussian matched filters to segment the digitized FA
image initially, and then applied a region growing algorithm
for delineating and analyzing candidate MAs for detection.
However, this technique also had the drawbacks of using
FAs. Fleming et al. [10] used various contrast normalization
methods for differentiating between MAs and other dots in
the fundus image. Their algorithm had low sensitivity and
specificity values, which makes it unsuitable for efficient MA
detection.

There are many recent studies on the detection of
MAs with improved results compared to earlier techniques.
Antal et al. [11] proposed an ensemble-based detection tech-
nique by placing all available preprocessing steps and the
classifiers in an ensemble pool and then selecting an accept-
able subset of combinations from the ensemble pool based
on results’ evaluation. Rocha et al. [12] proposed a novel
technique based on visual words dictionary representing all
possible points of interests associated with DR and already
marked by human experts. Fundus images are then classified
based on the presence or absence of these points of interests.
An interactive multi-agent based method for MA segmen-
tation is presented in [5]. Lazar and Hajdu’s [13] work is
based on analysis of cross-section profiles and peak detection
method to find a set of attributes related to shape, size and
height of the peaks. Feature sets are constructed and used
in a naive Bayes classifier. Wu et al. [3] extended the work
presented in [13] by introducing a total of 27 characteristic
features and using Kth Nearest Neighbor (KNN) classifier
to classify true MAs from false ones. Srivastava et al. [14]
used Frangi filters to extract features from preprocessed sub-
images of the green channel. A Support Vector Machine
(SVM) classifier then uses these features to predict the pres-
ence of MAs. Rosas-Romero et al. [15] used bottom-hat
transform and hit-or-miss transform to first find the candidate
MAs in a preprocessed image, then used Radon transform and
Principal Component Analysis (PCA) to detect the real MAs.
Nevertheless, the accuracy of these techniques is not adequate
to be used for a DR diagnostic tool in real-world scenario.

Recently many deep learning based algorithms are pro-
posed in the literature [16]. Haloi [17] proposed a deep neural
network based technique using maxout activation function
and the dropout training process. Their technique provides

good detection accuracy but is computationally expensive.
Orlando et al. [18] proposed a technique based on a combi-
nation of deep learning and domain knowledge. Handcrafted
features are supported by features learned through a con-
volutional neural network (CNN), which are later used by
a Random Forest Classifier to find true lesions. Recently,
Eftekhari et al. [19] proposed a technique based on a two-
stage process and CNN. First, normal samples are selected
from a probability map generated from the first CNN. Next,
the second CNN classifies each pixel in the test images asMA
or non-MA. Test results on online datasets show that their
technique solves the imbalanced data problem with shorter
training time in comparison to the previous techniques.

The recent advancements in the accuracy ofMAs detection
show the usefulness of intelligent techniques, such as those
inspired by nature, in better diagnosis of DR. Based on these,
in this work we propose a Genetic Programming based novel
method of MA detection. In addition to enhanced image pre-
classification compared to [3], the proposed method is capa-
ble of exploring hidden dependencies among the features,
which are otherwise overlooked in the conventional classi-
fiers. It generates a generalized mathematical expression for
the classification of candidateMAs in a given image. Through
substantial experimentation, we enhance the work presented
in [3] and [13] and include a number of features in our feature
set which highly contribute to the classification accuracy of
the proposed technique. In addition, classification accuracy
is also improved by steering the solution space towards the
optimum using a finely crafted fitness function and the bina-
rization module. Experimental results on publically available
datasets demonstrate that the proposed technique outper-
forms some state of the art contemporary techniques in terms
of different performance measures. In addition, it provides a
generalized mathematical formula based on feature dynam-
ics through the GP based training mechanism. We call our
proposed technique as Intelligent Feature Set Tuning (IFST)
technique.

The rest of this paper is organized as follows.
Section 2 presents our proposed technique with the presenta-
tion of the general architecture and explanation of the consti-
tuting modules. Experimental results and related discussion
are presented in section 3. Finally, in section 4, we present
the conclusion of our work.

II. PROPOSED IFST TECHNIQUE
This section presents the proposed IFST technique in detail.
We first present the general architecture of the proposed
technique, which includes description of both the training
and the testing phases of the GP based evolution process.
Next, we present the details of the individual modules in the
subsequent sub sections.

A. THE IFST TECHNIQUE: GENERAL ARCHITECTURE
Figure 1 shows the general architecture of the IFST tech-
nique. It constitutes of the traning phase and the testing phase.
In the training phase, GP based simulation is carried out to
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FIGURE 1. General architecture of the IFST technique.

evolve an optimized mathematical expression for accurate
detection of MAs using a number of training images from
publicaly available datasets. Details of these data sets are
presented in section III.A. The detection of MAs is a two
step process. First we detect a set of potential candidate MAs
by applying a selection of image preprocessing techniques
and generate the feature set. We call this stage as the pre-
classification stage. This feature set is then passed on to
the GP based classifier in order to refine MAs detection
through classification. For a population of candidates (GP
based mathematical expressions), each of the candidates is
scored and ranked using a predefined fitness function, ini-
tially, and then converted to a binary number through the
fitness biniarization process. Based on the fitness perfor-
mance, the best individuals are selected as the parents for the
next generation. Genetic operators of reproduction, crossover
and mutation are applied on the parents to produce the new
generation. The process continues to evolve the generalized
expression, generation by generation, until a predefined ter-
mination criterion is met. This best evolved expression is then
saved and used in the testing phase to validate the accuracy
of the IFST technique on the test images.

B. THE TRAINING PHASE
The training phase comprises of the fundus image pre-
processing, candidate extraction, feature extraction and the

classificationmodules. It is to be noted that the preprocessing,
candidate extraction and feature extraction phases can be a
part of the training phase or isolated operations. Since there
is no impact of these on the training and the overall temporal
cost of the proposed technique, we incorporate them into
the training phase. Figure 2 shows the detailed architecture
of the training phase with the description of modules in the
following subsections.

1) FUNDUS IMAGE PREPROCESSING
Candidate MAs appear in high contrast in the green color
band of the RGB fundus images [20], [21]. Therefore, we use
this color channel for the detection of MAs. In order to
remove the salt and pepper noise, a 3 × 3 median filter is
applied initially.With the focus on balancing contrast with the
surrounding background and to make the interesting areas of
the image more visible, contrast limited adaptive histogram
equalization (CLAHE) technique is applied next [22].

To further reduce the effect of noise, we apply a Gaussian
filter with the kernel size of 5 × 5 in order to generate the
enhanced image Ienh. Next, we apply the shade correction
technique adopted from [20] using the following equation:

Isc = Ienh/Ibk (1)

where Isc is the image after shade correction, and Ibk is the
background estimated image calculated by applying amedian

VOLUME 8, 2020 65189



I. Usman, K. A. Almejalli: Intelligent Automated Detection of MAs in Fundus Images

FIGURE 2. Detailed architecture of the training phase.

filter to Ienh with the kernel size of 68 × 68. Lastly, Isc is
divided by its standard deviation to produce global-contrast
normalized image.

Ipreproc =
Isc

SD(Isc)
(2)

where, SD(Isc) represents the standard deviation of Isc and
Ipreproc is the final preprocessed image of this module which
is used in the subsequent modules.

2) CANDIDATE MICROANEURYSMS EXTRACTION
Before the detection ofMAs, extraction of the candidateMAs
is a very important step. Any true MAs missed in this stage
cannot be recovered later on. The primary objective of this
module is to minimize this loss and to discard a number of
objects that do not resemble MAs. In the work, we utilize the
peak detection to extract the initial candidates as described
by Wu et al. [3] and Lazar and Hajdu [13]. This technique is
based on the fact that the MA region consists of at least one
local maximum pixel. These regional maximum points can be
considered as good MA candidates. However, this can also
lead to the extraction of a large amount of noise which can
make the detection task more complex and time consuming.
In order to copewith this issue, we adopt the idea of Lazar and
Hadju [13] who proposed a method for individual candidate
profiles. For each of the local maximum pixel, its circular
neighborhood pixels are examined using a set of line detectors
of different orientations. This leads to a set of cross-sectional

FIGURE 3. Intensity distribution of a profile and the definitions of various
measures.

intensity profiles. An example of such intensity distribution
is shown in figure 3.

Consequently, peak detection is applied to each of the
profile to assess whether the peak is present at the center of
the profile. For each of the candidates, we generate 30 profiles
using 30 line detectors of length 31 pixels with 60 angular res-
olution following the approach adopted in [13]. A candidate
is eliminated if in any of the profiles the absolute difference
between all of the consecutive pixels is less than 4. The value
of 4 is chosen empirically through experimentation. With
the aim to characterize the pathologies found in the original
retinal image, region-growing techniques are applied to grow
the candidate MA back to the original pathology shape at the
candidate extraction step. In order to achieve this, we apply
the dynamic transformation based technique as used in [3].

3) FEATURE-SET EXTRACTION
To achieve better classification accuracy, appropriate set
of features are selected and further exploited exhaustively
through the GP simulation to find hidden dependencies in
them.We use 17 profile features, 7 of whichwere proposed by
Lazar and Hadju [13], and 3 proposed by Wu et al. [3], along
with other important features pertaining to local curvature,
shape and intensity of the candidate MA. For each of the
candidate regions where a peak is detected, the 17 profile
based features are:
1. µHR, the mean value of HR, and HR is a set contain-

ing the increasing and decreasing ramp height values
denoted by IH and DH respectively. Here, IH = P[Ie]−
P[Is] and DH = P[Ds]− P[De] as shown in figure 3.

2. σHR, the standard deviation of HR.
3. cυHR, the coefficient of variation for HR and is defined

as: cυHR = σHR/µHR.
4. µSR, the mean value of SR, and SR is a set containing the

increasing and decreasing ramp slope values denoted by
IrS and DrS respectively. Here, IrS = IH/(Ie − Is) and
DrS = DH/(De − Ds).
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5. σSR, the standard deviation of SR.
6. cυSR, the coefficient of variation for SR and is defined

as: cυSR = σSR/µSR.
7. µWT , the mean value ofWT , andWT is a set containing

the values of top width, TW , which is the gap between
the increasing and decreasing ramp and is defined as:
TW = Ds − Ie.

8. σWT , the standard deviation of WT .
9. cυWT , the coefficient of variation for WT and is defined

as: cυWT = σWT /µWT .
10. µWP, where µ represent the mean value of WP, and WP

is a set containing the values of peak width, PW , which
is the gap between the start and end indices of the peak
and is defined as: PW = De − Is.

11. σWP, the standard deviation of WP.
12. cυWP, the coefficient of variation for WP and is defined

as: cυWP = σWP/µWP.
13. µHP, the mean value of HP, and HP is a set contain-

ing the values of peak height, PH , which is the dif-
ference between the intensity of the central pixel and
a baseline that connects the start and the end of the
profile. It is defined as: PH = P[center] − (P[De] −
P[Is])/PW .(center − Is)+ P[Is].

14. σHP, the standard deviation of HP.
15. cυHP, the coefficient of variation for HP and is defined

as: cυHP = σHP/µHP.
16. σSEID, the standard deviation of SEID, and SEID is a set

containing the intensities of start of the increasing ramp
and the end of the decreasing ramp values defined by
P[Is] and P[De] respectively.

17. Hr , where Hr = (Hmax − Hmin)/Hmin. Here, Hmax and
Hmin represent the maximum and the minimum values in
the set HR respectively.

These profile based features provides information regarding
various inherent characteristics such as the intensity transi-
tion, sharpness of the contours, variance in the surroundings,
presence of blood vessels, symmetry of the object, and vessel
bifurcations, to name a few. Apart from these profile fea-
tures, local features also play a vital role in classification
accuracy. In order to describe the local curvature of a func-
tion with many parameters, we use Hessian matrix, H (x, y),
as described in [3]. Let κ1 and κ2 denote the two eigenvalues
of the Hessian matrix, such that |κ1| ≤ |κ2|. The probability
map for an MA-like structure can be defined as:

Pmap(x, y; σ )=


0 κ1 > 0||κ2>0
2
π
arctan

(
|κ2| + |κ1|

|κ2| − |κ1|

)
κ1 6= κ2

1 κ1 = κ2 < 0
(3)

and consequently,

Pmap(x, y) = max
σmin<σ<σmax

Pmap(x, y; σ ) (4)

where higher value of Pmap corresponds to the higher like-
lihood of a pixel (x, y) belonging to the MA. For each of

the candidate regions, the following Hessian matrix based
6 features are extracted:
18. µPmap , the mean of Pmap.
19. µ|H |, the mean of |H |, where |H | = κ1max × κ2max.

Here, κ1max and κ2max represent the eigenvalues for
which Pmap is the maximum.

20. MAX (Pmap), whereMAX represent the maximum value.
21. MAX (|H |)
22. σPmap , the standard deviation of Pmap.
23. σ|H |, the standard deviation of |H |.
Apart from Hessian matrix based features that define the
curvature of the MA region, other local features are also
considered that describe the shape and intensity of the MA.
These 5 features are described as:
24. The area A =

∑
i∈n pi, where n is the set of pixels in the

candidate region.
25. The mean contrast of edge pixels, µE .
26. The mean intensity of MA candidate region, µcand .
27. The difference between the average intensity of the

candidate region and the average intensity of its back-
ground. δ = µcand − µbg

28. The aspect ratio λ = l/s, where l and s are the largest and
the second largest eigenvalues of the covariance matrix
of the candidate region respectively.

The above 28 features make the feature set corresponding to
a candidate MA in this module. These features have different
ranges and values. Therefore, we normalize the feature set
values to zeromean and unit variance before classifying using
the following:

=̄j =
=j − µj

σj
(5)

where, =j is the j th feature for j = {1, 2, . . . , 28}. µj is the
mean of the jth feature and σj is the standard deviation. After
the feature set is extracted and normalized, it is presented
to the GP-based classifier as described in the following sub-
section.

4) MICROANEURYSM DETECTION
We use GP to automatically evolve the classifier with the pri-
mary task to classify a candidate MA belonging to the set of
labelledMAs. In order to generate the potential mathematical
expressions population through GP, we first need to define
suitable GP function set (function_set) and GP terminal set.
In our proposed IFST, the GP function set comprises of
mathematical functions such as plus, minus, multiplication,
protected division, sine, cosine, log, exponent, maximum and
minimum. The GP terminal set can be further categorized
as constant terminal set and the variable terminal set. For
the constant terminal set, we use random constants in the
range [-1 1], whereas the variable terminal set comprises of
the 28 features in the feature set after normalizing through
equation 5. These functions and terminals make the non-
leaf and leaf nodes in the GP expression tree respectively,
which generates the candidate mathematical formula when
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traversed. For each candidate expression constructed by the
GP simulation, the functional dependency F of the features
pertaining to the classification is defined as:

fitness = Eval(F(=̄j, [−11], function_set)) (6)

where Eval represent the evaluation of the function and
fitness represents any numerical value that will help evolv-
ing a suitable expression generation by generation. In order
to drag the fitness value towards a binary classification,
we introduce the concept of binarization. In order to achieve
this, we let Flag = 1 if fitness > 1 and Flag = 0 otherwise.
In addition, we assume that Flag = 1 represents the presence
of MA and Flag = 0 represents its absence. We also denote
the actual class labels in similar manner, whereby the value
of 1 represent the presence of MA and its absence is denoted
by 0. Next we take the XNOR binary operation between the
Flag and the actual class label represented in binary. This
generates a value of 1 for the true positive (TP) and true
negative (TN) cases and a value of zero for false positive (FP)
and false negative (FN) cases. For the entire set of candi-
date MAs in an image, we define the final fitness score,
Scorefitness based on the contribution from all the candidates
as follows:

Scorefitness = sensitivity =
TP

TP+ FN
(7)

The value of Scorefitness ranges from 0 to 1. The larger this
value is, the better is the performance of a candidate solution.
Based on this, the complete population is scored and ranked
in a particular generation. The best individuals from a given
population are chosen as parents and genetic operators of
crossover, mutation, and reproduction are applied to form
the new generation. The solution is enhanced generation by
generation until we reach the termination criterion, which
is based on fitness value, or time limit or the number of
generations. At the end of the GP simulation, the best-evolved
mathematical expression is saved and used in the testing
phase as a classifier function. Figure 4 shows a sample of can-
didate solution in the form of GP tree and the corresponding
mathematical expression.

C. THE TESTING PHASE
After the best expression is evolved in the training phase,
we use it in the testing phase to classify a number of test
images. The results of this phase also validate the general-
ization capability of the proposed IFST technique. Based on
this, several performance measures are computed that verify
the usefulness of the proposed technique for the real world
applications, as discussed in the next section.

III. EXPERIMENTAL RESULTS AND DISCUSSION
The proposed technique is implemented in MATLAB pro-
gramming environment using the GPLAB toolbox [23] for
the implementation of GP. We used the Intel Core i7 8th

FIGURE 4. A sample GP candidate solution represented as a GP Tree, and
the corresponding mathematical expression.

generation processor with SSD memory of 1TB and 32GB
of RAM. In addition, the machine used for simulation was
also equipped with 512GB graphics card. Table 1 presents
different GP parameter settings used in our GP simulations
using the GPLAB tool. For the purpose of evaluation and
comparison with existing techniques, we use three standard
datasets that are described in the following subsection. For
each of the data set used, several GP simulations are carried
out in order to get the best evolved expression with different
training and testing images combinations. The core parameter
settings, as presented in table 1, are kept the same.

A. DIABETIC RETINOPATHY DATASETS
1) MESSIDOR DATASET
The Messidor dataset [24] consists of 1200 losslessly com-
pressed images in TIFF format at three different resolutions
and is publically available. These images were captured using
8 bits per color plane at 1440 × 960, 2240 × 1488 or
2304 × 1536 pixels. Corresponding to each image, a grad-
ing score is provided ranging from 0 to 3 that represents
the severity of the disease. A patient with grade 0 has no
DR. Patients with grade 1 and 2 have mild and severe
levels of non-proliferative DR respectively. Whereas, grade
3 represents the most serious condition of DR. In the entire
dataset, 540 images (46%) are of grade 0, 153 images
(12.75%) are of grade 1, 247 (20.58%) correspond to grade
2 and 260 (21.67%) represent grade 3. The images are
captured with a 45o field of view (FOV). Some sample
images from theMessidor dataset with their grades are shown
in figure 5.

65192 VOLUME 8, 2020



I. Usman, K. A. Almejalli: Intelligent Automated Detection of MAs in Fundus Images

TABLE 1. GP parameter settings for the IFST technique.

2) DIARETDB1 DATASET
The DIARETDB1 dataset is another freely available and
widely used dataset that is abbreviated from DIAbetic
RETinopathy DataBase - Calibration Level 1 (DIARETDB1)
[25]. This database consists of 89 color fundus images in
PNG format with a resolution of 1500 × 1152 pixels. Out
of these, 84 images contain non-proliferative signs of the DR
in the form of MAs and 5 are considered as normal images.
It includes labels for both the MAs and exudates. Images
in this database are captured using 50o FOV of the fundus
camera with various other settings that depict scenarios which
are comparable to real life situations of image acquisition
when screening the masses for DR. In addition, it is possible
to quantitatively assess the accuracy of the method to detect
each type of lesion.

3) E-OPHTHA DATASET
The e-ophtha database [26], [27] is made up of two sub-
datasets called e-ophtha-MA and e-ophtha-EX which cor-
respond to the presence of microaneurysms and exudates
respectively. This work utilized e-optha-MA which com-
prises of 148 color fundus images with MAs or small
hemorrhages and 233 images with no lesion in JPEG for-
mat. The image sizes are 2544 x 1696 and 1440 x 960.
These images are manually annotated by expert ophthal-
mologists. In this work, we used half of the images as

FIGURE 5. Sample images from the Messidor data set corresponding to
different clinical conditions.

training and images while the remaining half is utilized
for testing.

B. CLASSIFICATION PERFORMANCE ASSESSMENT
In order to assess the classification performance of the pro-
posed technique on the available datasets, we use different
performance metrics such as sensitivity, specificity, accuracy,
area under the curve (AUC), receiver operating characteristic
curve (ROC) and free-response receiver operating charac-
teristic (FROC). Sensitivity is defined in equation (7) and
relate to the true positive rate or the probability of detection.
Specificity measures the proportion of actual negatives that
are correctly identified as negatives. It is defined as:

specificity =
TN

FP+ TN
. (8)

Accuracy, on the other hand, refers to the degree of closeness
of measurements of a quantity to that quantity’s true value
and is given by:

accuracy =
TP+ TN

TP+ TN + FP+ FN
. (9)

ROC is the receiver operating characteristic curve which is
plotted between sensitivity and 1-specificity (false positive
rate). AUC is the area under this curve. The closer its value is
to 1, the better is the performance of the classifier in terms of
positive predictions. FROC is a relatively new measure that
determines the free-response receiver operating characteristic
curve. It is a plot of operating points displaying the possible
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FIGURE 6. Performance comparison in terms of AUC for the Messidor
dataset.

TABLE 2. Performance comparison in terms of sensitivity, specificity and
accuracy for the Messidor data set.

tradeoff between the sensitivity versus the average number of
false positive detection per image.

Figure 6 demonstrates the performance of the proposed
technique in terms of AUC using the Messidor dataset. Some
state of the art techniques from the literature are used for the
comparison. It can be observed that the proposed technique
out performs the existing works in terms of the AUC with
a value of 0.99. For techniques such as [31] and [32], there
is a significant difference. Table 1 presents the comparison
in terms of sensitivity, specificity and the accuracy using
the Messidor dataset. The fields marked with ‘-’ represent
the unavailability of the results for those measures. Risk
stratification is not taken into account by any of the tech-
niques. For a particular measure, the bold values represent
the best results. It can be observed that for the sensitivity and
accuracy, the proposed IFST technique gives the best results
with values of 98% and 97% respectively. For the specificity,
the proposed technique and the technique proposed by Haloi
[17] yield the same result of 96%.

Figure 7 shows the comparison of the FROC curves of
different techniques using the e-ophtha-MA dataset. It can
be observed that the sensitivity of the proposed technique
increases with the increase in the number of false positives
per image. The proposed technique performs slightly better
than the one proposed by Eftekhari et al. [19], and much
higher performance is demonstrated with respect to the other
techniques such as [33] and [3]. This improvement with a
wide margin in performance is attributable to the fact that
the proposed technique exploits hidden dependencies in the
search space by exhaustively searching the attributes and

FIGURE 7. Performance comparison in terms of FROC for the
e-ophtha-MA dataset.

TABLE 3. Performance comparison in terms of sensitivity and specificity
using DIARETDB1 data set.

their effects using various mathematical dependencies and
expressions, which are otherwise overlooked in the traditional
methods.

For the DIARETDB1 database, we used 50 images for
the training of the proposed technique and the remaining
39 images are used for the testing purpose. Table 3 presents
the results achieved by using the DIARETDB1 database.
In order to compare classification performance, sensi-
tivity and specificity values are computed using differ-
ent techniques proposed in literature. It can be seen that
the proposed IFST technique yields enhanced values of
sensitivity and specificity as compared to the contempo-
rary techniques. Comparatively, the technique proposed by
Rosas-Romero et al. [15] yields close enough sensitivity with
a value of 92.32% compared to the proposed technique’s
sensitivity of 93.62%. Also, their specificity value of 93.87%
is very close to the proposed technique’s value of 94.6%.
However, there is a notable over all enhancement in results
using the proposed technique.

Figure 8 demonstrates the ROC of different techniques
using the DIARETDB1 dataset. It can be observed that there
is a significant improvement in the ROC curve generated by
the proposed techniquewhen compared to the techniques pro-
posed by Manjaramkar and Kokare [34] and Adal et al. [35].
On the other hand, there is a marginal improvement by
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FIGURE 8. Performance comparison in terms of ROC for the DIARETDB1
data set.

the proposed technique when compared to the work by
Cao et al. [6]. From table 3 and figure 8, it is noticeable
that the improvement in classification is less in the case of
DIARETDB1 as compared to other data sets. This could be
primarily due to the initial random population generated by
GP or the size and quality of the dataset itself. Nevertheless,
similar behavior in results is observed by the other techniques
likewise.

IV. CONCLUSION
This work presents a new intelligent technique for the auto-
matic detection of MAs. At the preprocessing stage, green
channel is extracted initially and median filtering is applied
to remove random noise. In order the make certain areas
more visible, CLAHE based enhancement is utilized which is
followed by Gaussian filtering and shade correction in order
to remove residual noise and enhance the image contrast,
respectively. The proposed technique then utilizes GP and a
set of 28 features to exploit hidden dependencies among the
features which are otherwise overlooked by the conventional
techniques. The best mathematical expression is then evolved
following the binearization of the fitness score and GP based
stepwise enhancement over the generations. Experimental
results and comparison with state of the art recent techniques
validate that the evolved expression is generalized and can be
used as a classifier for real world applications. The implica-
tion of the current study on clinical applications is yet to be
established and is a subject of future research.
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