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ABSTRACT The development of the spherical robot to meet the requirements of high-speed and
high-precision tasks is of great importance. In this study, a fractional-order adaptive integral hierarchical
sliding mode controller (F-AIHSMC) is proposed. F-AIHSMC enables the spherical robot to have better
controlled performance when facing unknown disturbances and system chattering, which can seriously
affect the high-speed and high-precision motion of the spherical robot. We establish the standard dynamic
model of the spherical robot for high-speed linear motion first, and then use the feedforward compensation
method to compensate the controllable influencing factors in the motion process. According to the standard
dynamic model, the integral term and fractional calculus methods are integrated into the hierarchical sliding
mode controller, and the adaptive method is used to evaluate and compensate unknown disturbances in the
high-speed motion process. In order to verify the efficiency of the proposed F-AIHSMC, we test its control
effect using the BYQ-GS spherical robot. The experimental results demonstrate that, compared with the
classical hierarchical sliding mode controller and the adaptive hierarchical sliding mode controller, the F-
AIHSMC has obvious advantages in response speed, convergence speed, stability and robustness when being
applied to the control of high-speed linear motion of spherical robot. Moreover, the advantages of its control
performance are more highlighted with the increase of the speed of the spherical robot.

INDEX TERMS Adaptive control, fractional calculus, hierarchical sliding mode control, high-speed motion
control, spherical robot.

I. INTRODUCTION
The spherical robot is a new type of mobile robot that moves
based on the eccentric torque and inertial force generated by
the internal drive mechanism. Compared with the traditional
mobile robot, the spherical robot has the spherical closed
shell, which enables the robot to have the ability of overturn-
preventing, stable and rapid omnidirectional motion, while
protecting the internal unit from interference and damage
of terrain and road. The point contact between the sphere
and ground makes the spherical robot have the advantages
of high motion efficiency and low energy consumption,
which make the robot have a broad application prospect
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in the fields of hazardous environment detection, narrow
space operation, monitoring and reconnaissance [1]–[3]. The
spherical robot system has the characteristics of strong cou-
pling, under-actuation, non-holonomic constraints and non-
linearity. Therefore, it cannot be effectively controlled by
conventional motion control methods. At the same time,
there are unmeasurable and unstable factors in the process
of motion, such as incomplete dynamic model construction
and unknown disturbances from the surrounding environ-
ment to the motion [4], [5]. With gradual increase of the
motion speed, the influence of the above unstable factors on
the motion control of the spherical robot increases rapidly.
Meanwhile, the motion accuracy is greatly reduced, which
makes the spherical robot unable to cope with tasks requiring
high-speed motion ability, such as military reconnaissance
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blasting, communication network relay, and so on. Therefore,
it is of great significance to study the control method for
high-speed and high-precision motion of the spherical robot.

In recent years, the driving mechanism of the spherical
robot that experts and scholars concentrate on is mainly
divided into the following three types: eccentric torque driv-
ing mechanism based on omnidirectional wheel, internal
driving mechanism based on friction and eccentric torque
driving mechanism based on weight pendulum. Relevant
studies mainly focus on the control strategy of low-speed
motion (for a small robot of about 20kg, the definition stan-
dard of high-speed is 2.5m/s) [6]. The studies on the control
strategy of spherical robot in high-speed motion are few.
Compared with the other two kinds of driving mechanism,
the eccentric torque driving mechanism based on weight
pendulum is a driving mechanism with higher maneuverabil-
ity and easier implementation. However, in the process of
motion, the strong coupling and under-actuation between the
shell and theweight pendulum are the reasons for high control
difficulty of the spherical robot. Even so, the spherical robot
using this drive mechanism still has obvious advantages in
the speed of motion. Therefore, we study the control method
for the linear motion of the spherical robot under high-speed
motion state using the spherical robot driven by the eccentric
torque driving mechanism based on weight pendulum.

In practical applications, the internal frame of the spherical
robot needs to be equipped with corresponding equipments
and instruments. Therefore, in the process of motion, it is
equally important to keep the stability of the spherical shell as
well as the inner mechanism. As a typical under-actuated sys-
tem, the spherical robot driven by the eccentric torque driving
mechanism based on weight pendulum needs to face both
internal and external disturbances during actual movement,
which make the control of the spherical robot much more
complicated. Sliding mode control (SMC), which is widely
used in the field of robot control, has the ability to overcome
the uncertainty of the system and has strong robustness to
unknown disturbances, especially has good effect on the
control of nonlinear system [7]–[10]. The hierarchical sliding
mode control (HSMC) based on SMC can construct the first
layer sliding surfaces for each state variable, and then con-
struct the second layer sliding surface by combining the first
layer sliding surfaces. HSMC not only retains the advantages
of SMC, but also has the ability to control different outputs
simultaneously. Because of the above advantages, HSMC is
widely used in the study of the spherical robot.

The latest studies on HSMC focus on the strate-
gies to improve the robustness facing unknown distur-
bances. [11]–[16] adopt quite complicated methods, such as
radial basis function networks, self-recurrent wavelet neu-
ral networks, and the method of combining fuzzy control
with adaptive control, to cope with the impact of unknown
disturbances on the control accuracy. In practical applica-
tions, these methods are mainly used in the situation of low
speed and low real-time requirements, such as the control
of overhead crane, the attitude regulation control of satellite,

and the control of low-speed mobile robot. The verification
approaches of most of these studies are only simulation
results.

There are a lot of studies on the linear motion control
method of the spherical robot. Some studies focus on the
motion model, such as the speed and angle controller based
on linear quadratic regulator (LQR) for the linear motion
of the spherical robot. The linearization of linear motion
model makes the accuracy of this control method difficult to
guarantee [17]. Some studies incorporate feedback control to
ensure robustness of the spherical robot to constant distur-
bance, but these control methods are neither robust against
nor adaptive to external unpredictable time-varying distur-
bances [18], [19]. It is an vital direction to realize the linear
motion of the spherical robot using the control methods based
on HSMC. These control methods can obtain relatively ideal
control effect by using the fuzzy reasoningmethod or the real-
time estimation of rolling friction, except that the overshoot is
large [20]–[22]. Another very popular robust control method
for linear motion control of the spherical robot is based on
fractional calculus control techniques. Fractional calculus is
an arbitrary order of ordinary derivatives and integrals. The
application of fractional calculus can help eliminate exter-
nal interference and steady-state error, improve convergence
speed and trajectory tracking performance of the spherical
robot during linear motion [23], [24]. Some studies use the
control method that incorporates fractional calculus, but the
adaptivity of this control method is not considered, and only
simulation results are given [25].

According to the publications of linear motion control
method of the spherical robot, most of the studies adopt the
idealized or linearized dynamic model for linear motion of
the spherical robot. Even if fuzzy or adaptive control meth-
ods are incorporated in HSMC to deal with the uncertain
factors that cannot be described by sensor or mathematical
model, the control law still faces the problem of excessive
overshoot, poor finite convergence, and severe chattering.
However, due to the low-speed of the spherical robot, the
impact of the problems above on the linear motion accuracy is
not obvious. For the spherical robot with high-speed and real-
time requirement, the impact of a large number of uncertain
factors in the actual motion environment and the impact of
the defects of the control method in the state of low-speed
motion on the precise and stable motion of the spherical robot
will amplify rapidly, which makes it difficult for the above
controllers to achieve the expected motion accuracy. There-
fore, we should improve HSMC’s performance by improving
the basic principle of it, instead of concentrate on the com-
plex anti-interference strategy only. Also, we should perform
practicality experiment using the spherical robot, instead of
the simulationmethod, to demonstrate the effectiveness of the
control method.

Here, we propose a fractional-order adaptive integral hier-
archical sliding mode controller (F-AIHSMC). Basing on
the control advantages of HSMC, we introduce feedfor-
ward compensation, integral term, fractional calculus and
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FIGURE 1. Simplified model of linear motion of the spherical robot.

corresponding adaptive law to the new method. Thus,
high-precision motion control with high system response
speed, finite time convergence, strong robustness and the abil-
ity to restrain chattering effectively, can be obtained. In this
way, precise and stable linear motion of the spherical robot
under high-speed motion can be achieved.

The rest of this study is organized as follows: Section II
establishes the standard dynamic model of linear motion of
the spherical robot. Section III derives the F-AIHSMC in
detail. Section IV performs practicality experiments using
the BYQ-GS spherical robot, to verify the effectiveness of
the F-AIHSMC. Section V summarizes the results and dis-
cusses future research directions.

II. THE STANDARD DYNAMIC MODEL OF LINEAR
MOTION OF THE SPHERICAL ROBOT
There are two ways of linear motion of the spherical robot
using the eccentric torque driving mechanism based on
weight pendulum. When the long axis motor outputs the
torque alone, the spherical robot moves linearly along the
X -axis direction; when the short axis motor outputs the torque
alone, the spherical robot moves linearly along the Y -axis
direction. Here, we take the linear motion along the X -axis
as example. The simplified model of linear motion of the
spherical robot is shown in Fig.1. The spherical robot moves
along the X -axis in the XOZ plane under the action of the
theoretical output torque τ of the long axis motor. The mass
and the moment of inertia of the spherical shell arem1 and I1,
respectively. The mass and the moment of inertia of the main
frame are m2 and I2, respectively. The mass and the moment
of inertia of the weight pendulum are m3 and I3, respectively.
The radius of the spherical shell is R, the pendulum arm
length (the distance between the gravity center of the weight
pendulum and the center of the spherical shell) is L, the roll
angle of the spherical shell from the initial position is θ ,
the displacement of the spherical center along the X -axis
direction is x, and x = θR, the swing angle of the weight
pendulum from vertical direction is ϕ, the total mass of the
spherical robot isM , and M = m1 + m2 + m3.
Based on the Lagrange method, the ideal dynamic

model of linear motion of the spherical robot is built as
follows [26].

M(q)q̈+ N(q, q̇) = τ (1)

where M(q) is the inertia matrix, N(q, q̇) is the nonlinear
term, and

M(q) =

[
MR+

I1
R

m3RL cosϕ

m3L cosϕ m3L2 + I2 + I3

]

N(q)q̇ =
[
−m3RL sinϕϕ̇2

2m3gL sinϕ

]
q =

[
x
ϕ

]
τ =

[
τ

τ

]
According to the dynamic model shown in (1), the non-

holonomic constraints on the spherical robot in linear motion
are as follows.

h1(ϕ)ẍ + h2(ϕ)ϕ̈ − h3(ϕ, ϕ̇) = 0 (2)

where

h1(ϕ) = MR+
I1
R
− m3L cosϕ

h2(ϕ) = m3RL cosϕ − (m3L2 + I2 + I3)

h3(ϕ, ϕ̇) = −m3RL sinϕϕ̇2 − 2m3gL sinϕ

Most of studies on the spherical robot are based on the
ideal dynamic model shown above. In practical applica-
tion, the spherical robot needs to face many complicated
friction problems and external disturbances. Friction and
disturbances can produce many unknown quantities, which
complicate the dynamic model of the spherical robot, espe-
cially for the spherical robot in high-speedmotion. Therefore,
we establish the standard dynamic model of the spherical
robot as follows.

M(q)q̈+ N(q, q̇) = τm = τ + τf + τ d (3)

where τm is the output torque of the motor, τ f is the friction
term in the motion process, and τ d is the external disturbance
in the motion process.

Basing on whether the disturbance is controllable,
we divide the disturbance τ d into controllable disturbance
τ dv and uncontrollable disturbance τ du. Also, we divide the
friction term τ f into linear τ fx and nonlinear τ fn. Therefore,
the standard dynamic model is as follows.

M(q)q̈+ N(q, q̇) = τ + τ fx + τ fn + τ dv + τ du (4)

In high-speed motion, the controllable disturbance τ dv,
which has great influence on the precise motion of the spher-
ical robot, mainly comes from the rolling friction couple
moment applied by the ground. According to the law of
rolling friction couple moment, the rolling friction couple
moment of the spherical robot in the motion process can be
expressed as follows [27].

τr = −δFN sign
(
ẋ
R

)
(5)

where δ is the coefficient of rolling friction, ẋ is the velocity
of the spherical shell, FN is the positive pressure generated
by the spherical robot on the supporting surface, and the
expression of FN is

FN = Mg+ m3Lϕ̇2 cosϕ + m3Lϕ̈2 sinϕ (6)
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The high-speedmotion state makes the friction of spherical
robot more complicated. During the linear motion of the high-
speed spherical robot, the weight pendulum rotates relative
to the spherical shell. The frictional moment τc, which is
generated in the rotating joint due to the viscous damping of
the bearing, is the main source of linear friction. The value of
τc is directly proportional to the rotational speed of the joint,
and the direction of τc is opposite to the rotational direction
of the joint, and the expression is shown in (7) [27].

τc = −ς(θ̇ + ϕ̇) (7)

where ς is the viscous friction coefficient.
According to the rolling friction couple moment model

and the joint viscous friction model shown in (5) and (7),
the expression of the controllable compensation torque τfc is

τ fc = τ fx + τ dv = τ r + τ c = M̃(q, q̇)q̈+ Ñ(q, q̇) (8)

where

M̃ =
[
0 −δm3L sinϕsign

( ẋ
R

)
0 0

]

Ñ =

−ς
(
ẋ
R
+ϕ̇

)
−δMgsign

(
ẋ
R

)
−δm3Lϕ̇2sign

(
ẋ
R

)
cosϕ

−ς

(
ẋ
R
+ ϕ̇

)


Let τ i denote the uncertain factors such as nonlinear fric-
tion τ fn and uncontrollable disturbance τ du, the standard
dynamic model of the spherical robot can be expressed as

M(q)q̈+ N(q, q̇) = τ + τ fc + τ i (9)

According to (9), when designing a spherical robot con-
troller for high-speed motion, we need to consider the follow-
ing important factors comprehensively: parameters related
to the spherical robot itself, controllable factors during
high-speedmotion, and uncertainty factors during high-speed
motion.

Let ξ (t, u(t)) denote the uncertainty term including the
uncertain factors such as uncontrollable bounded unknown
disturbance and nonlinear friction. The standard dynamic
model of linear motion of the spherical robot (9) can be
transformed into (10), and it can be further expressed as a
state space expression of two subsystems shown in (11).

q̈ = f (q, q̇, t)+ g(q, t)u(t)+ ξ (t, u(t))
y = q (10)
q̈1 = f1 + g1u1 + ξ1
y1 = q1
q̈2 = f2 + g2u2 + ξ2
y2 = q2 (11)

where

f (q, q̇, t) = (f1 f2)T = −M(q)−1N(q, q̇)

g(q, t) = (g1 g2)T = M(q)−1

u(t) = (u1 u2)T = τ + τ fc
ξ (t, u(t)) = (ξ1 ξ2)T

We can obtain the explicit expression for the input-output
by the second derivative of the output fuction y, as shown
in (12).

ÿ = f + gu+ ξ (12)

Since the system is composed of two second-order subsys-
tems, the relative degree r of each subsystem is 2 [28], and
the relative degree of each subsystem is equal to the order
of the subsystem. Therefore, the system does not contain
unobservable parts. There is no zero dynamics in the system.

When the spherical robot is in dynamic equilibrium state,
the balance angle of the weight pendulum will be affected by
the rolling friction couple moment that the spherical robot
is subjected to during the motion process. This problem
cannot be ignored in the design of the controller. Otherwise,
the precise control of the spherical robot cannot be achieved.
According to the description of the balance angle of the
weight pendulum in [29], the balance angle of the weight
pendulum in equilibrium state can be determined by

ϕd =
τr

m3gL
(13)

The purpose of the control method proposed in our study
is to design a reasonable motor output torque control law,
so that the trajectory of the spherical robot x(t) and the swing
position of the weight pendulum ϕ(t) can converge to their
expected values xd (t) and ϕd (t) in high-speed motion state,
respectively, and the error of the motion trajectory ex(t) =
xd (t) − x(t) and the error of swing position of the weight
pendulum eϕ(t) = ϕd (t) − ϕ(t) can be as small as possible.
In this case, precise linear motion of the spherical robot in
high-speed motion state can be achieved.

III. FRACTIONAL-ORDER ADAPTIVE INTEGRAL
HIERARCHICAL SLIDING MODE
CONTROLLER (F-AIHSMC)
Facing the precise control problem of the spherical robot
system in high-speed linear motion state, we introduce the
idea of feedforward control. That is, when the torque τ in
ideal state acts on the spherical robot system, we use the
influencing factor τ fc, which has an approximate accurate
model, to compensate the high-speed motion control system
in advance. Using this strategy, we can reduce the influence
of the system hysteresis on the high-speed motion accuracy,
reduce the motion error of the spherical robot, and improve
the dynamic characteristics of the system.

A. PRELIMINARIES OF FRACTIONAL CALCULUS
There are four commonly used definitions of fractional
calculus: Grunwald-Letnikov fractional derivative (G-L),
Riemann-Liouville fractional derivative (R-L), Caputo frac-
tional derivative and Riesz fractional derivative. Among the
four types of fractional calculus, R-L is the easiest to operate
and is the most widely used definition. Its definition is shown
below [30].
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Definition: Define operator D = d
/
dt as Dα , where

α ∈ R and n − 1 ≤ α ≤ n (n is an integer). If α > 0,
Dα represents differential operation; if α < 0, Dα represents
integral operation.

For the function f (t), its α-order differentiation and inte-
gration with respect to t are

Dαf (t) =
dαf (t)
dtα

=
1

0(n− α)

(
dn

dtn

)∫ t

0

f (τ )
(t−τ )α+1−n

dτ

D−αf (t) = Lαf (t) =
1

0(α)

∫ t

0

f (τ )
(t − τ )1−α

dτ (14)

where Dα and Lα represent fractional differential and frac-
tional integral, respectively. 0(·) is Euler’s Gamma function,
and the expression of which is

0 (α) =

∫
∞

0
e−t tα−1dt (15)

In our study, an important property of fractional calculus is
applied, and the expressions are as follows.

dn

dtn
(Dαf (t)) = Dα

(
dnf (t)
dtn

)
= Dα+nf (t) (16)

The discretization of fractional calculus operator is the
main implementation method of fractional order controller
in practicality experiment. We adopt the Al-Alaoui+CFE
method proposed in [31]. In the calculation process, the frac-
tional order operator is discretized into an approximate form,
as shown in (17).

Dα
{s} = (8

/
7T )αCFE

{(
1− s−1

1+ s−1
/
7

)α}
p,q

= (8
/
7T )αPp(s−1)

/
Qq(s−1) (17)

where T is the sampling period, CFE{u} is the continued
fraction expansion, Pp(·) and Qq(·) are the relatively prime
polynomials of the variable s−1. Generally, the order P of
Pp(·) and the order Q of Qq(·) are equal to the iteration
number n.

The iteration number n we select is 3. According to
Table 3-2 in [31], we select the following expressions.

Pp(s−1) = (−288α2 + 27)s−3 + (−64α3 − 284α)s−3

+ (672α2 + 1827)s−2 + 2520αs−2

− 2940αs−1 − 6615s−1 + 5145

Qq(s−1) = (−288α2 + 27)s−3 − (−64α3 − 284α)s−3

+ (672α2 + 1827)s−2 − 2520αs−2

+ 2940αs−1 − 6615s−1 + 5145 (18)

B. THE FIRST LAYER SLIDING SURFACE WITH INTEGRAL
TERM AND FRACTIONAL CALCULUS OPERATOR
Compared with the traditional SMC, the integral sliding
mode controller (ISMC) can improve the response speed and
robustness of the control system by introducing the integral
term. Basing on the standard dynamics model of the spherical

robot, we propose the design of integral hierarchical sliding
mode controller (IHSMC) by combining ISMC with HSMC.
In order to ensure the asymptotic stability of the control

system and the accessibility of the second layer sliding sur-
face, the total control law of HSMC needs to include the
sliding control law derived from the first layer sliding surface
and the approach control law of the second layer sliding
surface [32]. Therefore, the control law of IHSMC is divided
into two parts:

u(t) = ue(t)+ usw(t) (19)

where ue(t) is the sliding control law, which can be obtained
through the first layer sliding surface of the system; usw(t) is
the approach control law.

Since the dynamic equations of the two subsystems of the
spherical robot are both second-order nonlinear functions,
we integrate the integral operator into the first layer sliding
surface. Considering that the integral term can accelerate the
response of the system, but meanwhile, it can also increase
the overshoot of the system response, we add differential term
to reduce the overshoot of the system. We design the first
layer sliding surfaces S1(t) and S2(t) for the spherical shell
displacement and the swinging angle of weight pendulum,
respectively. The expressions are as follows [33], [34].

S1(t) = ėx(t)+ 2k1ex(t)+ k21

∫
ex(t)

S2(t) = ėϕ(t)+ 2k2eϕ(t)+ k22

∫
eϕ(t) (20)

where k1 > 0 and k2 > 0. We can control the first layer
sliding surfaces by k1 and k2, respectively.
Slow response speed of the controller can lead to poor

stability of control. In order to make the linear motion con-
troller of the spherical robot have high system response speed,
fast terminal convergence and precise control performance,
we integrate the R-L fractional calculus operator into the first
layer sliding surfaces of the IHSMC, and the first layer sliding
surfaces of the F-AIHSMC are designed as

S1 (t) = Dα
{ex (t)} + 2k1ex (t)+ k21D

−α
{ex (t)}

S2 (t) = Dα
{
eϕ (t)

}
+ 2k2eϕ (t)+ k22D

−α
{
eϕ (t)

}
(21)

By using the fractional calculus properties and the second-
order sliding mode control theory, we calculate two deriva-
tives of (21) with respect to time. S̈1 (t) and S̈2 (t) can be
obtained as follows [30].

S̈1 = Dα+2
{ex(t)} + 2k1ëx(t)+ k21D

2−α
{ex(t)}

S̈2 = Dα+2
{eϕ(t)} + 2k2ëϕ(t)+ k22D

2−α
{eϕ(t)} (22)

Let the expected value of the control target qd =

( xd ϕd )T , we bring (11) into (22), and (22) can be further
expressed as

S̈1 = Dα+2
{ex(t)}

+ 2k1(ẍd − f1 − g1ue1 − ξ1)+ k21D
2−α
{ex(t)}

S̈2 = Dα+2
{eϕ(t)}

+ 2k2(ϕ̈d − f2 − g2ue2 − ξ2)+ k22D
2−α
{eϕ(t)} (23)
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For the second-order sliding mode control, if the sliding
surface and its first and second derivatives are equal to 0,
the motion error can converge to 0. Therefore, let S̈1 = 0
and S̈2 = 0, we can get the control laws of two subsystems,
as shown in (24).

ue1 = g−11

[
ẍd +

1
2k1

Dα+2
{ex(t)}

+
k1
2
D2−α

{ex(t)} − f1 − ξ1

]
ue2 = g−12

[
ϕ̈d +

1
2k2

Dα+2
{eϕ(t)}

+
k2
2
D2−α

{eϕ(t)} − f2 − ξ2

]
(24)

C. THE FIRST LAYER SLIDING SURFACE WITH ADAPTIVE
COMPENSATION
In the high-speed linear motion process of the spherical
robot, factors that cannot be identified and measured, such
as nonlinear friction and uncontrollable disturbances, need to
be considered. The uncertainties ξ1 and ξ2 in the subsystems
are essentially unknown functions with physical boundary.
According to the standard dynamic model shown in (11),
the unknown disturbances can act on two subsystems respec-
tively, and generate errors in the first layer sliding surfaces.
In order to restrain the errors in the first layer sliding surfaces
effectively, we need to integrate the adaptive feedback control
into the subsystem control laws to offset the influence of
unknown disturbances. In this way, the robustness of the
system can be enhanced. According to the principle of ISMC,
each subsystem control law uei shown in (24) can only make
the subsystem reach the first layer sliding surface. We add
the stable control law uei−s as a feedback control part to the
subsystem control law, by which we can improve the robust-
ness of the spherical robot system to unknown disturbance
and chattering in the high-speed linear motion process on the
level of subsystem. The control law of the subsystem uei is
updated to the following forms.

ue1 = g−11

[
ẍd +

1
2k1

Dα+2
{ex(t)}

+
k1
2
D2−α

{ex(t)} − f1 − ξ1

]
+ ue1−s(t)

ue2 = g−12

[
ϕ̈d +

1
2k2

Dα+2
{eϕ(t)}

+
k2
2
D2−α

{eϕ(t)} − f2 − ξ2

]
+ ue2−s(t) (25)

For the stable control law uei−s(t) in the subsystem control
law, we select the following expression

uei−s(t) = gi(t)−1(µisign(Ṡi)+ ηiSi) (26)

where µi and ηi are stable gain parameters.

Based on (25) and (26), the subsystem control law can be
expressed as

ue1 = g−11

[
ẍd +

1
2k1

Dα+2
{ex(t)}+

k1
2
D2−α

{ex(t)}

− f1 + µ1sign(Ṡ1)+ η1S1

]
ue2 = g−12

[
ϕ̈d +

1
2k2

Dα+2
{eϕ(t)}+

k2
2
D2−α

{eϕ(t)}

− f2 + µ2sign(Ṡ2)+ η2S2

]
(27)

Ideally, the controller has strong robustness when the sta-
ble gain shown in (27) is greater than the upper bound of
unknown disturbances. However, in practical applications,
we can only set the stable gain parameters to a very large value
in order to cope with the unclear upper bound of unknown
disturbances [35]. Because of the inevitable defects of the
controller in the stabilization stage and the delay in the control
process, the above processing method can lead to abnormal
oscillation of the control system, which is very harmful to
the spherical robot system. Faced with HSMC, the defects
of the subsystems in the control process will eventually be
superposed and coupled in the total control law of the sys-
tem. If we process the defects in the second layer sliding
surface, the difficulty of processing will increase, leading to
the increase of control error of the spherical robot eventually.
Therefore, according to the stable gain parameters µi and ηi
of the subsystem stable control law uei−s (t), we propose an
adaptive estimation of its first derivative, as shown in (28).

˙̂µi = ρiSsign
(
Ṡi
)

˙̂ηi = κiSSi (28)

where ˙̂µi and ˙̂ηi are the estimated values of the stable gain
parameters µ̇i and η̇i, ρi and κi are the adaptive speed con-
stants of the stable gain parameters, and both ρi and κi are
positive numbers.

Therefore, the adaptive subsystem control laws of the F-
AIHSMC are shown in (29), respectively.

ue1 = g−11

[
ẍd +

1
2k1

Dα+2
{ex(t)}+

k1
2
D2−α

{ex(t)}

− f1 + µ̂1sign(Ṡ1)+ η̂1S1

]
ue2 = g−12

[
ϕ̈d +

1
2k2

Dα+2
{eϕ(t)} +

k2
2
D2−α

{eϕ(t)}

− f2 + µ̂2sign(Ṡ2)+ η̂2S2

]
(29)

D. CONSTRUCTION OF THE SECOND LAYER SLIDING
SURFACE
The second layer sliding surface S(t) is as follows [36].

S(t) = c1 · Ṡ1(t)+ c2 · Ṡ2(t) (30)

where c1 > 0, c2 > 0. Basing on the adaptive subsystem
control laws shown in (29), we calculate one derivative of (30)
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FIGURE 2. The structure of the F-AIHSMC.

with respect to time, and Ṡ(t) is

Ṡ(t) = c1Dα+2
{ex(t)} + 2c1k1(ẍd − f1 − g1ue1 − ξ1)

+ c2Dα+2
{eϕ(t)} + 2c2k2(ϕ̈d − f2 − g2ue2 − ξ2)

+ c1k21D
2−α
{ex(t)} + c2k22D

2−α
{eϕ(t)} (31)

In order to make the second sliding variable S(t) converge
to 0 rapidly, we use the exponential approach law, as shown
in (32), to design the F-AIHSMC.

Ṡ(t) = −ε1 · S − ε2 · sign(S) (32)

where ε1, ε2 are constants greater than 0. According to (31)
and (32), the approach control law usw(t) can be obtained as
follows.

usw = −
2c2k2g2

2c1k1g1 + 2c2k2g2
ue1 −

2c1k1g1
2c1k1g1 + 2c2k2g2

ue2

+
ε1 · S + ε2 · sign(S)
2c1k1g1 + 2c2k2g2

(33)

By bringing (33) into (19), the control law of F-AIHSMC
can be obtained, as shown in (34).

u(t) = ue1(t)+ ue2(t)+ usw(t)

=
2c1k1g1

2c1k1g1 + 2c2k2g2
ue1 +

2c2k2g2
2c1k1g1 + 2c2k2g2

ue2

+
ε1 · S + ε2 · sign(S)
2c1k1g1 + 2c2k2g2

(34)

The structure of the F-AIHSMC is shown in Fig.2. Accord-
ing to the F-AIHSMC, we can obtain the following theorems:
Theorem 1: Assume that the desired motion trajectory of

the linear motion of a spherical robot is a continuous and
bounded function in the range of [0 +∞). For a spherical
robot system having the dynamic model shown in (9), if (29)
is taken as the control law of the subsystems, and (34) is taken
as the control law of the total system, then lim

t→∞
||(ex eϕ)T || =

0 can be realized.
Proof: Select Lyapunov function as follows:

V =
1
2
S2 +

2∑
i=1

(
1
2κi
η̂2i +

ciki
ρi
µ̂2
i

)

According to (28), we can compute the derivative of V as
follows:

V̇ = SṠ +
1
κ1
η̂1 ˙̂η1 +

1
κ2
η̂2 ˙̂η2 +

2c1k1
ρ1

µ̂1 ˙̂µ1 +
2c2k2
ρ2

µ̂2 ˙̂µ2

= SṠ + η̂1SS1 + η̂2SS2 + 2c1k1µ̂1Ssign(Ṡ1)
+ 2c2k2µ̂2Ssign(Ṡ2)

= S
[
c1Dα+2

{ex(t)} + 2c1k1(ẍd − f1 − g1ue1 − ξ1)

+ c2Dα+2
{eϕ(t)} + 2c2k2(ϕ̈d − f2 − g2ue2 − ξ2)

+ c1k21D
2−α
{ex(t)} + c2k22D

2−α
{eϕ(t)}

]
+ η̂1SS1

+ η̂2SS2 + 2c1k1µ̂1Ssign(Ṡ1)+ 2c2k2µ̂2Ssign(Ṡ2)

= S
[
c1Dα+2

{ex(t)} + 2c1k1(ẍd − f1 − ξ1)

+ c1k21D
2−α
{ex(t)} + c2Dα+2

{eϕ(t)}
+ 2c2k2(ϕ̈d − f2 − ξ2)+ c2k22D

2−α
{eϕ(t)}

− (2k1c1g1 + 2k2c2g2)u]+ η̂1SS1 + η̂2SS2
+ 2c1k1µ̂1Ssign(Ṡ1)+ 2c2k2µ̂2Ssign(Ṡ2) (35)

By bringing (34) into (35), we can obtain one derivative of
V with respect to time, as shown in (36).

V̇ = S
[
−ε1 · S − ε2sign(S)− η̂1S1 − η̂2S2

− 2c1k1µ̂1sign(Ṡ1)− 2c2k2µ̂2sign(Ṡ2)
]
+ η̂1SS1

+ η̂2SS2 + 2c1k1µ̂1Ssign(Ṡ1)+ 2c2k2µ̂2Ssign(Ṡ2)
= −ε1 · S2 − ε2|S| (36)

According to (36), V̇ ≤ 0, and V̇ = 0 if and only
if S = 0. According to the Lasalle’s invariance principle, the
linear motion of the spherical robot is asymptotically stable
under the control law (34).

The subsystems also need to be asymptotically stable.
Select Lyapunov function as follows:

V =
1
2
S2i +

1
2
Ṡ2i

According to (23) and (29), we can compute the derivative
of V as follows:

V̇ = SiṠi + ṠiS̈i = SiṠi + Ṡi{−2kiµ̂isign(Ṡi)− 2kiη̂iSi − ξi}

= SiṠi − 2kiη̂iṠiSi − 2kiµ̂iṠisign(Ṡi)− Ṡiξi
≤ SiṠi − 2kiη̂iṠiSi − 2kiµ̂i|Ṡi| + |Ṡiξi−max|

≤ |Ṡi|{(|ξi−max| − 2kiµ̂i)+ |Si|(1− 2kiη̂i)}
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When the parameter ki of the first layer sliding surface Si
satisfies kiη̂i > 1

/
2 and kiµ̂i > |ξi−max|

/
2, the subsystem i

is asymptotically stable. The proof of Theorem 1 is done.
Theorem 1 proves that the system is asymptotically stable.

In the F-AIHSMC, the first layer sliding surfaces Si and the
second layer sliding surface S also need to be asymptotically
stable.
Theorem 2: Assume that the desired motion trajectory of

the linear motion of a spherical robot is a continuous and
bounded function in the range of [0 +∞). For a spherical
robot system having the dynamic model shown in (9), under
the control law (34), the first layer sliding surfaces Si and
the second layer sliding surface S are asymptotically stable.

Proof: By integrating (36), we can obtain∫ t

0
V̇ dω =

∫ t

0
(−ε1 · S2 − ε2|S|)dω

V (t)− V (0) =
∫ t

0
(−ε1 · S2 − ε2|S|)dω

V (0)− V (t) =
∫ t

0
(ε1 · S2 + ε2|S|)dω (37)

Because V̇ ≤ 0, therefore, V (t) < V (0) < ∞, according
to (37):

V (0) =
∫ t

0
(ε1 · S2 + ε2|S|)dω + V (t)

≤

∫ t

0
(ε1 · S2 + ε2|S|)dω <∞ (38)

Since ε1 and ε2 are positive real numbers, therefore S <∞
can be obtained. By bringing it into V̇ = SṠ = −ε1 · S2 −
ε2|S| < ∞, we can obtain Ṡ < ∞. According to Barbalat
lemma [37], we can conclude that:

lim
t→∞

(ε1 · S2 + ε2|S|) = 0 lim
t→∞

S = 0

According to (38), whether the sliding surface S is stable
is independent of ε1 and ε2. Therefore, we assume two dif-
ferent sliding surfaces SA and SB, as shown in (39), and the
parameters cA1, cA1 and c2 are all positive real numbers.

SA(t) = cA1 · Ṡ1(t)+ c2 · Ṡ2(t)

SB(t) = cB1 · Ṡ1(t)+ c2 · Ṡ2(t) (39)

Let SA(t) > SB(t), we can get the result shown in (40).∫ t

0

(
S2A − S

2
B

)
dω

=

∫ t

0
[(cA1 · Ṡ1 + c2 · Ṡ2)2 − (cB1 · Ṡ1 + c2 · Ṡ2)2]dω

=

∫ t

0
[c2A1Ṡ

2
1 + 2cA1c2Ṡ1Ṡ2 − c2B1Ṡ

2
1 − 2cB1c2Ṡ1Ṡ2]dω

=

∫ t

0
[(c2A1 − c

2
B1)Ṡ

2
1 + 2c2(cA1 − cB1)Ṡ1Ṡ2]dω

=

∫ t

0
[2c2A1Ṡ

2
1 − c

2
A1Ṡ

2
1 − c

2
B1Ṡ

2
1 + 2cA1c2Ṡ1Ṡ2

− 2cB1c2Ṡ1Ṡ2 + 2cA1cB1Ṡ21 − 2cA1cB1Ṡ21 ]dω

=

∫ t

0
[(−c2A1 + 2cA1cB1 − c2B1)Ṡ

2
1

+ 2(c2A1Ṡ
2
1 − cA1cB1Ṡ

2
1 + cA1c2Ṡ1Ṡ2 − cB1c2Ṡ1Ṡ2)]dω

=

∫ t

0
[(−c2A1 + 2cA1cB1 − c2B1)Ṡ

2
1

+ 2(cA1 − cB1)(cA1 · Ṡ1 + c2 · Ṡ2)Ṡ1]dω

=

∫ t

0
[−(cA1 − cB1)2Ṡ21 + 2(cA1 − cB1)SAṠ1]dω (40)

According to (40), Ṡ1 <∞ can be obtained. Since Ṡ < 0,
according to the Lemma 4 in [37], we can conclude that:

lim
t→∞

S1 = 0

Using the same proof method, we can conclude that:

lim
t→∞

S2 = 0

Therefore, the first layer sliding surfaces Si and the second
layer sliding surface S are asymptotically stable. The proof of
Theorem 2 is done.

According to the control law proposed in (34), if the stable
gain parameters increase, the signum function (sign) can
cause the increase of system chattering. Therefore, in order
to avoid the above situation, we modify the control law of
F-AIHSMC to:

u(t) = ue1(t)+ ue2(t)+ usw(t)

=
2c1k1g1

2c1k1g1 + 2c2k2g2
ue1 +

2c2k2g2
2c1k1g1 + 2c2k2g2

ue2

+
ε1 · S + ε2 tanh(S)
2c1k1g1 + 2c2k2g2

(41)

The adaptive subsystem control laws of the F-AIHSMC are
modified as follows:

ue1(t) = g−11 [ẍd +
1
2k1

Dα+2
{ex(t)}

+
k1
2
D2−α

{ex(t)} − f1 + µ̂1sat(Ṡ1)+ η̂1S1]

ue2(t) = g−12 [ϕ̈d +
1
2k2

Dα+2
{eϕ(t)}

+
k2
2
D2−α

{eϕ(t)} − f2+µ̂2sat(Ṡ2)+ η̂2S2] (42)

where

tanh(x) = (ex − e−x)
/
(ex + e−x)

sat(Ṡ) =
{
sign(Ṡ), |Ṡ| > $ > 0
Ṡ
/
$, |Ṡ| ≤ $

x ∈ R,$ is a positive constant.

IV. EXPERIMENTAL STUDIES
In order to verify the effectiveness of the F-AIHSMC,
we used the BYQ-GS spherical robot to carry out the
experiment of high-speed linear motion. For comparison,
the same high-speed linear motion experiments using the tra-
ditional HSMC and the AHSMC proposed in [22] were also
performed.
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FIGURE 3. The 3D model and physical prototype of the BYQ-GS spherical robot. (a) Weight pendulum integrated into power
system. (b) Lightweight main frame. (c) Xsens MTi-300 inertial attitude measurement system. (d) DC brushless motor
(absolute encoder) in long axis direction. (e) DC brushless motor (absolute encoder) in short axis direction. (f) Embedded
main control board. (g) Trimble BD982 high-precision RTK positioning board.

FIGURE 4. Schematic diagram of the experimental field. (a) Bi-directional short ramp. (b) Thick sponge track.
(c) Uni-directional short ramp.

A. EXPERIMENTAL PLATFORM
The 3D model and physical prototype of the BYQ-GS
spherical robot are shown in Fig.3, and its performance
parameters are shown in Table 1. Compared with the tra-
ditional spherical robot driven by the eccentric torque driv-
ing mechanism based on weight pendulum, the BYQ-GS
spherical robot can satisfy the requirements of high-speed
motion tasks. According to the lightweight design princi-
ple, we used the combination of the glass fiber reinforced
polymer spherical shell and the photosensitive resin frame
based on 3D printing technology. The internal structure
was optimized by topology optimization design, and the
weight pendulum and the power system were functionally
integrated. Under the premise of a large reduction of the
overall mass, the high proportion of the weight pendulum
mass relative to the overall mass can be ensured, so that the
high-speed and flexible movement of the BYQ-GS spher-
ical robot can be realized. By combining DC brushless
motor with absolute encoder, Xsens MTi-300 inertial atti-
tudemeasurement system and Trimble BD982 high-precision
RTK positioning board, we can make the BYQ-GS spherical

TABLE 1. Performance parameters of BYQ-GS spherical robot.

robot have the ability to control and measure the motion
process.

The schematic diagram of the experimental field is shown
in Fig.4. A 15◦ bi-directional short ramp was set at the 45m
displacement, a 2m long and 30mm thick sponge track was
set at the 47m displacement, and a 15◦ uni-directional short
ramp was set at the 52m displacement. The purpose of the
above setting is to simulate complicated disturbances caused
by various road conditions in actual working conditions.
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FIGURE 5. The experimental scene. (a) Initial state. (b) Disturbance simulation area. (c) BYQ-GS passing through the bi-directional
short ramp during operation. (d) BYQ-GS passing through the thick sponge track during operation. (e) BYQ-GS passing through the
uni-directional short ramp during operation.

TABLE 2. Motion control effect of three controllers in experiment 1.

B. DETERMINATION OF THE OPTIMAL PARAMETERS OF
F-AIHSMC
In order to determine the optimal parameters of the
F-AIHSMC, we first ignored the fractional calculus, that
is, the α in (21) was 1, and used the Global Optimiza-
tion Toolbox in MATLAB to determine the optimal val-
ues of control parameters (k1, k2, c1, c2, ε1, ε2) and adaptive
law parameters (ρ1, ρ2, κ1, κ2) through the pattern search
method. The optimal parameters for the convergence speed
and precise control performance of the F-AIHSMC were
obtained, as shown below.

(k1, k2, c1, c2, ε1, ε2) = (0.697, 2.187, 5.896, 3.434,

10.103, 0.117)

(ρ1, ρ2, κ1, κ2) = (17.3, 21.8, 12.2, 14.9)

According to the above optimal parameters, we used
the FOMCON (fractional-order modeling and control tool-
box) in MATLAB and adjusted the α of fractional

FIGURE 6. Comparison of relevant data variations of sub-experiments of
experiment 1.

calculus by trial and error method. The optimal value of α
is 0.65.

C. EXPERIMENTAL PROCESS AND RESULTS
We set up three sets of experiments according to different
expected states. In each set of experiment, three different
control methods were applied to the high-speed linear motion
of the BYQ-GS spherical robot as three sub-experiments of
each set of experiment. In order to ensure the reliability of the
data and compare the results intuitively, we did 10 replicates
during the sub-experiment and took the average, and then
preprocessed the data using the Savizkg-Golag smoothing
algorithm (30 points and 2 times) to get the final data.
Based on the obtained data, we compared the control effects
of F-AIHSMC proposed in this study, AHSMC proposed
in [22], and classical HSMC. In this study, the control pro-
cess of first-time converging of BYQ-GS spherical robot to
the desired state was defined as the initial control stage,
and the control process after being disturbed was defined
as the disturbance control stage. We used three indicators,
i.e. convergence time tr , maximum absolute value of motion
trajectory error emax, root mean square error (RMSE) value of
motion trajectory error eRMSE , to show the control effects of
the three controllers clearly. The experimental scene is shown
in Fig.5.
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TABLE 3. Motion control effect of three controllers in experiment 2.

TABLE 4. Motion control effect of three controllers in experiment 3.

1) EXPERIMENT 1
The initial state of spherical robot system is (x0, ϕ0) =
(0, 0), and the expected state of linear motion is
(xd , ϕd ) = (3t, τr

/
m3gL). The error of the motion

trajectory ex(t) = xd (t)−x(t), the error of the swing position
of the weight pendulum eϕ(t) = ϕd (t) − ϕ(t), and the speed
variation of the spherical robot are shown in Fig.6.

The initial control stage of experiment 1 is defined
as 0-10s, and the disturbance control stage is defined
as 10-20s. The linear motion control effects of the three
controllers are shown in Table 2.

2) EXPERIMENT 2
The initial state of spherical robot system is (x0, ϕ0) =
(0, 0), and the expected state of linear motion is

FIGURE 7. Comparison of relevant data variations of sub-experiments of
experiment 2.

(xd , ϕd ) = (3.5t, τr
/
m3gL). The error of the motion trajec-

tory ex(t) = xd (t) − x(t), the error of the swing position of
the weight pendulum eϕ(t) = ϕd (t) − ϕ(t), and the speed
variation of the spherical robot are shown in Fig.7.

The initial control stage of experiment 2 is defined
as 0-12s, and the disturbance control stage is defined
as 12-20s. The linear motion control effects of the three
controllers are shown in Table 3.

3) EXPERIMENT 3
The initial state of spherical robot system is (x0, ϕ0) =
(0, 0), and the expected state of linear motion is
(xd , ϕd ) = (4t, τr

/
m3gL). The error of the motion trajectory

ex(t) = xd (t) − x(t),the error of the swing position of
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FIGURE 8. Comparison of relevant data variations of sub-experiments of
experiment 3.

the weight pendulum eϕ(t) = ϕd (t) − ϕ(t), and the speed
variation of the spherical robot are shown in Fig.8.

When HSMC was used for linear motion control of the
spherical robot in experiment 3, the BYQ-GS spherical robot
failed to achieve first-time convergence to the expected state
before encountering disturbance 1. Therefore, the expected
time to reach disturbance 1 was the dividing point of the
two stages, that is, the initial control stage of experiment 3
is defined as 0-11.25s, and the disturbance control stage
is 11.25-20s. The linear motion control effects of the three
controllers are shown in Table 4.

4) ANALYSIS OF RESULTS
According to the data above, we compared the control effects
of F-AIHSMC and AHSMC, F-AIHSMC and HSMC in the

FIGURE 9. Comparison of the control signal changes of the three control
methods.

two control stages, respectively. The comparison results are
shown in Table 5.

According to the three sets of data and comparison results
(Table 5), the three indicators of F-AIHSMC tr , emax and
eRMSE are all the best. In the initial control stage of the
three sets of experiments, both F-AIHSMC and AHSMC can
converge. However, when the expected speed is 4m/s, HSMC
fails to achieve convergence. In the disturbance control stage
of the three sets of experiments, when the BYQ-GS spherical
robot faces disturbances at three fixed positions, F-AIHSMC
can achieve rapid convergence. In the second and third sets
of experiments, AHSMC cannot achieve simultaneous con-
vergence of the three disturbances when the expected speed
reaches to higher than 3.5m/s. HSMC cannot achieve simulta-
neous convergence of the three disturbances in all three sets of
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TABLE 5. Comparison results of F-AIHSMC and the other two control methods.

experiments. By comparing the tr of the three sets of exper-
iments, we can conclude that, compared with AHSMC and
HSMC, F-AIHSMC has obvious advantages in increasing in
the response speed and the convergence speed of the system.
By combining the comparison of the ex−max and eϕ−max
of the three sets of experiments with AHSMC and HSMC,
F-AIHSMC has obvious advantage in reducing the system
overshoot. By comparing the ex−RMSE and eϕ−RMSE of the
three sets of experiments, and combining it with the change
trend of the speed of spherical robot based on different control
methods in the three sets of experiments, we can conclude
that, compared with AHSMC and HSMC, F-AIHSMC has
obvious advantage in enhancing the stability of the system.
By comparing the convergence of the disturbance control
stages of the three sets of experiments, we can conclude
that compared with AHSMC and HSMC, F-AIHSMC can
make the system more robust when facing unknown dis-
turbances. Therefore, compared with AHSMC and HSMC,
F-AIHSMC has the best control effect. With the increase of
expected speed from 3m/s to 4m/s, the control advantage of
F-AIHSMC becomes more and more obvious.

We extracted the data of the control signal τ without pre-
processing in the three sets of experiments, and compared the
control singal τ based on the three control methods, as shown
in Fig.9.

Fig.9 shows that, when the speeds of high-speed motion
are identical, the chattering of the controller can be better sup-
pressed in F-AIHSMC compared with AHSMC and HSMC.
With the increase of motion speed, although the effect of
chattering suppression of F-AIHSMC is weakened, it still
has obvious advantages over AHSMC and HSMC. From
Fig.9, we can conclude that, by integrating integral sliding
mode control and fractional calculus, and using tanh(S) and
sat(Ṡ) instead of the signum function sign(S) and sign(Ṡ),
F-AIHSMC has a significant suppression effect on the chat-
tering in high-speed linear motion control of spherical robot,
which further reflects the strong stability of F-AIHSMC.

V. CONCLUSION
In this study, we focused on the problem of high-speed lin-
ear motion of the spherical robot. We carried out the study
of linear motion adaptive control method for the spherical
robot under high-speed motion through the combination of
theory and experiment. We proposed F-AIHSMC by estab-
lishing the standard dynamic model for high-speed linear
motion, and integrating the feedforward control method, inte-
gral term, fractional calculus and adaptive control method
into HSMC basing on the standard dynamic model; Then,
taking the BYQ-GS spherical robot as the experimental plat-
form, we used F-AIHSMC to carry out the linear motion
control experiments of the spherical robot. The results show
that, when the spherical robot is in the high-speed linear
motion process, compared with AHSMC with adaptive func-
tion and traditional HSMC, F-AIHSMC achieves high system
response speed and convergence speed, and has stronger
stability and robustness.

The spherical robot achieves high-speed and accurate lin-
ear motion through the study of F-AIHSMC. This study lays
a solid foundation for the study of high-speed and precise
omnidirectional motion control for the spherical robot. More-
over, it has an important guiding significance and promot-
ing effect on application and popularization of the spherical
robot.
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