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ABSTRACT Configuration parameter optimization is an important means of improving the performance of
the MapReduce model. The existing parameter tuning methods usually optimize all configuration parameters
in MapReduce. However, it is exceedingly challenging to tune all the parameters for the MapReduce model
because there are massive configuration parameters in MapReduce. In this paper, a novel configuration
parameter tuning method based on a feature selection algorithm is proposed, and it is composed of the feature
selection objective function and feature selection process. The objective function is based on the kernel
clustering algorithm, in which anisotropic Gaussian kernel is adopted instead of the traditional Gaussian
kernel to accurately judge the importance of each parameter in MapReduce. Then, the relationship between
the configuration parameters in MapReduce and the features in the feature selection algorithm is defined.
Moreover, the importance of each parameter is reflected by the kernel width of anisotropic Gaussian kernels.
At the same time, the method of gradient descent is introduced to update the kernel width and control the
feature selection process of the iterative algorithm. Finally, experimental results show that the proposed

algorithm performs suitably for the MapReduce model.

INDEX TERMS Parameter tuning, Hadoop MapReduce, kernel function, K-means.

I. INTRODUCTION

In recent decades, the scale of data in various fields has grown
rapidly. High-performance computing and distributed data
processing technology are widely used in the data analysis
of various fields. Hadoop [1], Spark [2], Storm [3], and
MARP [33] are currently popular platforms using distributed
processing technology. MPI and Hadoop are two widely
used parallel model [33]. Compared with MPI, Hadoop
based on the MapReduce model is still used by many
fields, such as industry, scientific computing, and bioinfor-
matics, because of its advantages of scalable, efficient and
fault-tolerant [4], [5], [30], [33]. However, with the increasing
demand for data processing, the efficiency problems of jobs in
MapReduce have become substantially more complex. There
are often many factors that influence the efficiency prob-
lems simultaneously. These factors include massive config-
uration parameters, an inefficient task scheduler, inefficient
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data locality, the absence of load balancing and unreasonable
allocation of resource slots etc., [33]. These factors lead to
inefficiencies for jobs in Hadoop. In these factors, massive
configuration parameters are the primary problem, because
the task scheduler, data locality, copy placement and other
optimizations need to be based on reasonable configuration
parameters [1], [6].

Parameter tuning is a very complicated engineering
problem. Generally, configuration parameter tuning is
employed to optimize the combination of various configura-
tion parameters of a system or model to achieve better perfor-
mance. There are more than 190 configuration parameters in
MapReduce [7]. It includes I/O management, slot source allo-
cation, memory management, concurrency, map and reduce
configuration etc., [8], [9]. It is hard for a platform admin-
istrator to fully understand and correctly configure these
configuration parameters, because it is an NP- problem
to exactly and correctly configure more than 190 con-
figuration parameters to achieve optimal performance for
MapReduce.
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At present, the methods of configuration parameter opti-
mization for MapReduce mainly include the combination of
configuration parameters, and parameter optimization meth-
ods based on simulators, experience principles, and machine
learning [10], [11], [14], [16]. In the process of parameter
optimization, these methods take all parameter into account.
The combination of all configuration parameters results in
a high complexity of the algorithm and the effectiveness is
low. One of the main reasons for these problems are that
the current studies ignore the fact that the various configu-
ration parameters in MapReduce are of varying importance.
Although there are more than 190 configuration parameters
in MapReduce, the configuration parameters have a different
influence on the execution time of MapReduce jobs. Some
configuration parameters can directly affect the execution
time of MapReduce. The other configuration parameters
do not have a significant impact on the execution time of
MapReduce. Moreover, Zou et al. [34] and Zeng et al. [35]
has achieved good results in the field of bioinformatics data
using feature ranking algorithms.

Therefore, to effectively improve the optimization of
MapReduce configuration parameters, the paper presents
a configuration parameter optimization method based on
feature selection.

1) The foundation principle of MapReduce is analyzed,
which shows that the importance of each configuration
parameter is different, and the influence degree of each con-
figuration parameter on the execution time of MapReduce is
different.

2) This paper presents a clustering feature selection algo-
rithm (IK-means for short) based on the kernel function
penalty, which solves the problem that platform manage-
ment personnel encounter due to the difficult of configur-
ing the excessive configuration parameters in MapReduce.
In IK-means, to accurately judge the influence degree of each
feature parameter, the anisotropic Gaussian kernel function is
introduced instead of the traditional Gaussian kernel function,
and the importance of each feature is reflected by the param-
eters (also known as kernel width) in different directions of
the anisotropic Gaussian kernel function.

3) The method of gradient descent is proposed to mini-
mize the kernel width vectors of the anisotropic Gaussian
kernel, so that the clustering effect of the selected features
can be closest to the clustering effect of the original features,
to achieve the purpose of feature selection.

The paper is organized as follows. Section II describes
existing parameter tuning algorithms in Hadoop. In section
III, the importance analysis of the configuration parameters
is presented. Section IV introduces the feature selection algo-
rithm based on the kernel function. Section V provides an
empirical evaluation of the developed methods.

Il. RELATED WORK

At present, the method to tune the configuration parameters of
MapReduce mainly focuses on the software-defined network,
machine learning, and simulator method.
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The software-defined network [1] divides the jobs in
Hadoop into CPU- or I/O- intensive, and the interrelations
among Hadoop parameters are represented by the constructed
fitness function. The construction of the fitness function
is based on the job samples that can be considered as
CPU- or I/O- intensive in Hadoop. Then, a genetic algo-
rithm is introduced to optimize the configuration param-
eters by genetic programming in Hadoop. Moreover, the
software-defined network [1] takes into account the tuning
of some significant configuration parameters. However, how
to obtain these significant configuration parameters is also a
problem.

H-Tune [6] is a parameter optimization algorithm based
on machine learning. The main idea of H-Tune is to predict
the performance of an application with a given configuration
rather than to execute the application in Hadoop. A per-
formance profiler is first introduced to collect and analyze
the performance data of the application. Then, the execution
predictor is introduced to predict the performance of an appli-
cation with a given configuration on Hadoop. In addition,
two-level fusion model training is introduced to search for
an optimal configuration for an application in MapReduce.
However, it takes too much time to collect profiling data, and
it is very difficult to build a model for the all applications in
MapReduce.

The genetic algorithm [14] is a popular algorithm in
parameter optimization. MSET [9] is a typical parameter opti-
mization algorithm based on the genetic algorithm. A frame-
work 1is first introduced to reduce the collection time of
profiling data for the applications with a given configuration
in Hadoop. In addition, the MT algorithm is leveraged to
predict the running time of the applications with different
configurations. Moreover, an MT-driven genetic algorithm
is introduced to search the parameter space to optimize the
configuration. DAC [10] also uses a genetic algorithm to
search for suitable configuration parameters based on the
running time of the applications. However, DAC can only deal
with limited configuration parameters. BestConfig [12] uses
a bound-and-search algorithm to optimize configurations.
However, it is only suitable for fixed applications.

SMBSP [13] is a self-tuning method of parameters based
on an artificial neural network. SMBSP consists of three
layers, which are the input layer X, hidden layer H, and
output layer Y. The main idea of the SMBSP is that dif-
ferent activation functions are used in different layer. The
ReLU [13] activation function is introduced in the input
and hidden layer. The softmax activation function is used
in the output layer. The relationship of the three layers is
defined as H = Xjw; + Xowy + b. w and b represent the
weights and bias, respectively. The self-tuning of parameters
is based on the H. Obviously, H is a linear model. The
relationship among the three layers is not expressed accu-
rately because the relationship between the data is likely
nonlinear [14].

HSim [11] is a typical MapReduce simulator. HSim
makes improvements in the system state (processor, memory,
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buffer, disk, network and I/O state). It can accurately sim-
ulate the behavior of the Hadoop platform and reflect the
parameters of system state dynamic transformation. In HSim,
some benchmark programs for validation are first gener-
ated in the environment of optimizing the parameter con-
figuration. In addition, jobs for simulation are read into
HSim as data streams and the heartbeat mechanism is
used as a comparison with the benchmark program in
the Hadoop cluster. Finally, a decision regarding the effi-
ciency of the parameter configuration can be made during
the comparison process. However, for the convenience of
simulation, a configuration parameter for HSim has been
added to the simulator. As a result, parameters are added to
MapReduce.

Shivnath et al. [15] introduce a competitive optimiza-
tion [31] to run work with multiple instances, each instance
running on the Hadoop platform with different parameter
configurations. The parameter optimization of this method is
directly implemented by the Hadoop platform, which reduces
the workload of users. However, there are different stages on
the Hadoop platform, and the operation efficiency is different
in each stage. Therefore, there are some limitations to quickly
judge the accuracy of a best example.

Bu et al. [16] adopt reinforcement learning (RL) method
to automatically optimize the configuration parameters in the
MapReduce model. To optimize the configuration parame-
ters, a Markov decision process (MDP) is introduced. All
parameter configuration situations are defined as a state space
in MDP, and n parameters for the state space are considered
to be a set of states consisting of n vectors, while the behavior
in MDP is defined as three kinds: increase, decrease, and
associate with other parameters. The least square method
is introduced to optimize the parameter combination [8].
However, the combined parameters sometimes do not allow
the job to run most efficiently.

As described in [1], [13], [16]-[18], many parameters will
greatly increase the time of training, and the efficiency of
the optimization process is also limited. Therefore, select-
ing some important parameters that can directly affect the
efficiency of job execution is a more reliable method for
parameter tuning in Hadoop MapReduce.

IIl. IMPORTANCE ANALYSIS OF MAPREDUCE
CONFIGURATION PARAMETERS

There are more than 190 configuration parameters of different
importance in MapReduce, and it is difficult for platform
administrators to configure these configuration parameters.
The main configuration parameters in MapReduce are listed
in Table 1 [1], [6], [18]. These configuration parameters
mainly include I/O management, slot resource allocation,
memory management, concurrency, map and reduce con-
figuration, and so on. The importance of related configu-
ration parameters in [19]-[21], and [22] on concurrency,
memory management, concurrency, map and reduce is ana-
lyzed carefully and verified by experiments. Liu ez al. [11]
uses the simulator method, in which the importance of the
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FIGURE 1. The fundamental principle of MapReduce.

TABLE 1. The main parameter of Hadoop.

parameters Default
mapreduce.task.io.sort.mb 120
io.sort.record.percent 0.05
mapreduce.map.sort.spill.percent 0.8
mapreduce.task.io.sort.factor 10
io.file.buffer.size 4096
mapreduce.job.combine.class NULL
mapreduce.map.combine.minspills 3
mapreduce.map.output.compress FALSE
mapreduce.job.reduces 1
mapreduce.job.maps 2
mapreduce.output.fileoutputformat.compress FALSE
mapreduce.job.reduce.slowstart.completedmaps 0.05
mapreduce.reduce.shuffle.input.buffer.percent 0.66
mapreduce.reduce.input.buffer.percent 0
mapreduce.map.maxattempts 4
mapreduce.tasktracker.map.tasks.maximum 2
mapreduce.tasktracker.reduce.tasks.maximum 2
mapred.child java.opts 200
mapreduce.reduce.shuffle.parallelcopies 5
mapreduce.reduce.shuffle.merge.percent 0.66
dfs.blocksize 64
dfs.replication 3

above configuration parameters is illustrated by simulating
the execution process of the map and reduce phases of
the task in MapReduce. Moreover, the importance of I/O
related configuration parameters is also illustrated by the
simulator.

In addition, the importance of configuration parameters is
also proved by a mathematical model [23]. First, the funda-
mental principles of MapReduce are analyzed, and the picture
of fundamental principles is shown in Figure 1. As seen
from Figure 1, the execution process of jobs in MapReduce
is divided into six processes: reading data, writing to disk,
merging files, map output, file merge and reduce output.
Second, the influence of each parameter for job execution
performance in different stages is analyzed and the role of
I/O configuration parameters in these processes is explained.
For example, the input split parameter in the map pro-
cess, the mapreduce.task.io.sort.mb parameter and the mapre-
duce.task.io.sort.factor parameter in the file merge process,
etc., are analyzed.

The above analysis shows that the configuration parame-
ters can affect the efficiency of job execution in each process,
which is the motivation of this paper.
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IV. CLUSTERING FEATURE SELECTION BASED ON
KERNEL FUNCTION PENALTY

In this section, a clustering feature selection algorithm
(IK-means for short) based on the kernel function penalty
is introduced, in which the configuration parameters with a
large influence on the run time for jobs can be selected. The
selected parameters can be used by administrators for tuning
configuration in Hadoop, that is, it can avoid the situation in
which administrators need to understand and configure more
than 190 configuration parameters in Hadoop.

The IK-means algorithm is mainly to establish a clustering
objective function. The function of this objective function
is to delete the unimportant features when the clustering
algorithm is running. The deletion features are the corre-
sponding configuration parameters in Hadoop. To ensure the
accuracy of feature selection, the objective function takes
into account three aspects. The first is the choice of the
kernel function. The second is the definition of the objective
function. The third is the establishment of the feature penalty
function. Assume that the input sample of the algorithm is
n records. Each record records the job types and the con-
figuration parameters when it executes in Hadoop. The job
types can be divided into CPU-intensive, memory-intensive,
I/O-intensive, and network-intensive. The values in all
records are assumed to have been normalized. In the process
of clustering, the features that have a great influence on the
clustering of the job type will be selected, that is, the configu-
ration parameters that have a great influence on clustering are
considered as important parameters, because they can affect
the parameters of the job type and the execution time of the
job.

The three steps to establish the objective function are as
follows.

A. THE SELECTION OF KERNEL FUNCTION

The traditional kernel function is controlled by a kernel
width, when the features are mapped to higher dimensions,
that is, the mapping of features to different dimensions is
controlled by the same kernel width. The anisotropic Gaus-
sian kernels (ANGKSs) have a different kernel width in dif-
ferent dimensions, that is, a kernel width in a dimension
corresponds to a feature. Therefore, anisotropic kernels can
more accurately reflect the importance of different features

[24]-[27]. The method has been proven in the feature selec-
tion of the support vector machine [24], and its effect is supe-
rior to the traditional Gaussian kernel-based feature selection.
Therefore, anisotropic Gaussian kernel is introduced in the
IK-means algorithm, in which each kernel width corresponds
to a configuration parameter in Hadoop MapReduce.
The anisotropic Gaussian kernel is defined as:
oy~ X" f“’) ) M

K(ix) = exp(=)
20
where x; and x; are samples. The shape of the kernel function
is controlled by the parameter o. o is defined as a vec-
tor containing n kernel width parameters, where n is the
characteristic dimension of each sample. o is defined as
o =lo1, 02, ..., 0,], where each reciprocal of o can reflect
the importance of corresponding features [24]. Therefore, in
this paper, o; with a large value can be deleted, the large value
corresponds to a configuration parameter in MapReduce.
Therefore, the kernel width vector v in IK-means is defined
as:
1 1 1 1
v=[— — — =] @)
g] 02 03 On
Therefore, the kernel function is defined in (3), as
shown at the bottom of this page, where a * b =
(a1b1,azby, ...... , ayby), v is also known as the kernel
width vector of an anisotropic Gaussian kernel.

B. FEATURE PENALTY FUNCTION

The Iy “norm” approximation can use some characteristics
of the sample to express the characteristics of the original
characteristics of the sample [104]. [y “norm” approximation
has been validated in the feature selection algorithm based
on the support vector machine (SVM) [24]. Assume that the
lp “norm™ is defined as ||w||g, and ||w||p can be approxi-
mately expressed with a concave function, which is ||w||p &
el (e-exp(-r|w|). Suppose v is an n-dimensional sample; then
eTv < n [28], where the v; is positive because it describes
the kernel width in the anisotropic Gaussian kernel, and the
value of the kernel width is always a non-negative number.
Therefore, the following feature penalty function is defined
as:

fW=¢ e—expyV)=) (I-exp(—yV) @)

T (X — X 2
K (X, X;, v) = exp —Z(”Z—zs’)
j=1 %
(Xij — Xyj)
= exp[ Z 1]1 S‘]
j=1 2 /Vj
= expl— (ViXi1 — ViXe)? + (VaXpp — VoX)? .. +(ViXin — V,,Xm)2]
B 2
|V % X; — V % X,||?
= exp[— ' 3 ] A3)
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According to the conclusion of [24], [27], [28], the value
of y is set to 5 so that the range of adaptation is the widest
and the effect is better, so this paper also sets the value of y
to 5.

C. THE ESTABLISHMENT OF THE OBJECTIVE FUNCTION
In the kernel K-means algorithm, assuming that there are K
class samples, selecting the best class for the sample x;, x;
satisfies formula 5:

| X)) — Uw) I*<] @X) — Uw)l?,
I1<i<N,1<wsK,w#w (5

which describes the distance from ®(x;) to class u,, less
than u,, in any other cluster center, and N is the number of
samples. x; represents the i sample, and is consistent with the
definition of the nuclear K-means.

Effective clustering algorithms need to make the sample
that is closest to the center point belong to the same class,
and the distance between different classes is far. Moreover,
the clustering algorithm needs to reduce the repeated selec-
tion consumption in different classes [29], that is, sample
x; belongs to the ¢; class in the T iteration, however it
belongs to the ¢; + 1 class in ¢t + 1 iteration. Therefore,
the algorithm needs to make the distance from sample x; to the
cluster center as small as possible at the 7 iteration. Although
Maldonado et al. [27] proposes the objective function based
on the kernel function, it ignores the case in which the sample
is selected back and forth between the two classes. Therefore,
this paper improves the algorithm of [27] and introduces the
following cost formula:

Cost (c)
- | DX; — ) |2
= ZW= ZieCW Zw#w/ | ®X; — uy) ||
U 2
+ Zz 12)( eX "f y | ©

where X ={x1, x2, x3, ..., Xp} is a sample set, the clustering
set of all sample points is C, that is, the clusters are divided
into C = {Cy, C, C3, ..., Cy}, the number of clusters is
k, u,, is the cluster center of the C,, class, and ¢ is the
number of iterations. u,; is the clustering center of the z-th
iteration of the sample x;, and u,; is the clustering center of the
(¢-1)-th iteration of the sample x;. According to the defini-
tion of kernel K-means and formula (6) the cost function is
expressed as:

K QV,W
CostiO) =D 1 2 ey 2owpw g TE P
where
Ovw = K (Xi, Xi, v) — New 2aiccy K (Xi, X, v)
—1 K (X;, X
+ N2 jeCwpeCy ( o P V)
1,2
Q=ZZ||u;j—u;j1|| ®)
t=1 XjeX
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Q is the cost of the sample being repeatedly selected in
different classes. The target function minimizes this cost, that
is, the distance between the cluster center of sample x; at
t-time and ¢ — 1 time is as small as possible.

Therefore, the target function minimizes formula (6) by
punishing the kernel width vector v, and deletes the unim-
portant kernel width (corresponding features) of the kernel
width vector v by the penalty function, such that the selected
features are as close as possible to the clustering effect of
the original features. In addition, the target function follows
the principle that the sample in the class is closest to the
sample, and the sample is far away between the classes, while
minimizing the cost of the sample being repeatedly selected
in different classes. Therefore, the following minimization
objective functions is introduced:

minF (v, C) = Z > QVW+Q+/\f(v)

W= lleCwW;éW’
vi>0,Viefl,....,N} (9

The parameter A is a predefined parameter used to penalize
formula f (v) and the cost function.

Algorithm 1 is an algorithm for feature selection in the
IK-means process, in which feature deletion and updating of
the kernel width are required. The algorithm uses a gradient
descent algorithm to minimize the kernel width vector in the
iterative process, v = {1/o1, /o3, 1/o3, ..., 1/0,} updating
the kernel width vector v in each iteration, and deleting the
unimportant feature v;.

Algorithm 1 Feature Delection and Kernel Width Updates
1. Initialization v = vpe
2. EndFlag=false; t=0;
3. repeat

4. C = kernel k-means clusting
5. vi=vTl—yVFOL 0)
6. foreachv; € vdo

7. if (v < M)

8. v =0;

9. end if

10. end for

11. if (o =v—h

12. EndFlag=True
13. endif

14. until (True==EndFlag)

The kernel width vector of an anisotropic Gaussian kernel
is adjusted by the gradient descent algorithm in Algorithm 1.
For a clustering C (which can be generated by a kernel clus-
tering algorithm through training sample data), for features /,
the gradient descent function is as follows:

ViF (v, C)= Z P IRY SVW +VIO+AVf(v) (10)

w=1ieCw w#w
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where

Qv,w _ lev,w ' Qv,w/ - Qv,w ' V[Qv,w/

Vi
Qv,w/ Q% w

V. EXPERIMENT AND ANALYSIS

To investigate the effectiveness of the proposed IK-means
algorithm, it is compared with the existing typical feature
selection algorithms, which are KPKM [27], IRFE [22], and
uEFS [32] algorithms in the Hadoop platform.

The Hadoop platform version used in the experiment is
Hadoop 2.7.3, which has more than 190 configuration param-
eters and many types of parameters. Before the experiment,
all test parameters were standardized as floating point num-
bers. The sample for the test is composed of 2000 job records.
Each record includes numeric values for the job type and,
different configuration parameters, and all records are gen-
erated by different types of jobs under the same Hadoop plat-
form by changing the numeric values of each configuration
parameter. In these 2000 records, the types of jobs are divided
into CPU-intensive, I/O-intensive, memory-intensive, and
network-intensive types. In the process of IK-means cluster-
ing, the features that have an important influence on the job
type are selected, that is, the configuration parameters that
have a great influence on the clustering are considered valid
parameters in this paper because the parameters that can have
an influence on the work category can also have an influence
on the execution time of the work.

The experimental method executes feature selection exper-
iments four times employing the four feature selection algo-
rithms, which are IK-means, KPKM, IRFE and uEFS. The
first experiment is to select 10 configuration parameters from
Hadoop’s configuration parameters. The second experiment
is to select 8 configuration parameters, the third experiment
is to select 5 configuration parameters, and the fourth experi-
ment is to select 3 configuration parameters. Tables 2, 3,4 and
5 are the results of four sets of experiments, respectively.

The importance of some parameters in Table 2, Table 3,
Table 4, and Table 5 is illustrated in [10], [11], [21], which
are as follows: mapreduce.task.io.sort.mb, dfs.blocksize,
mapreduce.map.sort.spill.percent, mapreduce.task.io.sort.
fact or, mapreduce.map.output.compress, dfs.namenode.
handle.co unt,and mapreduce.map.combine.minspills. There-
fore, these configuration parameters will not be vali-
dated in this paper. This paper will verify the importance
of the remaining parameters, which are: mapreduce.job.
maps, fs.df.interval, mapreduce.job.reduces, mapred.child.
java.opts, mapreduc e.job.reduce.slowstart.completedmaps,
mapreduce. tasktracker.healthchecker.script.timeout, mapre-
duce.tasktracker.map.ta  sks.maximum,mapreduce.reduce.
shuffle. parallelcopies, mapreduce.task.timeout,mapreduce.
tasktracker.reduce.tasks.maximum, dfs.datanode.failed.
volumes. tolerated, dfs.namenode. checkpoint.period, and
dfs.namenode.replication.interval.

The test method is to manually modify the value of
the parameters to determine whether it will influence the
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TABLE 2. Select 10 parameters from Hadoop.

Algorithm Selected parameters

IK-means  dfs.namenode.handler.count, mapred.child.java.opts;
mapreduce.job.maps; mapreduce.job.reduces;
dfs.blocksize; mapreduce.map.output.compress;
mapreduce.tasktracker.reduce.tasks.maximum,
mapreduce.map.sort.spill.percent;
mapreduce.task.io.sort.factor; fs.df.interval
IFRE mapreduce.job.reduces; dfs.blocksize;
mapreduce.map.output.compress;
mapreduce.task.io.sort.mb; mapreduce.task.timeout,
mapreduce.map.sort.spill.percent;
mapreduce.task.io.sort.factor; io.file.buffer.size;
fs.df.interval; dfs.datanode.failed.volumes.tolerated,
uEFS dfs.namenode.handler.count; mapred.child. java.opts;
dfs.blocksize; mapreduce.job.maps;
mapreduce.job.reduces, mapreduce.task.io.sort.mb;
mapreduce.map.output.compress,
mapreduce.map.sort.spill.percent;
mapreduce.task.io.sort factor;
dfs.namenode.replication.interval;
mapreduce.job.maps; mapreduce.job.reduces;
mapreduce.map.output.compress;
mapreduce.task.io.sort.mb;
mapreduce.map.sort.spill.percent;
mapreduce.task.io.sort.factor,;
mapreduce.map.combine.minspills;
mapreduce.job.reduce.slowstart.completedmaps;
mapreduce.tasktracker.healthchecker.script.timeout;
dfs.namenode.checkpoint.period

KPKM

TABLE 3. Select 8 parameters from Hadoop.

Algorithm Selected parameters

dfs.namenode.handler.count; mapred.child java.opts;
mapreduce.job.maps; mapreduce.task.io.sort.mb;
mapreduce.job.reduces; dfs.blocksize;
mapreduce.map.output.compress;
mapreduce.map.sort.spill.percent
IFRE mapreduce.job.reduces; dfs.blocksize;
mapreduce.map.output.compress;
mapreduce.task.io.sort.mb; mapreduce.job.maps
mapreduce.map.sort.spill.percent;
dfs.datanode.failed.volumes.tolerated;
mapreduce.task.timeout
uEFS mapreduce.job.maps; mapreduce.task.io.sort.mb;
mapreduce.tasktracker.map.tasks. maximum;
mapreduce.job.reduces;mapreduce.task.io.sort.factor;
mapreduce.map.output.compress,
mapreduce.map.sort.spill.percent,;
dfs.namenode.replication.interval
mapreduce.job.maps; mapreduce.job.reduces;
mapreduce.map.output.compress, mapreduce.task.io.sor
t.mb; mapreduce.map.sort.spill percent;
mapreduce.task.io.sort.factor; dfs.blocksize
mapreduce.map.combine.minspills; f5.df.interval

IK-means

KPKM

execution time of the jobs. The value of the test parameter is
modified when a job is running. If the change of the value has
a great impact on the execution time of the job, the selected
configuration parameters are of high importance.

The experimental method is that the sorting programs,
of which the data sizes are of 1 GB, 2 GB, and 4 GB, are
executed on a Hadoop platform with 10 nodes, and the values
of the tested configuration parameters are modified. If the
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TABLE 4. Select 5 parameters from Hadoop.

Algorithm Selected parameters

IK-means  mapred.child java.opts; mapreduce.job.maps;
mapreduce.job.reduces; dfs.blocksize;
mapreduce.task.io.sort.mb
IFRE mapreduce.job.reduces; dfs.blocksize;
mapreduce.map.output.compress;
mapreduce.task.io.sort.mb;
dfs.namenode.replication.interval
uEFS mapreduce.job.maps; mapreduce.job.reduces;
mapred.tasktracker.map.tasks.maximum
mapreduce.task.io.sort.mb;
mapreduce.task.io.sort.factor
mapreduce.job.maps; mapreduce.job.reduces;
mapreduce.map.output.compress;
mapreduce.task.io.sort.factor;
mapreduce.map.combine.minspills

KPKM

TABLE 5. Select 3 parameters from Hadoop.

Algorithm Selected parameters

IK-means  mapred.child java.opts; mapreduce.job.maps;

mapreduce.job.reduces

IFRE mapreduce.job.reduces;
mapreduce.map.output.compress;

mapreduce.task.io.sort.mb
uEFS mapreduce.job.maps; mapreduce.job.reduces;

mapreduce.task.io.sort.mb
mapreduce.job.maps; mapreduce.job.reduces;
mapreduce.map.combine.minspills

KPKM

execution time of the job has a great change, the parameter
is considered to be an important configuration parameter,
and the configuration parameter is also considered to be a
valid feature selected by the test algorithm. In contrast, if the
execution time of the job has little effect, the parameter is
considered to be an unimportant configuration parameter,
and the configuration parameter is also considered to be an
invalid feature selected by the test algorithm. Figure 2 and
Figure 3 show the test results of the above unverified con-
figuration parameters. As can be seen from Figure 2, as the
value of the configuration parameters changes, the execution
time of the job changes significantly, that is, the curve in
the graph has obvious fluctuations, and each configuration
parameter has a value that minimizes the running time of
the work, so the configuration parameters in the figure are
considered to be valid features. In Figure 3, it can be seen
that changing the value of each configuration parameter has
little effect on the execution time of the work, and the curve in
the figure has no significant fluctuation, so the configuration
parameters in the figure are considered to be invalid features.
The ordinates in both figures represent the execution time of
the work (in seconds). The abscissa indicates the actual value
of each configuration parameter. The abscissa of the first
figure in Figure 2 indicates that the configuration parameter
mapreduce.job.maps has specific values of 2,4, 6, ..., 30 when
the work execution time changes. The abscissa of the first
graph in Figure 3 indicates that the configuration parameter
fs.df.interval has a specific value of 1, 2, 3, ..., 10 seconds
(in seconds) when the work execution time changes.
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FIGURE 2. The influence of the job running time of the selection
parameters (effective features).

- DU
1GB 268 4GB 1GB 268 4GB
g 300 g 300
2250 g 250
2 200 2 200
2 150 =150
100 A, -, +— | 100 et ——
50 50
0 oy 0 oy
12 3 4 5 6 7 8 910 1 23 45 6 7 8 9 10
fs.df.interval(second) dfs d; i interval(c )
- - - -
1GB 2GB 4GB 1GB 2GB 4GB
= 350 5 350
g 300 g 300 z z —=
2250 2 250
2200 f=—— g 200 e
Z 150 =150
100 ———— | ———— ———
50 50
0 . . . . 0 L . M .
300 400 500 600 700 800 500 1000 1500 2000 2500 3000 3500 4000
mapreduce.task.timeout(second) dfs. ds d d)
- o
1GB 2GB 4GB 1GB 2GB 4GB
2 350 5 350
g 300 g 300 f—+— A= ==
2250 g 250
£ 200 — 2 200
=150 =150
—r s+, | e,
100 100 S
50 50
0 oy 0 ey
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

mapreduce.tasktracker. cript

dfs.datanode.failed.tolerated(counter)

FIGURE 3. The influence of the job running time of the selection
parameters (invalid features).

Therefore, through the above analysis, it is considered that
invalid features are obtained when the configuration parame-
ters in Figure 3 have a low impact on the job execution time,
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(corresponding to the bold italic configuration parameters
in Table 2, Table 3, Table 4, and Table 5).

In the following, the effectiveness of each algorithm is
analyzed by judging the number of invalid features of the four
feature selection algorithms: IK-means, KPKM, IRFE, and
uEFS.

The results of the four feature selection experiments from
Table 2, Table 3, Table 4 and Table 5 include the four feature
selection algorithm: IK-means, KPKM, IRFE, and uEFS. The
bold italic configuration parameter in the Table (that is, the
configuration parameter in Figure 3) is an invalid configura-
tion parameter, and it means that the configuration parameter
has a lower impact on the execution time of the MapReduce
job. The parameters shown in normal font are considered to
be valid configuration parameters, which means the modifi-
cation of the values of these configuration parameters have a
strong impact on the execution time of the MapReduce job.

The four algorithms, namely, IK-means, IFRE, uEFS, and
KPKM, have all selected invalid configuration parameters
in the experiment of selecting 10 configuration parame-
ters (Table 2). The IK-means and uEFS algorithms select
one invalid configuration parameter. The KPKM algorithm
selects two invalid configuration parameters. The IFRE algo-
rithm selects three invalid configuration parameters. In the
experiment of selecting 8 configuration parameters (Table 3),
the number of selected invalid configuration parameters by
each algorithm is lower than the case in which 10 configu-
ration parameters were selected. When the selected config-
uration parameter is 3 (Table 5), all of the algorithms did
not select invalid configuration parameters. It can be seen
that the effectiveness of the configuration parameters selected
by the IK-means algorithm proposed in this paper is better
than that of the three feature selection algorithm comparisons.
Among them, the principle of the IRFE feature selection algo-
rithm is to use the Gaussian Kernel to select features, which
is based on the SVM feature selection algorithm. The IK-
means feature selection algorithm proposed in this paper uses
the anisotropic Gaussian kernel instead of traditional Gaus-
sian nucleus. Comparing the methods illustrates that with
the anisotropic Gaussian kernel, the importance of different
features is reflected by different kernels width, while the
Gaussian nucleus uses the same nucleus width to reflect the
importance of different features. In the paper, the kernel width
vector is defined as o =[o], 03,..., 0,]. 0; can reflect the
importance of corresponding configuration parameter. Each
vector in the o set is different. In Gaussian kernel, Each vector
in the o set is same. Therefore, the accuracy achieved by
the anisotropic Gaussian kernel in judging the importance of
different features is better than that of the Gaussian nucleus.

Although the KPKM algorithm is also a kernel method,
this method does not take into account the features that
are selected back and forth among different classes. This
situation will reduce the accuracy of important parame-
ter judgments. The uEFS algorithm uses the unified fea-
tures scoring (UFS) algorithm to generate a final ranked
list of features following a comprehensive evaluation of a
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feature set. Then a threshold value selection algorithm is
introduced to select a subset of features. However, the selec-
tion of the threshold value can affect the accuracy of the
subset of the features.

Compared with the uEFS algorithm, IK-means introduces
the gradient descent algorithm to minimize the kernel width
vector in the anisotropic Gaussian kernel, in which feature
deletion and updating of the kernel width are introduced to
minimize the kernel width vector in the iterative process.
In each iterative process, kernel width vector is updated, and
the unimportant configuration parameter is deleted. So that
the selected configuration parameters can represent the orig-
inal configuration parameters. This is the reason that the IK-
means algorithm achieves a better selection on important
parameters.

VI. CONCLUSION

Because of the massive configuration parameters, parameter
tuning is challenging work in Hadoop MapReduce. In this
paper, a novel parameter tuning method based on kernel K-
means clustering (IK-means for short) has been put forward
to select the important parameters that can directly impact
the running time of the jobs in Hadoop rather than tuning
all of the parameters. To tune the parameters, the IK-means
algorithm process has been presented. The selection of the
kernel function, feature penalty function and the establish-
ment of the objective function have also been studied for IK-
means. Moreover, to accurately judge the importance of each
feature, anisotropic Gaussian kernel is introduced instead of
traditional Gaussian kernel. The importance of each feature is
reflected by the parameters of anisotropic Gaussian kernel in
different directions. At the same time, the method of gradient
descent is introduced to select a group of features that are as
close to the original features as possible. A series of experi-
ments are conducted and encouraging results are obtained.
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