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ABSTRACT Since long non-coding RNAs (lncRNAs) have involved in a wide range of functions in cellular
and developmental processes, an increasing number of methods have been proposed for distinguishing
lncRNAs from coding RNAs. However, most of the existing methods are designed for lncRNAs in animal
systems, and only a fewmethods focus on the plant lncRNA identification. Different from lncRNAs in animal
systems, plant lncRNAs have distinct characteristics. It is desirable to develop a computational method for
accurate and robust identification of plant lncRNAs.Herein, we present a plant lncRNA identificationmethod
ItLnc-BXE, which utilizes comprehensive features and the ensemble learning strategy. First, a diversity
of sequence features is collected and filtered by feature selection to represent transcripts. Then, several
base learners are trained and further combined into a single meta-learner by ensemble learning, and thus an
ItLnc-BXEmodel is constructed. ItLnc-BXEmodels are evaluated on datasets of six plant species, the results
show that ItLnc-BXE outperforms other state-of-the-art plant lncRNA identification methods, achieving
better and robust performance (AUC>95.91%). We also perform some experiments about cross-species
lncRNA identification, and the results indicate that dicots-based and monocots-based models can be used to
accurately identify lncRNAs in lower plant species, such as mosses and algae. In addition, source codes and
supplementary data are available at https://github.com/BioMedicalBigDataMiningLab/ItLnc-BXE.

INDEX TERMS Plant lncRNA identification, ensemble learning, lncRNA-related features, feature selection.

I. INTRODUCTION
The recent improvements in high-throughput sequenc-
ing and the application of machine learning methods
have led to the identification of numerous novel gene
sequences [1]–[5]. As a consequence, the source of cod-
ing and non-coding RNAs has been greatly enlarged.
Long non-coding RNAs (lncRNAs) are a class of RNA
molecules that not encode proteins, with lengths exceeding
200 nucleotides [6]. Although lncRNAs were thought to
be transcriptional noise at first, increasing works demon-
strate that they exert significant impacts on many biological
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processes, such as tissue development and external stimuli
response [7]–[9].

Since only a few lncRNAs have been annotated, many
machine learning-based methods have been proposed for
lncRNA identification, such as CPC2 [10], CPAT [11],
PLEK [12] and etc. CPC2 employed an SVM model
using the RBF kernel to distinguish coding RNAs from
non-coding RNAs. CPAT used the logistic regression (LR)
for novel lncRNA identification. PLEK applied a compu-
tational pipeline based on an improved k-mer scheme and
an SVM algorithm. These methods were all alignment-free,
which implied that they only made use of features derived
directly from sequences. For example, CPC2 constructed a
feature set composed of four intrinsic features, which were
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peptide length, isoelectric point, Fickett TESTCODE score
and open reading frame (ORF) integrity, while CPAT adopted
ORF length, ORF coverage, Fickett TESTCODE score and
hexamer score.

In the history of lncRNA identification, the focus has
always been human and animals, but few methods can be
used for plants. Plant lncRNAs are different from animal
lncRNAs and may have distinct characteristics. Most of the
plant lncRNAs regulate gene expression through multiple
mechanisms, such as target mimicry, transcription interfer-
ence, histone methylation, and DNA methylation. They also
play essential roles in flowering, male sterility, nutrition
metabolism, biotic and abiotic stress, and other biological
processes as regulators in plants [6]. The insufficiency of
lncRNAs remains one of the major problems in plants, and
most popular databases have a preference for collecting ani-
mal lncRNAs. With increasing demands in plant lncRNAs,
several databases, such as RNAcentral, Ensembl Plants and
CANTATAdb, began to collect plant lncRNAs. Still, there are
many plant lncRNAs remain to be annotated. Therefore, it is
desirable to develop a computational method for the accurate
identification of plant lncRNAs.

To our knowledge, two methods have been proposed for
plant lncRNA identification: PLncPRO [13] and PLIT [14].
PLncPRO used some software, such as BLASTX to extract
features. Based on a total of 71-dimensional features,
PLncPRO then employed the random forest algorithm for
RNA identification. Using PLncPRO models, they discov-
ered some high-coincidence lncRNAs in rice and chickpea
under abiotic stress conditions. In PLIT, seven ORF and
sequence-based features, and six codon bias features were
extracted from training data. PLIT adopted a feature selection
process that combined the least absolute shrinkage and selec-
tion operator (LASSO) with iterative random forests (IRF) to
identify a list of optimal features. After that, a random forest
classifier was used for plant lncRNA identification. More
comprehensive studies are in demand for the plant lncRNA
identification.

In this work, we present a plant lncRNA identification
method ItLnc-BXE, based on comprehensive sequence fea-
tures and ensemble learning strategy. We collect 23 types of
features that fall into four categories, and the ReliefF-GA
feature selection method is adopted to determine an optimal
feature subset for a specific species. The subset is used to
represent lncRNAs. After that, we construct the ItLnc-BXE
model. We compile n data subsets by sampling data from
the training dataset and accordingly build n base learners
using extreme gradient boosting (XGBoost). Base learners
are then combined using LR to develop the final ItLnc-BXE
model. The performance of ItLnc-BXE models are eval-
uated on the datasets of six plant species with different
lncRNAs/protein-coding transcripts (pcts) ratios. When com-
pared with PLIT and PLncPRO, ItLnc-BXE produces better
results, which results from three aspects: (1) comprehensive
features provide diverse information about plant lncRNAs,
(2) ReliefF-GA method reduces redundancy among features

and (3) ensemble learning strategy utilizes strengths from
base learners.

Next, we summarize the contributions of the
manuscript:

(1) Animal and human long non-coding RNAs
(lncRNAs) have been widely annotated, while plant lncRNAs
are still understudied. Therefore, we present a novel method
ItLnc-BXE for plant lncRNA identification, which yields
better performance than art-of-the-state methods.

(2)We collect comprehensive plant sequence features from
previous works.

(3) We adopt a novel feature selection method ReliefF-GA
to generate the optimal feature set.

(4) Ensemble learning strategy is applied to improve the
performance and robustness of models.

(5) We discuss features after feature selection and find
some shared features.

(6) We also conduct cross-species identification experi-
ments and find we can train ItLnc-BXE models based on the
higher plant lncRNAs to predict lower plant lncRNAs.

II. MATERIALS AND METHODS
A. DATASETS
Here, we collect plant transcripts from three databases,
i.e., CANTATAdb version 2.0 [15], Ensembl Plants [16]
and RNAcentral [17]. CANTATAdb is an authoritative
and comprehensive database of computationally identified
plant lncRNAs, and currently contains 239,631 lncRNAs
from 39 species. LncRNAs in it are qualified because
CANTATAdb specifically removes transcripts shorter than
200nt in the lncRNA discovery process, such as microRNAs
and siRNAs. All lncRNAs of six plant species (Arabidop-
sis thaliana, Solanum tuberosum, Oryza sativa, Hordeum
vulgare, Physcomitrella patens, Chlamydomonas reinhardtii)
are downloaded from CANTATAdb, and used as positive
instances. The cDNAs in Ensembl Plants are sequences for
protein-coding genes, which are the contrary to non-coding
RNAs. Thus, we download the cDNA sequences of all
six species as pcts or negative data from Ensembl Plants,
which is a database containing highly credible annotation
of plant genomes. As the pcts of Hordeum vulgare and
Physcomitrella patens are much more than those of other
species, we randomly select 60000 Hordeum vulgare pcts
and 20000 Physcomitrella patens pcts. For the other four
species, all pcts in the database are downloaded. In addition,
the lengths of lncRNAs and pcts that we collect are in the
same range, to guarantee the robustness of the identification.
To construct reliable datasets, we take three steps to prepro-
cess raw data.
Step1. removing invalid sequences
First, we remove lncRNAs and pcts that lack annotations

from raw data. Second, pcts in raw data may also include non-
coding RNAs, such as lncRNAs, rRNAs, and tRNAs, and we
remove these non-coding RNAs, according to the annotations
in RNAcentral.
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TABLE 1. Benchmark plant transcript datasets of six species.

Step2. removing redundant sequences
CD-hit [18] is a widely used program for clustering pro-

tein or nucleic acid sequences with high efficiency, helping
remove the highly similar sequences [19]. We use CD-hit as a
filter to remove redundant lncRNAs and pcts with a similarity
threshold of 80%.
Step3. constructing datasets
For each species, we randomly choose 10% of the data as

the independent dataset for feature selection [20]. The rest,
90% of data is taken as the main dataset for cross-validation.
Finally, the benchmark datasets of six species are constructed
(Table 1).

For each species, we take all lncRNAs as positive
instances, and randomly select pcts as negative instances with
the ratios (lncRNAs/ pcts) of 1:1, 1:3 and 1:5, respectively.

B. FEATURE EXTRACTION
As obtaining information directly from RNA sequences is
difficult, we consider transferring each sequence into a vec-
tor of digital features. So, we collect comprehensive plant
lncRNA features from the published scientific literature [10,
11, 21]. All collected features are classified into four cate-
gories: sequence-based features, ORF-based features, codon-
based features, and alignment-based features. All features are
summarized (Table 2), and we will give a brief description of
each feature.

1) SEQUENCE-BASED FEATURES
Sequence-based features are directly extracted from tran-
scripts or indirectly calculated by them.

Transcript length (‘Length’) is one of themost fundamental
features used to distinguish lncRNAs from pcts as lncRNAs’
length exceeding 200 nucleotides. GC content is the per-
centage of guanine (G) and cytosine (C) in four kinds of
nitrogenous bases, including adenine (A) and thymine (T).
The study [13] reported that the GC contents in lncRNAs
are less rich than those in pcts. Hexamer score (‘Hexamer’)
[21] is calculated based on the occurrence of hexamer along

TABLE 2. Summary of features in this work.

a sequence. Fickett score (‘Fickett’) is a simple linguistic fea-
ture that distinguishes protein-coding from non-coding tran-
scripts according to the combinational effect of nucleotide
composition and codon usage bias. Composition, transition
and distribution features (‘CTD’) consider the nucleotide
composition (descriptor ‘C’), transition (descriptor ‘T’)
and distribution (descriptor ‘D’) of RNA sequences [21].
‘C’ describes the content of four nucleotides among the
sequence. ‘T’ represents the percent frequency with the con-
version of four nucleotides between adjacent positions, which
means the content of AG (or GA, vice versa), AC, TG,
TC and GC along a sequence. ‘D’ indicates five relevant
positions (0, 25%, 50%, 75%, 100%) among the transcripts
of four nucleotides. Isoelectric point (‘PI’) [10] is the theo-
retical isoelectric point of a predicted peptide calculated by
the ProtParam module in BioPython. The grand average of
hydropathy (‘GRAVY’) [10] value means the grand average
of hydropathicity, a predicted peptide of which is calculated
by the ProtParam module in BioPython. Instability provides
an estimate of the stability of the protein in a test tube with a
weight value of instability to different dipeptides.

2) ORF-BASED FEATURES
ORF is a portion of a gene sequence that contains a sequence
of bases and could potentially encode a protein. ORF features
are fundamental ones to distinguish lncRNA from pcts.

ORF length is the maximum length of the ORF. Stud-
ies [11], [22] revealed that protein-coding genes usually have
long ORFs (>100 codons), while putative long ORFs in
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non-coding genes can hardly be observed. ORF integrity
indicates whether the ORF begins with a start codon and
ends with an in-frame stop codon [23]. ORF coverage is
the ratio of ORF length to transcript length. It is reported
that ORF coverage is much lower in non-coding RNAs than
that in protein-coding RNAs [11]. ORF score (FF-score),
is extracted using Framefinder software [13].

3) CODON-BASED FEATURES
Codon-based features are related to the different usage fre-
quencies of codons that occur in the pcts as one specific
amino acid usually can be translated from several synony-
mous codons.

The frequency of the optimal codons (‘FOP’) [14] is the
ratio of the number of optimal codons to a total number of
synonymous codons. The codon usage bias (‘CUB’) [14] is
the index that estimates the differences of codon bias between
test set sequences and reference set sequences. The strength
of relative codon bias (‘RCBS’) [24] is an overall score of a
gene that indicates the influence of RCB of each codon. RCB
reflects the level of gene expression. The weighted sum of
relative entropy (‘EW’) [14] evaluates the degree of devia-
tion from equal codon usage. The synonymous codon usage
order (‘SCUO’) [14] is also a measure related to entropy-
based codon bias. The relative synonymous codon usage
(‘RSCU’) [25] refers to the relationship between observed
codon frequencies and the number of times codon. We also
calculated frequencies of 64 trimers (‘Trimers’) among A, C,
G and T to capture potential codon usage bias.

4) ALIGNMENT-BASED FEATURES
Alignment-based features are obtained by aligning all the
sequences to curated sequences to observe the similarity
between unpredicted transcripts and labeled ones. Differ-
ent from the intrinsic properties of each transcript itself,
alignment-based features are necessary.

BLAST is a useful tool for finding regions of similarity
between nucleotide or protein sequences [26]. The basic idea
of BLAST is to align the query sequence with sequences in
a database. Then it generates satisfying aligned word pairs,
and each pair is called a ‘hit’. We use the BLAST program to
assess whether lncRNAs have significant similarity to pcts in
the SWISS-PROT database [27]. The following four features
are extracted by parsing the BLAST outputs [13]. The number
of hits is as a fundamental indicator in BLAST, and the
number of hits for pcts is expected higher than that for lncR-
NAs. However, many sequences show random unimportant
matches to a BLAST database, so the quality of the hit is con-
sidered using three more features: significance score, total bit
score, and frame entropy. The significance score establishes
an intuitive relationship between the e-value in BLAST and
the quality of hits of a given sequence. The total bit score
simply sums up all the bit scores which are a normalized
measure evolved from raw alignment score in BLAST. Frame
entropy indicates the way of the hits distributed in different
reading frames.

C. FEATURE SELECTION
Feature selection is a process of selecting the most discrim-
inative features from a set of features [28]. This method can
be used to identify and remove redundant features that do
not contribute to or even decrease the accuracy of predictive
models. There are two types of commonly used feature selec-
tion methods: filter methods and wrapper methods. How-
ever, filter methods ignore dependencies among features,
whereas wrapper methods are inefficient in time cost [14].
Here, we adopt a novel feature selection method [29], called
ReliefF-GA, by combining the ReliefF [30] with the Genetic
Algorithm (GA) [31]. Integration of ReliefF and GA over-
comes the weaknesses of a single filter or wrapper method,
thus lead to an effective selection scheme.

First, the ReliefF is applied to remove features that are
not contributive or even counterproductive to classification.
ReliefF is the extension of the Relief algorithm [32]. It is more
robust and can deal with incomplete data compared with the
original Relief algorithm. Similar to Relief, the key idea of
the ReliefF is to estimate the quality of features according to
how well their values distinguish among sequences that are
near to each other. After performing the ReliefF algorithm,
features with an importance score less than zero are removed
because the threshold of zero implies whether this feature is
contributed.

Next, we perform GA to obtain the optimal feature sub-
set for each species. GA is a heuristic optimization method
inspired by natural evolution. For feature selection by GA,
it starts with a set of candidate individuals called the popula-
tion. Each individual, also a combination of selected features
in the population indicates a solution to the selection problem.
With the initial population, it starts iterations to produce
better approximations. In each generation, individuals in the
populationmay undergo crossovers, mutations and then being
selected according to their levels of fitness. To simplify our
problems, binary encoding is adopted to represent the feature
combination. A bit of ‘1’ means the corresponding feature
is selected, whereas ‘0’ indicates not. Hence, a solution is
converted into a binary string with length equal to the total
number of features. We initialize the first generation based
on feature candidates produced by ReliefF. For each combi-
nation in the population, the XGBoost classifier is built on
the training set and tested on the test set. After that, we con-
sider models’ predictive AUC score to represent the level
of fitness of corresponding feature combinations. Eventually,
GA obtains the optimal feature subset after a series of iterative
computations.

D. ENSEMBLE LEARNER CONSTRUCTION
In machine learning, an ensemble learner consists of sev-
eral base learners, and each base learner will have its own
classification strengths, resulting in stronger and more accu-
rate predictions than individual base learners, and ensemble
models have many successful applications in bioinformat-
ics [33]–[38]. The bagging algorithm is a commonly used
ensemble strategy [39]. It has an effective application of
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FIGURE 1. Workflow of ItLnc-BXE that involves the following steps:
construction of benchmark dataset, extraction of four categories of
features and feature selection, and construction of ItLnc-BXE model.
(1) We exclude wrongly annotated sequences from raw data and then use
CD-Hit to remove similar sequences. Subsequently, data are divided into
main datasets and independent datasets. (2) We collect 175-dimensional
features from four categories and adopt ReliefF-GA to select optimal
features. This process is based on independent datasets. (3) Sequences in
the main datasets are transformed into feature vectors according to
optimal features in the step (2), on which ItLnc-BXE models are
constructed. We sample training datasets into n subsets, based on which
n XGBoost base learners are built. Then, all learners are combined using
logistic regression.

reducing the variance and improving the classification ability
of the base learners in supervised learning. Here, we pro-
pose an ensemble model for the plant lncRNA identification
using a bagging algorithm. First, we use the bootstrapping
algorithm to generate multiple data subsets from the training
dataset. The XGBoost is a scalable tree boosting system that
has superior performance in supervised learning [9], [40],
and we apply it to build multiple base learners based on data
subsets. How to combine these base learners is critical and
challenging work. Popular ways, such as arithmetic mean
and majority voting are usually utilized. We adopt an LR
meta-learner to reduce the information redundancy between
base learners. The LRmeta-learner uses the outputs from base
learners as inputs, and then produce a score indicating the
probability of being a plant lncRNA.

E. WORKFLOW OF ItLnc-BXE
A workflow describes the process of ItLnc-BXE (Figure 1).
First, we construct the datasets for each species, including
main datasets and independent datasets, and they have no
overlap. Next, the feature selection is implemented for each
species using the independent datasets, and the optimal fea-
ture subsets are determined for the model construction. After
that, we perform cross-validation experiments based on the
main datasets.

In each fold of cross-validation, we divide training data into
two parts: 7/10 of data for training base learners and 3/10 of

data for the LR learner. Using the bootstrapping algorithm, n
data subsets are sampled from 7/10 of training data, based on
which nXGBoost learners are trained. These base leaners are
applied to the prediction of the rest 3/10 of data, the results of
which are regarded as training data for the LR learner. In this
way, the ItLnc-BXE model is constructed.

III. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTING
We evaluate all ItLnc-BXE models on the datasets of six
species: Arabidopsis thaliana (A), Solanum tuberosum (S),
Oryza sativa (O), Hordeum vulgare (H), Physcomitrella
patens (P) and Chlamydomonas reinhardtii (C).

As ItLnc-BXE samples sub-datasets from training data
and build several base learners on them, the number of
base learners used in ensemble models ought to be deter-
mined. We perform 10-fold cross-validation to evaluate
ItLnc-BXE models with different numbers of base learners
using the independent datasets and determine to use five
base learners for ItLnc-BXE according to the experimental
results.

10-fold cross-validation is performed on the main sets
to evaluate the performance of ItLnc-BXE and compared
methods. We adopt popular evaluation metrics, including
the area under the ROC curve (AUC), the area under the
precision-recall curve (AUPR), accuracy (ACC), sensitiv-
ity (SN), specificity (SP), precision (PRE), f1-score and
Matthews correlation coefficient (MCC).

B. FEATURE DISCUSSION
Features are critical for distinguishing lncRNAs from pcts,
thus we consider a variety of features for the plant lncRNA
identification. However, these features may make different
contributions to the identification of lncRNAs from different
species, and some are redundant. To make analysis, we apply
the ReliefF method to score the importance of collected
features, and we obtain scores of all features for each species.
Then, we calculate the Pearson correlation coefficient (PCC)
between scores of all features for every two species (Table 3).
PCC is used to measure the correlation of the feature ranking
lists for different species. The results show that some species
have relatively high correlations (>0.8) and others have com-
parably low correlations (<0.6), indicating that the species
have the preference for features. Therefore, it is necessary to
determine optimal feature subsets from candidates to build
species-specific models.

We adopt ReliefF-GA to select optimal feature subsets
for the model construction. Since there are six species,
we implement the feature selection using their indepen-
dent datasets respectively. The results show that ReliefF-GA
greatly reduces 175-dimensional features for all species to
lower dimensions (‘‘A’’: 89, ‘‘S’’: 93, ‘‘O’’: 87, ‘‘H’’: 95,
‘‘P’’: 90, ‘‘C’’: 88), and refer to Supplementary Table S0 for
detail. However, the optimal feature subsets are different
for each species. To explore commonly used features for
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TABLE 3. Pearson correlation coefficients (PCCs) of ReliefF importance
score between every two species.

FIGURE 2. Heatmap of Jaccard similarity coefficients (JSCs) between
every two species. JSC ranges from 0 to 1, and the bigger JSC means two
species share more features.

two species, we respectively calculated the Jaccard similarity
coefficient (JSC). JSC is defined as follows:

J (S1, S2) =

∣∣S1⋂ S2
∣∣∣∣S1⋃ S2
∣∣

where S1 and S2 are two sets,
∣∣S1⋂ S2

∣∣ means the card of
the intersection and

∣∣S1⋃ S2
∣∣ means the card of the union.

JSC indicates the similarity between the two sets. Then,
we calculate JSC for every two species (Figure 2). The results
show that JSCs range from 0.32 to 0.40, which means that
these species share some features but use more different
features. Further, we pay attention to those commonly used
features. We find several features (Instability, one dimension
from CTD, two from RSCU and three from Trimers) are
shared by six species, indicating that these features are pre-
ferred in the plant lncRNA identification. Moreover, some
features (Fop, Frame Entropy, three dimensions from CTD,
four from Trimers and eight from RSCU) are shared by five
species at most, indicating that they can be commonly used
in plant lncRNA identification. For more commonly used
features share by more than two species, refer to Supple-
mentary Table S1. We also calculate the percentages about
how many new features (CTD, PI, GRAVY, Instability, and
ORF-integrity) are included in the optimal feature subsets.
For species ‘‘A’’, ‘‘S’’, ‘‘O’’, ‘‘H’’, ‘‘P’’ and ‘‘C’’, the results

are 60%, 80%, 60%, 60%, 60%, and 80% respectively. To be
more specific, CTD is included in all species; PI is included
in ‘‘H’’ and ‘‘C’’; GRAVY is included in ‘‘A’’, ‘‘S’’, ‘‘P’’
and ‘‘C’’; Instability is included in all species; ORF-integrity
is included in ‘‘S’’ and ‘‘O’’. As more than half of newly
added features are involved in the final model of all species,
we consider these features are useful.

C. COMPARISON WITH OTHER METHODS
Two machine learning methods: PLIT and PLncPRO have
been presented to the plant lncRNA identification, and we
adopt them for comparison. Source codes of PLIT and
PLncPRO are publicly available, so we can correctly build
PLIT and PLncPRO models, and then compare the perfor-
mance of ItLnc-BXE with them on six different species
(‘‘A’’, ‘‘S’’, ‘‘O’’, ‘‘H’’, ‘‘P’’, ‘‘C’’). For each species,
we consider the datasets with different lncRNAs/pcts ratios
(1:1, 1:3 and 1:5). All prediction models are evaluated by
using 10-fold cross-validation.

Here, we take the results on species ‘‘A’’ for analysis
(see in Table 4). ItLnc-BXE produces better AUC scores
than PLIT and PLncPRO in terms of the AUC scores for
all species, and improvements in accuracy, SP, f1-score,
MCC, and PRE are also observed. Moreover, we explore
how the difference between lncRNAs/pcts ratios in datasets
influences the performance of prediction models. Results
show that ItLnc-BXE produces similarly AUC scores and
accuracy on datasets with different ratios, and the conclusion
can also be drawn from the results of compared methods.
Further, we calculate standard deviations of AUC scores of
each model on these datasets, and it seems that ItLnc-BXE
has lower standard deviations (0.017) than PLIT (0.273) and
PLncPRO (0.071), indicating that ItLnc-BXE is robust to the
data imbalance.

The results for all species are included in Supplementary
Table S2-S9. In general, ItLnc-BXE produces better results
than PLIT and PLncPRO on the benchmark datasets of all
six species. The superiority of ItLnc-BXE is owing to sev-
eral factors. First, we consider a variety of representative
sequence features that have proved to be useful in lncRNA
identification. They bring enrich information for building
high-accuracy models. Second, the feature selection method
helps to determine the most informative features and reduce
redundancy. Third, the ensemble learning strategy makes
use of the strengths of base learners, thus leads to robust
performance.

D. PERFORMANCE OF CROSS-SPECIES IDENTIFICATION
As discussed above, we can build species-specific ItLnc-BXE
models based on datasets of species, and it is very interesting
to examine the performance of ItLnc-BXE in cross-species
identification. We conduct the following experiments based
on the datasets of six species with ratio 1:1, and all models are
built on themain sets. It is important to point out that, in cross-
species identification between every two species, we test a
specific model based on all data (main set and independent
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TABLE 4. Performance comparison between ItLnc-BXE and compared methods on species Arabidopsis Thaliana.

FIGURE 3. Performance comparison (AUC scores) of ItLnc-BXE in
cross-species lncRNA identification. We train species-specific models on
training data of six species and test them on test data of six species
respectively. ‘‘Model_A’’ means the model built on data of species ‘‘A’’. ‘‘A’’,
‘‘S’’, ‘‘O’’, ‘‘H’’, ‘‘P’’ and ‘‘C’’ are abbreviations of six species and they are
summarized in Table 1. (a) Predicting results of dicots-based models on
data of six species, (b) results of monocots-based model and (c) results of
lower plant-based models. (d) Sum of AUC scores of six species.

set) of another species. As for species self-identification,
we just take the results of 10-fold cross-validation based on
the main sets.

To present results, we draw radar and bar figures
(Figure 3). Six plant species can be classified into four cat-
egories: dicots (Arabidopsis thaliana and Solanum tubero-
sum), monocots (Oryza sativa and Hordeum vulgare),
the moss (Physcomitrella patens) and the alga (Chlamy-
domonas reinhardtii). Thus, the species in a category are
visualized in a sub-figure for comparison. In general, ItLnc-
BXE produces AUCs ranging from 88.60% to 99.27%. The
performance under other metrics are also provided in Supple-
mentary Table S10 - S17.

ItLnc-BXE models constructed on dicots produce rela-
tively high AUCs on the moss (96.27%-96.38%) and the
alga (95.20%-99.13%), but comparably low on monocots
(89.91%-93.64%) (Figure 3a). Dicots may conserve plenty of

biological commonness with mosses and algae in the process
of evolution. More specifically, some lncRNAs in mosses
and algae may have the same composition and function as
those in dicots, which leads to good prediction performance
of dicots-based models on the moss and the alga. Species
‘A’ and ‘S’ are both dicots, and they produce similar and
very high AUCs in cross-species identification. This indicates
lncRNAs in different dicot species are closely similar to each
other.

Similarly, monocots models produce relatively high AUCs
on both dicots (95.82%-98.61%), the moss (93.31%-95.73%)
and the alga (97.77%-98.33%) (Figure 3b). This also means
lncRNAs in monocots conserve close similarity to those
in dicots, mosses, and algae. However, there seems to be
a contradiction. As mentioned before, dicots-based mod-
els produce comparably low AUCs on monocots, indicat-
ing lncRNAs in dicots are not very similar to those in
monocots. This is actually explicable, probably because
lncRNAs in dicots are less abundant than those in mono-
cots. As a lack of information on monocot lncRNAs,
dicots-based models will not perform equally well on
monocots. Besides, within monocots, the AUCs between
species ‘O’ and ‘H’ do not exceed 92.90%. We suspect
that although monocots root from similar ancestors, they
may gradually obtain specific biological properties, result-
ing in one always has defects to identify lncRNAs of other
monocots.

Since the moss and the alga are both lower plants, we put
them together for analysis (Figure 3c). Themoss-basedmodel
produces relatively high AUCs on dicots (95.87%-98.54%)
and the alga (97.69%), but comparably low AUCs on mono-
cots (92.49%-92.79%). This demonstrates again that lncRNA
properties in mosses are similar to those in dicots and algae,
and lncRNAs in monocots are possibly far more abun-
dant than those in mosses. The alga-based model produces
comparably low AUCs on both monocots (89.79%-90.17%)
and the moss (88.60%) and ranging AUCs on dicots
(91.25%-96.32%). It is probably because the alga owns fewer
similarities to other plants.
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From another angle, we sum up the AUCs of ItLnc-BXE
models for each tested species (Figure 3d). The results show
that dicots produce the highest sums (575%-589%), the moss
and the alga produce relatively high sums (568%-587%), and
monocots produce comparably low sums (553%-555%). The
AUC sums can describe how easy lncRNAs of one species
are predicted by ItLnc-BXE models based on other species.
Therefore, lncRNAs of dicots, mosses, and algae are more
predictable than monocots; even if lack of data of lower
plants, we can utilize dicots or monocots data to build models
to identify lower plant lncRNAs.

IV. CONCLUSION
In this work, we propose an ItLnc-BXE based on the ensem-
ble learning and bagging algorithm to identify plant lncR-
NAs. ItLnc-BXE makes use of diverse features that have
been proven to be useful in lncRNA identification or related
works, and the feature selection method is used to select
the optimal feature subset. The frame of ensemble learn-
ing further improves performance. ItLnc-BXE constructs
species-specific models on datasets of six plants respectively,
and cross-validation experiments show that these models
produce good performance. When compared with PLIT and
PLncPRO, ItLnc-BXE yields better results on datasets of six
species. ItLnc-BXE is a promising method for identifying
lncRNAs from transcripts.

The studies on the sequence features reveal that plant
lncRNAs in different spices have a preference for different
features but still share some features.Moreover, the studies on
the cross-species lncRNA identification of six species suggest
that: (1) cross-species models achieve good performance, (2)
lncRNAs in dicots, mosses and algae are easy to be identified
using models based on other species. Therefore, we can build
ItLnc-BXE models of species with abundant data sources to
identify lncRNAs in species lack of data.
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