
Received February 20, 2020, accepted March 21, 2020, date of publication April 2, 2020, date of current version June 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985036

Utilizing Artificial Neural Network for Prediction
of Occupants Thermal Comfort: A Case Study of
a Test Room Fitted With a Thermoelectric
Air-Conditioning System
KASHIF IRSHAD 1, ASIF IRSHAD KHAN2, (Member, IEEE), SAYED AMEENUDDIN IRFAN 3,
MD. MOTTAHIR ALAM 4, (Member, IEEE), ABDULMOHSEN ALMALAWI 2,
AND MD. HASAN ZAHIR1
1Center of Research Excellence in Renewable Energy (CoRERE), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
4Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Corresponding author: Kashif Irsahd (kashif.irshad@kfupm.edu.sa)

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under
Grant DF-867-130-1441.

ABSTRACT Subjective analysis of thermal comfort of occupants relates to the recording of the level of
satisfaction or dissatisfaction of occupants with regard to indoor environmental conditions on a scale which
ranges from −5 to +5. This requires recruitment of subjects and matching for gender, age etc. In this study,
we have tried to predict the thermal comfort of occupants by observing their real behavior inside the test room
fittedwith a novel thermoelectric air duct (TE-AD) cooling system rather than a conventional air conditioning
system. Firstly, real experimental data were collected for more than two months from the test room equipped
with the TE-AD cooling system operated at an input power supply of 6 A and 5 V. After that, the ANN
model was developed based on the Levenberg-Marquardt algorithm by taking experimental parameters such
as air temperature, relative humidity, globe temperature, wind speed, metabolic rate, and clothing value as
model input. The ANN model is optimized by developing different models with different data points as a
starting input in the training and validation process. The neuron optimization has been carried out in these
models to minimize the mean square error (MSE) for the ANNmodel. The result shows that among the three
models M1, M2, and M3, the optimum predictive mean value (PMV) was obtained from M1 at 10 neurons
with MSE of 0.07956, while for predicted percentage dissatisfied (PPD), M3 gives optimum accuracy at
10 neurons with MSE value of 5.1789. The ANN model is then generalized to predict thermal comfort for
one week and then for one month. Finally, all the model results were validated with the experimental data.

INDEX TERMS Artificial neural network, indoor temperature, relative humidity, thermal comfort, thermo-
electric air duct.

I. INTRODUCTION
Building indoor comfort conditions depend upon indoor
relative humidity percentage (RH%) and temperature which
must be finely adjusted to optimize building energy consump-
tion [1], [2]. Many models and indices have been researched
and developed so far for measuring accurate indoor ther-
mal comforts such as predictive mean value (PMV) [3],
index of thermal stress [4], predicted percentage dissatisfied
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(PPD) [5], and effective temperature [6]. The leading method
among them is either decided by using a heat balance stan-
dard, which relates to heat exchange between the environment
and occupants [7] or obtained from the test field data [8], [9].
For predicting indoor thermal comfort of occupants, PMV
and PPD have been the most commonly used methods.
However, previous researches suggest that the method of
heat balance used for the prediction of indoor comfort was
insufficient due to the variation of adaptation in humans
in different environments [10]. So, human adaptation was
introduced in the thermal comfort assessment, and the model
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was named the ‘‘adaptive thermal comfort model’’ [11]. This
model involved the psychological, behavioral, and physio-
logical assessment of individuals by evaluating their rating
on a grade scale [12], [13]. Additionally, the greater part of
the existing thermal comfort model neglects the procedures
that guide occupants’ thermal sensation to thermal comfort
that was actually experienced [14]. Numerous models have
typified a basic presumption that thermal neutrality (for
example, thermal sensation with neutral level or ’0’) is the
anticipated condition. Notwithstanding, the fulfillment of
thermal neutrality doesn’t prompt the most elevated thermal
comfort assessment, as individuals may be inclined toward
surroundings that are not neutral thermally [15]. Individuals
in cold atmospheres incline toward somewhat hotter than
neutral, while individuals in hot atmospheres lean toward
marginally cooler than neutral [16]. There were also chances
of overestimation of discomfort prediction by using thermal
sensation votes [17]. Therefore, alternative models such as a
data-driven or inverse model were used in prediction, as these
models don’t require an understanding of the physics of the
system. These models also show inaccuracy in prediction for
large systems such as the HVAC system implemented on the
buildings. Due to the many operational parts of the HVAC
system, testing of data becomes difficult.

Thus, among all the discussed techniques, the artificial
neural network (ANN) is the most preferred technique
because of its high accuracy in showing nonlinear frame-
works contrasted with different techniques [18], [19]. ANN
mirrors the human mind by utilizing a few neurons in
numerous layers [20]. Loads of these neurons are commonly
prepared by utilizing managed learning strategies. Properly
prepared ANN can elevate any nonlinear procedure to a high
level of precision [21]. Therefore, the application of ANN is
now extended to the prediction of thermal comfort based on
indoor climatic conditions such as air and globe temperature,
RH%, and wind speed, as well as physiological factors such
as metabolic rate and clothing value as input variables [22].
This technique was also used to predict subject behavior by
adjusting clothing value and thermostat points that will affect
comfort [23].

Chan and Chau [24] developed an ANN model for predic-
tion of thermal comfort of urban parks located in Hong Kong
for both winter and summer climatic conditions. The result
shows that apart from thermal sensation, air temperature and
solar radiation were dominant factors in changing the sub-
ject’s comfort perception. Deng and Chen [25] investigated
the effect of occupant adjustment in clothing and thermostat
value on the energy consumption of buildings equipped with
HVAC systems. The simulation result shows that adjust-
ment of the above parameters by the occupants could lead
to 30% energy consumption reduction by controlling ther-
mostat and 70% by controlling occupancy. Jin et al. [26]
and Bui et al. [27] used the ANN model for developing an
energy-optimized model that recommends optimum power
consumption, cooling, and heating loads for effective control
of indoor temperature and relative humidity. Tian et al. [28]

andKamar et al. [29] developed anANNmodel for prediction
of refrigerant mass flow rate, cooling effect, heat rejection
from the condenser, energy consumption, capacity of the
refrigeration system, and COP. Muñoz et al. [30] developed
an ANNmodel for prediction and control of indoor RH% and
temperature. The result shows that ANN model performance
in predicting the behavior of RH% and the temperature was
in accordance with the experimental results.

As per our literature review, few studies have focused on
the parametric issue of implementation of the thermoelec-
tric module (TEMs); Luo et al. [31] developed a dynamic
model of a thermoelectric radiant panel by incorporating
ANN and analytical system modeling. The results of this
study were centered only on parametric variables and found
the optimum thickness of insulation and aluminum panels to
be 40-50 mm and 1-2 mm, respectively. The ANN model
considering the TEM geometrical shape factor was studied
by Derebasi et al. [32]. Further, the ANN and thermal model
of the photovoltaic thermal integrated thermoelectric cooler
(PVT-TEC) collector was developed by Dimri et al. [33].
Dimri et al.’s [33] investigation also centered on parametric
issues and found that the thermal model outcome was in
agreement with the ANN model.

Thus, from the critical literature review, it was concluded
that both numerical and analytical approaches in solving
real system configuration required rigorous calculation and
technical experience [34]. Therefore, for solving complex
real experimental problems that involve non-linear variables,
especially occupants’ comfort score, and space cooling rat-
ing, the ANNmodel is used for forecasting the desired results
of the system based on training data. In this paper, an ANN
technique was applied for the following reasons: 1) it is
simpler to implement and performs better at more complex
temperature, relative humidity, and comfort data-sets; 2) it
works well on parameters such as metabolic rates, indoor
temperature, and RH% that introduce a high degree of non-
linearity; and 3) it is suitable for real-time prediction applica-
tions in a test room equipped with TE-AD system where new
training samples can be added or removed without extensive
retraining. The significant contributions of this paper are:

a) Use of a novel thermoelectric air-cooling system
instead of a conventional air conditioner system.

b) The ANNmodel of the test roomwas cooled by a novel
thermoelectric air-cooling system.

c) The ANN model that can predict the thermal comfort
of occupants was based on an exhaustive experimental
study.

II. METHODOLOGY
A. CLIMATIC CONDITIONS
The experimental test room equipped with the TE-AD cool-
ing system was located in Seri Iskandar, Perak, Malaysia.
This city is located at coordinates 4.3836◦ N, 100.9714◦ E.
The weather data was collected from weather stations
(Davis Vantage Pro 2 wireless recorder) from April 2018 to
June 2018. One month of data for outdoor temperature,
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FIGURE 1. Hourly average temperature, relative humidity and solar radiation data for May 2018.

percentage of relative humidity, and solar radiation was pre-
sented in Figure 1. The average ambient temperature for
May 2018 was 27.96◦C; while the maximum temperature is
34.6◦C and the minimum temperature is 22◦C. The average
relative humidity in this period was 78.25%, with a max-
imum value of 100% and a minimum value of 59%. The
average solar radiation during this period was 185.17 W/m2,
with a maximum value of 791 W/m2 and a minimum value
of 0 W/m2.
Similarly, the hourly averages of indoor temperature,

relative humidity, occupants’ metabolic rates, and clothing
insulation are presented in Figure 2. The average indoor
temperature during May 2018 was 24.3◦C, with a maximum
value of 32.2◦C and a minimum value of 19.02◦C. The
average indoor RH% during this period was 58.48%, with
a maximum value of 79% and a minimum value of 40%.
Similarly, average clothing insulation and metabolic rate
during this phase were 6.08 clo and 59.83 W/m2.

B. EXPERIMENTAL PROCEDURE
1) SUBJECTS
Table 1 illustrates the anthropometric data for a set of 10 male
and 10 female Malaysian nationals having an average body
surface area of 1.62 m2. The standard body surface area

TABLE 1. Anthropometric data of subjects.

proportion for a person is 1.80 m2 worldwide. During the
experiment, all the participants were requested to dress up in
regular summer clothes (0.5 clo).

The mandatory condition for the experiment was discussed
with the participants to familiarize them with the test proce-
dure. The experiment permitted the subjects to bend back or
forward only. They were not permitted to move from their
positions or jump.

2) EXPERIMENTAL ANALYSIS OF THERMAL COMFORT
Based on previous experimental observation as reported in
the article [35], the thermal comfort data was collected
at optimum input power supply to the TE-AD systems
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FIGURE 2. Hourly average indoor temperature, relative humidity, metabolic rate and clothing value for May 2018.

of 6A and i5V. As per ISO 7730 [36], all parameters such as
radiant temperature, indoor temperature, and relative humid-
ity, clothing value, and metabolic rate were recorded. The
TE-AD system was operated for 12 hours for all possible
ranges of input current. The experiment required participants
to sit in the test room for 15 minutes before the start of the
test to adjust them to the environment. During the 12-hour
test, the participants were given a break of 15 minutes after
every hour where they were required to relax, stand up, and
move around the test room. The collected data consists of
subjective evaluation and physical parameters’ estimation.
The physical assessment aimed to collect climatic parameters
such as global temperature, air temperature, airspeed, humid-
ity, and radiation. Type K thermocouples with data loggers
were fitted at several positions in the test room, and TE-AD
arrangement to measure the temperature was positioned as
illustrated in Figure 3. Furthermore, a Globe thermometer
was employed to estimate mean radiant temperature (MRT),
which is a measure of the joint impact of air temperature,
radiation, and air velocity on human comfort. All the instru-
ments were placed at 7:30 am, and the data gathering started
at 8 am. All sensor probes were positioned at 1.00m above the
ground alongside the respondents to meet the requirement of
the research protocol of Class II. A compact solar meter was
utilized to estimate the solar radiation flux density (W/m2)
during the operation of the TE-AD arrangement. The data
from different instruments were gathered at every interval

of 1 minute from 8 am to 8 pm. A detailed questionnaire was
developed in every test session, as stated in the article [35].
Various measures of human comfort like feelings, subjective
sensation, and views of occupants were analyzed through
careful examination of completed surveys.

3) DATA UNCERTAINTY ANALYSIS
The uncertainty (V) in the measured value caused due to pre-
cision errors (eprecision) and biases (ebias) was calculated. The
precision error is linked to the repeatability of the estimation,
whereas bias error relates to the accuracy and calibration of
the measuring devices. The investigation was conducted in
outdoor conditions for a limited duration, which restricted
obtaining very precise estimations for specific weather con-
ditions. For this reason, the investigation and estimations
were carried out numerous times to calculate the precision
error of different variables. Accordingly, the uncertainties in
the estimations were calculated simply based on bias error.
Kline and Mcclintock [37] established a technique to deter-
mine uncertainty because of bias error by asserting that for
n independent normally distributed variables vi, R is a linear
function described by

R = R (v1, v2, v3, . . . . . . . . . vn) (1)

The uncertainty in R relates to the uncertainties in individ-
ual variables, which can be calculated using the following
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FIGURE 3. Subjective analysis of thermal comfort.

relation known as the second-power equation.

δR=
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)2
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(
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)2

+· · · . . .+

(
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] 1

2
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4) ARTIFICIAL NEURAL NETWORK MODEL DEVELOPMENT
The neural network structure comprises of the architecture
of network and number of hidden neurons and layers. The
multilayer perceptron (MLP) structure was the most com-
monly used prediction model in ANN architecture [38], [39].
It has been concluded that an MLP model with one hidden
layer holds an adequate quantity of neurons for estimating any
function with ideal exactness [40]. Utilizing more than one
hidden layer seldom enhances the model, and it might present
a risk of converging to a local minimum [41]. TheMLPmodel
used in this study has a hidden layer with a single output. The
input vector x and output vector y consists of information of
input and output layers. It can be defined as

y(k) = f (y(k − 1), y(k − 2), . . . . . . . . . .., y(k − ny),

×u(k − 1), u(k − 2), . . . . . . ., u(k − nu)) (3)

Here, the subsequent output value y(k) is dependent on the
past outputs as well as past input values u(k). Furthermore, ny
and nu represent the delay-line taps of the input and output,
respectively. During this investigation, the input value x was
provided by the different values of the vectors x0 to xnu+ny

TABLE 2. Uncertainty analysis of the measured value.

collected on an hourly basis, as shown in Table 3, whereas
the output y comprised a single output vector.

The values of outdoor and indoor RH (%) and solar radi-
ation, input temperature, clothing value, and metabolic rate
were carried by each vector. Figure 4 illustrates the single
hidden layer MLP model employed in this investigation. The
hidden layer of the MLP structure consisted of non-linear
neurons. These neurons are depicted by non-linear functions

FIGURE 4. MLP schematic diagram with inputs values, weights and
hidden neurons.
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TABLE 3. Input and output vectors of the proposed neural network
model [42].

known as the activation function which is the hyperbolic
tangent function f (x) = tanh(x) in this study. So, a neural
network defined by a non-linear mapping of any given input x
to an output y having (ny+ nu+ 1) input neurons (shown
in Table 4), h hidden neurons and only one output neuron is
presented by the relation:

y = y(x,w) =
∑h

j=0

[
wj × f

(∑ny+nu+1

i=0
wjixi

)]
(4)

TABLE 4. Assessing performances of PMV model M1 for different test
initialization parameters.

The parameters of the given neural networkmodel are charac-
terized by weights (w) and biases (b) connecting the different
layers. The weight represented by vector W describes the
non-linear mapping. The values of the parameters W and b
are calculated during the training stage.

5) TRAINING, TESTING, AND VALIDATION OF ANN MODEL
The learning, then testing, and finally, generalization are the
three fundamental steps to acquire the optimal ANN model.
The training dataset having N inputs and outputs was used in
the learning phase such as D ={xi, ti}Ni=1. Table 3 describes
variable x as each having sample

(
ny + nu + 1

)
as an input

vector. The variable t, also called the objective variable,
is the comparing estimation of the air temperature and relative
humidity. This stage comprises altering w in order to limit
the error function J, which is generally the addition of errors
square between the test yield ti and the ANN model yield,
yi = y (xi;w) :

J (w) =
1
2

∑N

i=1
{yi − ti}2 =

1
2

∑N

i=1
e2 (5)

For function approximation problems, Levenberg-Marquardt
is used as a learning algorithm, as it quickly converges with
the least mean square error (MSE). The testing and gener-
alization were the second and third phases, comprising of
assessing the capacity of the ANN to recreate the watched
phenomenon, or in other words, to give the right yields when
it is definedwithmodels that were not seen during the training
stage. The dataset of testing and generalization phases were
used during this phase. For checking the performance of the
predictive model, various statistical techniques have been
utilized by previous researchers [43], but in this study, model
exhibitions are portrayed by themean square error (MSE) and
the correlation coefficient (R).MSE and R can be assessed as:

MSE =
∑(

e2i
N

)
, (6)

R = ±

√√√√∑N
i=1 (yi − t̄)

2∑N
i=1 (ti − t̄)

2 (7)

III. RESULTS
A real-world scenario is employed to validate the proposed
approach. As discussed earlier, research findings showed that
a neural network is a valuable tool for forecasting indoor
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FIGURE 5. Experimental comparison of weekly PMV with ANN models.

air temperature, PMV, and PPD, utilizing the data obtained
for 1 week and 1 month which makes a total data points
of 1204 values for each variable. In this study, the prediction
presented by the proposed neural network model is appro-
priate, as forecasting of hourly PMV, PPD, and indoor air
temperature is needed one month in advance using the data
accumulated for prior months. The investigative data com-
prised of hourly outdoor and indoor RH (%), solar radiation,
indoor temperature, clothing value, and metabolic rate for a
test chamber building located in a tropical climatic region of
the town of Bandar Seri Iskandar, Perak, Malaysia. The neu-
ral network model was tested using a Levenberg-Marquardt
algorithm-based software developed via MATLAB program-
ming. The transfer function used for the development of the
ANN model was trainlm with a learning rate of 0.01. The
momentum term takes the value between 0.01 and takes the
maximum value of 1.0 e ^10. The momentum term optimum
value takes between 0.005 to 0.009. The proposed model
after undergoing training was adopted for forecasting hourly
indoor RH% and temperatures for the test data.

The basis for selecting a suitable architecture model is
estimating the root mean square error or the mean square
error (MSE) on the experimentally collected data. To model
the investigative dataset, the number of neurons in the hidden
layer for a given neural network structure is decided through
trial and error. Till now, no mathematical technique is avail-
able for fixing the number of hidden elements. Haykin [44]
suggested starting the training of a neural network with
fewer elements that can be steadily increased throughout the
training unless an optimal number is fixed after an ade-
quate training session. In this study, MSE is calculated for
different scenarios of the examined Multi-layer Perceptron

(MLP) neural network for the given test dataset, as presented
in Tables 4–6.

A. PMV PREDICTION USING ANN OPTIMAL STRUCTURE
The analysis of Tables 4-6 suggests that for the same number
of neurons MSE is different, which means that initialization
parameters have greater influence and depend upon biases
andweights. The initialization parameters in the experimental
dataset have been divided into three parts. In the first case,
we have taken the initial 75% of data points as a training
dataset and called it an M1 model, and in the second case,
middle 75% data points have been used as a training dataset
and called it model M2, followed by last 75% data points
taken as a training dataset and called it model M3. The
PMV performance based on M1 having experimental input
parameters such as air temperature, globe temperature, RH%,
wind speed, metabolic rate, and clothing value as shown
in Table 4 has the lowest MSE as 0.07956 at 10 neurons.

Furthermore, PMV performance based on the M2 model
has the lowest MSE of 0.8575 at 10 neurons, as shown
in Table 5, while PMV performance based on the M3 model
has the lowest MSE of 0.8126 at 5 neurons, as shown
in Table 6.

The investigation reveals that the PMV performance for
M1 and M2 shows the minimum error when the hidden
layer comprises 10 neurons, while for M3 the minimum
error was observed at 5 neurons. Among the three mod-
els, the M1 model shows the least MSE value and thus is
considered the optimal model for predicting PMV based on
experimental values. The PMV values for one week and one
month were compared as shown in Figures 5 and 6.
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FIGURE 6. Experimental comparison of monthly PMV with ANN models.

TABLE 5. Assessing performances of PMV model M2 for different test
initialization parameters.

It was observed that the experimental PMV value was close
to the PMV value obtained from model M1, and thus this
model is identified as the most accurate model for predicting
PMV of the test room equipped with the TE-AD system

TABLE 6. Assessing performances of PMV model M3 for different test
initialization parameters.

and for Malaysian occupants belonging to the age range
27.4±6.3 years for male occupants and 26.3±2.4 years for
female occupants.
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FIGURE 7. Experimental comparison of weekly PPD with ANN model.

B. PPD PREDICTION USING ANN OPTIMAL STRUCTURE
The initialization parameter in the experimental data set has
been divided into three parts. In the first case, we have taken
the initial 75% of data points as a training dataset and called
it an M1 model, and in the second case, the middle 75%
data points have been used as a training dataset and marked
as model M2, followed by last 75% data points taken as a
training dataset and marked as model M3. The analysis of
Tables 7-9 reflects the same observation above that for the
same number of neuron mean square error (MSE) is different.
The PPD performance based on M1 having experimental
input parameters such as air temperature, globe temperature,
RH%, wind speed, metabolic rate, and clothing value as
shown in Table 7 has the lowestMSE of 6.1263 at 15 neurons.

TABLE 7. Assessing performances of PPD model M1 for different test
initialization parameters.

Furthermore, PPD performance based on theM2model has
the lowest MSE of 5.8956 at 10 neurons, as shown in Table 8.
PPD performance based on theM3model has the lowestMSE
of 5.1789 at 10 neurons, as shown in Table 9.

TABLE 8. Assessing performances of PMV model M2 for different test
initialization parameters.

TABLE 9. Assessing performances of PMV model M3 for different test
initialization parameters.

The analysis reveals that the PPD performance for all
three models showed different minimum errors when their
hidden layer comprises of different number of neurons—
i.e., 15 neurons for M1, 10 neurons for M2, and 10 neurons
for M3. Among the three models, M3 shows the least MSE
value at 10 neurons and thus is considered the optimal model
for predicting PPD based on experimental values. The PPD
values for one week and for one month are compared in
Figures 7 and 8.

It was observed that experimental PPD value was close to
predicted PPD value obtained from model M3, and thus this
model is identified as the most accurate model for predicting
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FIGURE 8. Experimental comparison of monthly PPD with ANN models.

PPD of test room equipped with the TE-AD system and
for the occupants from Malaysia with age in the range of
27.4±6.3 years for male occupants and 26.3±2.4 years for
female occupants.

C. INDOOR AIR TEMPERATURE PREDICTION USING ANN
OPTIMAL STRUCTURE
As explained in the above sections of PMV and PPD,
the different initialization parameters have been given and
were defined as model M1, M2, and M3. An analysis of
Tables 10-12 reflects the same observation as stated above
for PPD and PMV, that for the same number of neurons,
the mean square errors (MSE) are different. The indoor air
temperature performance based on M1 having experimental
input parameters such as air temperature, globe temperature,
and solar radiation as shown in Table 10 have the lowest MSE
as 0.75984 at 15 neurons.

TABLE 10. Assessing performances of indoor air temperature model M1
for different test initialization parameters.

Furthermore, indoor temperature performance based on
M2 has the lowest MSE of 0.88647 at 10 neurons, as shown
in Table 11. Indoor temperature performance based on the
M3 model has the lowest MSE of 0.68959 at 15 neurons,
as shown in Table 12.

TABLE 11. Assessing performances of indoor air temperature M2 for
different test initialization parameters.

TABLE 12. Assessing performances of Indoor air temperature M3 for
different test initialization parameters.
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FIGURE 9. Experimental comparison of weekly indoor temperature with ANN models.

Analysis reveals that the indoor temperature performances
for all the three models show the same minimum error when
their hidden layer comprises the same number of neurons:
15 hidden neurons for M1, M2, and M3. M3 shows the least
MSE value and thus is considered the optimal model for
predicting indoor temperature based on experimental values.
The indoor temperature value for one week and one month
were compared in Figures 9 and 10.

It was observed that experimental indoor temperature value
was close to predicted indoor temperature value obtained
from model M2, and thus this model is identified to be the
most accurate model for predicting the indoor temperature of
the test room equipped with the TE-AD system.

D. PERFORMANCE COMPARISON OF DIFFERENT
NEURONS ON THE PREDICTION MODELS
Training of a neural network model is performed for deter-
mining the parameters (weights and biases) for a givenmodel,
and also to decide the number of neurons inside the hidden
layer of individual MLP structures. The testing phase helps
to eliminate any model whose performance is not up to the
mark. Generalization is the final step accomplished through

the test validation of the models. It helps to evaluate the capa-
bility of the neural network to generate precise outputs for a
different set of data that were not used during the training.
A generalization dataset is applied for experimentally validat-
ing these models. So, the capability of these models to fore-
cast the PMV, PPD, and indoor temperature for a short and
long duration was examined during the generalization phase.
Furthermore, the relation between the prediction period and
the model performances was observed. Two prediction peri-
ods of one week and one month were selected, as shown
in Figures 5 to 10. The choice of these prediction periods
was made randomly, based on the test dataset and it in no
way affects the outcomes. It must predict the identical results
for a different week or a different month, as the parameters
of the neural network model (weights and biases) once esti-
mated during the training stage remain unchanged through-
out. One of the criteria for test validation of an ANN model
is qualitative analysis, which involves comparing the dynamic
response of the simulated and measured values of air temper-
ature, globe temperature, RH%, wind speed, metabolic rate,
solar radiation, and clothing value graphically, to discover any
dynamic differences.

VOLUME 8, 2020 99719



K. Irshad et al.: Utilizing Artificial Neural Network for Prediction of Occupants Thermal Comfort

FIGURE 10. Experimental comparison of monthly indoor temperature with ANN models.

1) PMV PREDICTION FOR ANN MODEL USING DIFFERENT
NEURONS
There is no mathematical correlation or fixed law to deter-
mine the exact number of neurons required to calculate the
optimum neurons required for an ANN model. To optimize
the performance of the ANN model, different hidden lay-
ers have been used in the ANN model development.
The MSE obtained for different neurons has been given
in Tables 4 through 6 for three different models and presence
of different numbers of neurons. Based on Tables 4 to 6,
it had been concluded that the M1 has the lowest MSE. In the
following figures, the performance of model M1 has been
shown at different neurons. Figure 11 shows the performance
such as MSE, and regression plots for training and validation

of the ANN model with 5 neurons, followed by the perfor-
mance of the ANNmodel for 10 neurons (Figure 12), and the
performance of the ANN model for 15 neurons (Figure 13).
Figure 11a shows the MSE for training, testing, and vali-
dation, and the best MSE obtained is 0.0949 for validation
and testing at 6 epochs. Additionally, Figure 11b displays
the r-squared values for training, testing, and validation and
the overall r-squared values in this model with 5 neurons
were found to be 0.85213, 0.79619, 0.83573, and 0.84574
respectively.

Figure 12a shows theMSE for training, testing, and valida-
tion, and the best MSE obtained is 0.0784 for validation and
testing at 4 epochs. Besides, Figure 12b displays the r-squared
values for training, testing, and validation and the overall
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FIGURE 11. MSE and Regression for ANN model for PMV with 5 neurons.

FIGURE 12. MSE and Regression for ANN model for PMV with 10 neurons.

r-squared values in this model with 10 neurons were found
to be 0.87845, 0.88037, 0.90622, and 0.88277 respectively.

Figure 13a shows the MSE for training, testing, and val-
idation, and the best MSE obtained is 0.11433 for valida-
tion and testing at 6 epochs. Further, Figure 13b presents
the r-squared values for training, testing, and validation and
overall r-squared values in this model with 15 neurons were
found to be r-squared of 0.89447, 0.84496, 0.85488, and
0.88178 respectively.

2) PPD PREDICTION FOR ANN MODEL USING DIFFERENT
NEURONS
As explained in the PMV and indoor air temperature sec-
tions above, the ANN model has been studied for different
neurons for the M3 model; to optimize the performance of
the ANN model different hidden layers have been used in
the ANN model development. The MSE obtained for dif-
ferent neurons has been given in Tables 7 through 9 for the
three different models and the presence of different neurons.
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FIGURE 13. MSE and Regression for ANN model for PMV with 15 neurons.

Based on Tables 7 to 9, it had been concluded that the
M3 model has the lowest MSE. In the following figures,
the performance of M3 has been shown at different neurons.
Figure 14 shows the performance such as MSE, and regres-
sion plots for training, testing, and validation of the ANN
model for 5 neurons followed by Figure 15 which presents
the performance of the ANN model for 10 neurons, and
Figure 16 which displays the performance of the ANNmodel
for 15 neurons.

Figure 14a shows the MSE for training, testing, and val-
idation and the best MSE obtained is 5.1434 for validation
and testing at 5 epochs. Likewise, Figure 14b shows the
r-squared values for training, testing, and validation and over-
all r-squared values in this model with 5 neurons were found
to be 0.84753, 0.80996, 0.78896, and 0.83192 respectively.

Figure 15a shows the MSE for training, testing, and val-
idation, and the best MSE obtained is 7.8367 for validation
and testing at 5 epochs. Moreover, Figure 15b demonstrates
the r-squared values for training, testing, and validation
and overall r-squared values in this model with 10 neurons
were observed to be 0.88544, 0.8196, 0.75211, and 0.85164
respectively.

Figure 16a shows the MSE for training, testing, and
validation, and the best MSE obtained is 7.354 for validation
and testing at 7 epochs. Besides, Figure 16b demonstrates
the r-squared values for training, testing, and validation
and overall r-squared values in this model with 15 neurons
were found to be 0.89283, 0.76799, 0.75475, and 0.85506
respectively.

E. INDOOR AIR TEMPERATURE PREDICTION FOR ANN
MODEL USING DIFFERENT NEURONS
There is no mathematical correlation or fixed law to find the
exact amount of neurons required to calculate the optimum
neurons required for an ANN model. To optimize the perfor-
mance of the ANN model, different hidden layers have been
used in the ANN model development. The MSE obtained for
different neurons are given in Tables 10 through Table 12
for three different models and presence of different number
of neurons. Based on Tables 10 to 12, it can be concluded
that the M3 model has the lowest MSE. In the following
figures, the performance of M3 has been shown at different
neurons. Figure 17 shows the performance such as MSE,
and regression plots for training, testing, and validation of
the ANN model for 5 neurons, followed by Figure 18 which
shows performance of the ANN model for 10 neurons, and
Figure 19 which shows the performance of the ANN model
for 15 neurons.

Figure 17a shows the MSE for training, testing, and val-
idation, and the best MSE obtained is 0.86468 for valida-
tion and testing at 9 epochs. Similarly, Figure 17b depicts
the r-squared values for training, testing, and validation
and overall r-squared values in this model with 5 neurons
were observed to be 0.96091, 0.95609, 0.97244, and 0.96216
respectively.

Figure 18a shows the MSE for training, testing, and val-
idation and the best MSE obtained is 0.82732 for valida-
tion and testing at 4 epochs. Likewise, Figure 18b presents
the r-squared values for training, testing, and validation
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FIGURE 14. MSE and Regression for ANN model for PPD with 5 neurons.

and overall r-squared values in this model with 10 neurons
were obtained to be 0.96337, 0.96507, 0.95743, and 0.962
respectively.

Figure 19a shows the MSE for training, testing, and val-
idation and the best MSE obtained is 0.67959 for valida-
tion and testing at 5 epochs. Similarly, Figure 19b shows
the r-squared values for training, testing, and validation
and overall r-squared values in this model with 15 neurons
were found to be 0.97347, 0.95364, 0.94899, and 0.96648
respectively.

IV. DISCUSSION
The proposed neural network model for forecasting the ther-
mal comfort of the test room fitted with a TE-AD system
has been developed to manage indoor temperature, PPD,
and PMV. The training and validation of the model were
performed using real experimental data that was collected
for more than two months under real climatic conditions in
Perak, Malaysia. The subject clothing value and metabolic
rate were also considered as an input parameter for the
ANNmodel. Numerous trials were carried out using different
ANN models, and the results are summarized in Section 3.

As per the outcomes, only one ANN model based on the
Levenberg–Marquardt (LM) training algorithm could achieve
the anticipated error rate; the remaining models failed to
achieve it. Although the models based on conjugate gradient
training algorithms also possess great prediction capability
for the current case study, the error rates obtained were above
the threshold of 0.001. For this reason, further studies were
conducted on models based on the Levenberg-Marquardt
(LM) algorithm. The remaining part of the study was carried
out for determining the most suitable transfer function and
fixing the number of process elements in the hidden layer.
One of the contributions of this study is to demonstrate
the application of different learning algorithms for directly
predicting the PPD, PMV, and indoor temperature of the
test room. The air conditioning system used for controlling
indoor climatic conditions was not the traditional air con-
ditioner system but the TE-AD system, which was running
at an optimum input power supply of 6A and 5V. The sec-
ond contribution of this study is the prediction of the com-
fort of the subjects based on their metabolic rate, clothing
value, and indoor climatic conditions. The model valida-
tion and its implementation demonstrate that the identified
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FIGURE 15. MSE and Regression for ANN model for PPD with 10 neurons.

FIGURE 16. MSE and Regression for ANN model for PPD with 15 neurons.

predictive model is ideal to predict thermal comfort levels.
Moreover, it is essential to highlight that the identi-
fied predictive models are accurate for environmental

conditions identical to these test conditions. This study
will provide a baseline model for the prediction of the
comfort of occupants placed in a TE-AD system without
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FIGURE 17. MSE and Regression for ANN model for Indoor Temperature with 5 neurons.

FIGURE 18. MSE and Regression for ANN model for Indoor Temperature with 10 neurons.

performing actual tedious experimental tasks. The thermal
comfort of occupants having similar demographic and

climatic conditions can be easily predicted without perform-
ing subjective analysis.
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FIGURE 19. MSE and Regression for ANN model for Indoor Temperature with 15 neurons.

V. CONCLUSION
In the current study, a neural network-based intelligent pre-
diction of thermal comfort was made for a real case study of
subjects occupying a test room fitted with a thermoelectric
air duct (TE-AD) cooling system. The proposed model was
applied to predict indoor temperature, PPD, and PMV value
for a test room located in Universiti Teknologi PETRONAS,
Malaysia. All input and output parameters of the model were
determined for this case study. Data were collected during
eight-hour experiments for more than two months of hot
and humid climatic conditions. A MATLAB based model
has been employed for generating suitable datasets for the
training and testing of the neural network model. Numer-
ous models were tested and their parameters successfully
tuned to identify the best performing ANN model. As per
the outcomes, the ANN model based on the Levenberg–
Marquardt algorithm was found to be the best performing
model. Further, the parameter tuning was achieved on the
basis of selected transfer functions and process elements. The
prediction ability of the generated neural networkmodels was
assessed with a new dataset. For the PMV model, the best
results have been obtained at 10 neurons with an MSE
of 0.07956 for model M1, and in the case of the PPD model,
the best results have been obtained with model M3 at anMSE

value of 5.1789 at 10 neurons. In the case of indoor tem-
perature, the best and optimized results have been obtained
with model M3 with 15 neurons at an MSE of 0.68959.
These models have been used for the calculation of future
values for 1-month data. Although the performance of all the
models was satisfactorily examined with an unused dataset,
the results obtained with the Levenberg-Marquardt (LM)
algorithm model showed unmatched performance.

NOMENCLATURE
RH Relative Humidity (%)
PMV Predictive Mean Value
PPD Predicted Percentage of Dissatisfied
HVAC Heating, Ventilation, and Air Conditioning
ANN Artificial Neural Network
COP Coefficient of Performance
TEM Thermoelectric Module
TE-AD Thermoelectric Air Duct
MRT Mean Radiant Temperature, (◦C)
MLP Multilayer Perceptron
MSE Mean Square Error
M Model
LM Levenberg-Marquardt
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SYMBOLS
Clo Clothing and Thermal Insulation
R Linear Function
v Uncertainty in Measured Value
T_in Indoor Temperature, (◦C)
T_a Ambient Temperature, (◦C)
T_c Cold Side of Thermoelectric Module, (◦C)
T_H Hot Side of Thermoelectric Module, (◦C)
Y(k) Output Value
u(k) Input Value
h Hidden Neurons
n Normally Distributed Variable
w Weights
b Biases
W Weight Vector
x Variable
J Error Function
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