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ABSTRACT Detecting the pupil center plays a key role in human-computer interaction, especially for gaze
tracking. The conventional deep learning-based method for this problem is to train a convolutional neural
network (CNN), which takes the eye image as the input and gives the pupil center as a regression result.
In this paper, we propose an indirect use of the CNN for the task, which first segments the pupil region
by a CNN as a classification problem, and then finds the center of the segmented region. This is based on
the observation that CNN works more robustly for the pupil segmentation than for the pupil center-point
regression when the inputs are noisy IR images. Specifically, we use the UNet model for the segmentation
of pupil regions in IR images and then find the pupil center as the center of mass of the segment. In designing
the loss function for the segmentation, we propose a new loss term that encodes the convex shape-prior for
enhancing the robustness to noise. Precisely, we penalize not only the deviation of each predicted pixel from
the ground truth label but also the non-convex shape of pupils caused by the noise and reflection. For the
training, we make a new dataset of 111,581 images with hand-labeled pupil regions from 29 IR eye video
sequences. We also label commonly used datasets (ExCuSe and ElSe dataset) that are considered real-world
noisy ones to validate our method. Experiments show that the proposed method performs better than the
conventional methods that directly find the pupil center as a regression result.

INDEX TERMS Convex shape prior, deep learning, pupil segmentation, U-Net.

I. INTRODUCTION
Eye tracking or gaze tracking is one of the most important
techniques for Human-Computer Interaction (HCI) and its
applications. For example, it is essential for pointing (virtual)
objects in AR/VR environment [1]–[3], detecting drowsiness
that improves driver safety [4], [5], analyzing the human
behavior such as eye-tracking heat map [6], [7], etc. These
methods usually need real-time eye-tracking, for interacting
with virtual objects or for the foveated image rendering in
VR environments [8]. In most VR/AR devices, IR cameras
are mounted inside the device, and the gaze-point is estimated
by using features such as the shapes and positions of pupil,
eyelash, eye corners, etc. Of course, finding the pupil’s center
point is the most important for the accurate estimation of
gaze-point in many applications.

In indoor situations where external lights are blocked,
acquired eye images usually have less noise. A relatively
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simple algorithm [9] can find necessary features such as
pupil or eye corners when the eye areas are taken clearly with
less noise. However, naive algorithms fail when pupils are
not well seen due to occlusion by eyelid and eyelash, or when
there are reflections around the pupil area. The reflections are
caused by lights from displays in the case of VR devices, or by
external ambient light in the case of AR devices. For example,
Fig. 1 lists the challenging images such as strong reflec-
tions, occluded pupil region, and spurious pupil center. Non-
learning-based methods attempted to address these problems
by hiring adaptive edge detection or iterative methods such
as StarBurst [10], ExCuSe [11], and ElSe [12]. But it seems
that the performance of these methods is still insufficient for
finding accurate gaze point in a noisy environment, as will be
addressed in our experiments (see Fig. 9 and Table 1).

With the remarkable development of deep learning meth-
ods, there have also been several attempts to apply CNNs for
pupil detection. For some examples, Fuhl et al. [13], Chinsatit
and Saitoh [14], and Kondo et al. [15] proposed CNNs that
take the eye image as the input and directly generate the
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FIGURE 1. Highly challenging images in real-world scenarios that are
affected by various factors: strong reflections, bad illumination, mascara,
occluded pupil, recording errors, contact lenses, and additional black dot
on iris.

gaze point. They showed improved results than the traditional
approaches to a certain extent. However, the performance
gain is not so significant, considering that the CNNs for
other problems generally produce significant gains over the
conventional feature engineering methods. Learning results
for some sequences are even worse than traditional ones,
as will be shown in the experiments (see Table 1).
To be more precise with the above mentioned CNN-based

methods, they generally use the ConvNet [16] to produce the
center or bounding box of pupils, following previous object
detectors. Specifically, there have been many works that suc-
cessfully use CNNs for the regression problem, especially
for finding the bounding box of objects in video sequences
[17]–[19]. However, it seems that the coordinates of box
corners are usually fluctuating very much, which may not
be a big problem in many object tracking applications [20],
[21]. That is, just a few-pixel error in the bounding box
corners is not much of concern in general object tracking
problems. But, the estimation of the pupil center should be
very accurate and robust to noise because a pixel difference
results in quite a significant angle error in gaze direction
as experimented in [22]–[24]. For example, a pixel error in
estimating pupil center location may cause a gaze estimation
error of 5 degrees or more when a user is gazing at the corner
of the screen [25].

In the estimation problems, it is generally considered that
the integration or ensemble approach makes the result more
robust to the noise. Hence, we do not directly obtain the pupil
center from the features of a CNN, but estimate all the pixels
that may belong to the pupil and integrate the pixel positions

FIGURE 2. Our dataset and ground truth binary image for the pupil area
segmentation.

to find its center. In other words, we use the CNN not for the
pupil center regression but for the pupil segmentation, and
then find the center of mass of the segment as the pupil center.
For the CNN model, we use the UNet [26] instead of the
plain VGG-style network, as it is shown to provide excellent
performance in segmentation problem.

Meanwhile, the loss term commonly used in seg-
mentation problems with fully convolutional networks
(FCNs) [27]–[29] is the unary term that consists of pixel-wise
cross-entropy. As the FCNs do not consider high-level label
dependencies, the segmentation result usually suffers from
noises due to occlusion, strong reflections, etc. Hence, Deep-
Lab V2 [30] and Noh et al.’s methods [31] employed Fully
Connected CRF [32] as a postprocessing tool to consider the
prior knowledge of the shapes of target objects. Specifically,
these methods combine information about the classifier out-
put and local pixel priors such as shape, color, and position,
which enforces the results to have similar properties to the
ones with corresponding labels. Furthermore, instead of post-
processing, more recent researches encoded the shape prior
into a loss function for directly manipulating the shape of
output. Specifically, Lin et al. [33] and Tang et al. [34] chose
to put a pairwise term in the loss term to consider the structure
prior of the target object.

As will be shown in Section VI-B, our segmentation result
using only pixel-wise cross-entropy is good enough com-
pared to other methods. However, it cannot prevent failures
for some challenging images, like others. Hence, we encode
the prior knowledge on the shape of pupils, which should be
elliptical [35], into the loss termwith some relaxation. Specif-
ically, we relax the elliptic-shape condition to the convex
prior, and encode this term in addition to the cross-entropy.
In the experiments, we will show the effectiveness of our new
loss term with shape prior (see Fig. 11).
Also, since existing datasets provide only the pupil center

as the ground truth label, we make a dataset with the binary
segmentation map of the pupil area, as shown in Fig. 2.
In addition, we also make pupil-region maps for commonly
used datasets (ExCuSe dataset, ElSe dataset) that are regarded
as real-world ones containing many challenging images,
as shown in Fig. 3.

In summary, we believe that our contributions are as
follows.

1) Unlike the existing CNN-based pupil detection meth-
ods based on the regression, we use a CNN for the pupil
segmentation and obtain its center as the center ofmass.
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FIGURE 3. ExCuSe & ElSe datasets for which we annotate binary
segmentation map.

This method is shown to be robust to reflection, noise,
and occlusion.

2) We propose a new loss term that encodes convex shape
prior for the training of segmentation networks, which
further increases the accuracy of pupil center estimates.

3) We make a new dataset for the pupil segmentation and
also add the annotations to the existing IR eye image
datasets.

We published a preliminarywork of pupil center estimation
in a conference [36], where we also segmented the pupil
region by UNet. The difference of this work from our confer-
ence version is that we propose a new loss term that brings
better performance. Also, we annotate more segmentation
map for the existing datasets and perform more experiments
to validate the performance of our indirect segmentation-
based method.

II. RELATED WORK
A. TRADITIONAL NON-LEARNING-BASED PUPIL
DETECTION ALGORITHMS
Many pupil detection algorithms have been proposed so far,
which are used mainly for the gaze estimation or for biomet-
rics applications to locate the iris or face. Some algorithms for
gaze estimation and iris recognition use active IR lightings
for capturing eye images, which incurs reflections on the
image. Hence, one of the well-known non-learning-based
algorithms, StarBurst [10] removes the reflection region
using the adaptive threshold algorithm and employs an itera-
tive method to estimate the edge of the pupil. Then the pupil
center is found by the ellipse fitting using RANSAC [37].
A more recently developed ExCuSe method [11] employs
edge detection and morphology operations for detecting and
polishing the pupil area. The algorithm first calculates the
brightness histogram of the image, and if there is a peak in
the histogram, it finds the pupil by edge analysis. If there
is no peak in the histogram, the Angular Integral Projection
Function (AIPF) [38] is applied to extract the pupil con-
tour. In the case of another widely used method ElSe [12],
it also uses the Canny-edge filtered image similar to ExCuSe
[11]. The algorithm finds features such as the straightness
and the inner intensity value from the detected connected
edge components. If the algorithm finds a valid ellipse that
describes the pupil through these features, it derives this
ellipse as a result. Otherwise, the algorithm derives the pupil
center through a proper convolution and thresholding. This

algorithm shows state-of-the-art performance among the non-
learning based algorithms. However, its pupil detection rate
(with under 5-pixel error tolerance) is only under 70% in the
presence of severe noise, especially on the ExCuSe and ElSe
dataset. We use datasets from these non-learning methods
as they are still widely used in recent learning methods.
However, since they provide only pupil center position as a
ground truth label, we annotate segmentation maps on these
data for using them in our work.

B. LEARNING-BASED PUPIL DETECTION ALGORITHMS
It is well expected that the learning-based methods would
bring better results than the non-learning ones. Considering
the performance gains brought by CNNs in many object
tracking and detection problems, there have also been sev-
eral methods to apply the CNN to the pupil detection. For
example, like recent object detectors that find bounding box
over an object of interest, Chinsatit and Saitoh [14] used the
CNN-based regressionmethod. Specifically, they take the eye
image as the input to the CNN, which directly produces the
pupil center as a regression result. However, as mentioned
above, this method is not robust to the noise, and hence
the center point fluctuates quite widely. This is because the
regression network based on the VGG-style CNN iteratively
applies the pooling layer to grow the receptive field too
much compared to the pupil size. Precisely, typical regression
networks such as ResNet or ConvNet apply five max-pooling
layers of size 2 × 2, and the receptive field of feature pixel
on the last fully convolutional layer is 32. This seems to be
too larger than the pupil diameter, considering that the size of
input IR eye images is usually very small (VGA size or less).
Also, since the pixel intensities inside and around pupil are
generally near zero, there are too few features to be used.
Due to the too-large receptive field and too-few features,
the network gives any point near the center as the pupil center.
In the case of the PupilNet [13], they tried to detect the pupil
using a CNN classification model. By applying the sliding
window technique, the patches corresponding to the pupil
region are classified as 1 and the others as 0. This method
is based on the multiscale approach, i.e., it first downscales
the original image and finds a position of maximum network
output as a coarse location of the pupil. In the same way, they
find a fine position in the cropped region of original images.
The reason for resizing the input is to reduce the noise and
also to see more contexts around the pupil.

Unlike these CNN-based methods, we perform pixel-wise
segmentation based on the belief that integrating many classi-
fication results will bring the point estimation more robust to
noise. That is, instead of regressing the center point or patch-
wise segmentation, we perform the pupil region segmentation
and then find the pupil center as the center of mass of the
region.

C. SHAPE-PRIOR TERM FOR THE LOSS FUNCTION
As mentioned in Section I, there are several ways to impose
some constraints to the loss function for the segmentation
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FIGURE 4. The overall workflow of the proposed method.

network. We first review how to directly affect the result
of object segmentation by applying a loss term that embeds
prior knowledge on the targeting object’s properties. For
this purpose, the typical loss function is composed of two
terms: a unary term that confines the pixel-wise output to
the annotated label, and a pairwise term that constrains the
segment shape. Let us denote the pixel space as�, one of the
pixels of� as p or q, the sigmoid output of p of the i-th image
in a training image set I as Sip, and the ground truth label of
the pixels as yip. Then, an example of the loss function can be
written as∑

i∈I , p∈�

l
(
Sip, yip

)
+

∑
i∈I , p,q∈�

W i
pq‖Sip − Siq‖n (1)

where l is any pixel-wise loss function on Sip and yip. The sec-
ond term is the pairwise term that penalizes disagreements
between the pair of p and q, with predefined affinity W =
W i
pq between the points. The term ‖Sip − Siq‖n measures

the label compatibility between the points for encoding the
object’s constraints, which can be defined in several ways.
For example, the affinity W =

∑M
m=1 w

(m)k (m)G (fip, fiq) of the
pairwise term that encodes CRF-RNN [39] uses Gaussian
kernels k (m)G (fip, fiq) = exp( 12 (fip − fiq)T3(m)(fip − fiq)) that
depends on relative positions and relative intensities between
the pair of fip and fiq. In this case, the label compatibility
function ‖Sip − Siq‖n is replaced by the Potts model [40],
µ(Sip, Siq) = [Sip 6= Siq]. Norm cut [34] also uses the affinity
W that encodes the sum of ratios between the cuts and the
volumes based on RGBXY Gaussian kernel, but the weights
are divided by the volume of each segment area. Hence,
a quadratic relaxation of the Potts model Sip∗ (1−Siq) is used
as a label compatibility function. In [41], they defined ‘‘Star
Shape Prior,’’ by setting W = [yip = yiq] as a conditional
term between two points p and q. The two points are on the
line extended from the center of the segmented object so that
the loss penalizes a non-star shaped object. Also,

∣∣Sip − Siq∣∣
is chosen as a label compatibility function in star shape prior.

D. PRIOR KNOWLEDGE ON CONVEX POLYGON
As stated previously, the ideal shape of a pupil is circu-
lar, which appears elliptic in the images acquired by the

perspective camera. Hence, previous non-learning methods
usually fit the edges of the pupil to an ellipse. However,
the appearance of the pupil in the image is not perfectly
modeled as an ellipse; rather, it has a near-elliptic shape.
Hence, in our method, we relax the shape to a convex polygon
to allow for some deviation from the ellipse and use the shape-
prior term that enforces the segmentation result to be a convex
polygon.

The definition of a convex polygon is that all internal
angles 6 γ of the polygon O are less than π . However,
this definition requires complex computation to determine
polygon convexity, and cannot directly penalize pixels inside
the polygon. Hence, we use another equivalent definition of
convexity as follows:

• For every p, q ∈ �O, every r on the line segment ∈ lpq
is in the polygon region �O.

This property can be easily encoded as an equation that
directly penalizes the pixels inside the segmented area, as will
be discussed in Section III-B.

III. PROPOSED METHOD
As stated in the introduction, we attempt to derive a robust
pupil center estimationmethod by integrating the information
from the deep network. For this, we do not directly use
the deep network to regress the pupil center point but to
classify the pupil region, and then calculate the center of
mass of the region. The overall workflow on the inference
phase is shown in Fig. 4. In the first stage, we downscale
the resolution of the image obtained from the IR camera
by half (320 × 240) and give it as an input to the network.
In the second stage, we perform the segmentation using the
sigmoid output obtained from the network, i.e., we threshold
the magnitude of the final feature map. At the third stage,
we perform the connected component (CC) analysis, which
is to connect the same-labeled neighboring pixels into a blob,
and find the largest blobO, which is considered the pupil area.
At the last stage, we find the center of the largest blob as a
pupil center. When there exists no segmented area, we may
select the pixel location that has the highest sigmoid output as
a pupil center, or just keep the previous frame’s center point.
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FIGURE 5. A light UNet architecture for pupil segmentation. Each square box represents a feature map, and the number on the box represents the number
of channels in the feature. The x-y size of the feature map is shown on the left side of the box, and the meaning of each arrow is on the bottom right.

In the experiment, it is shown that the latter approach brings
more stable results.

A. NETWORK ARCHITECTURE
We adopt the UNet for the pupil segmentation, as shown
in Fig. 5. It is a kind of FCN, which is suitable for our work
because it can perform the classification and localization at
once [26]. There are also some other methods that perform
both tasks at the same time. For example, Ciresan et al. [42]
made a class-labeled patch around each pixel in the original
image and used it for training the classifier. By applying the
classifier to all the pixels in the input image with the sliding
window method, they obtained the segmentation results. The
PupilNet [13] also classifies all the test patches, although
its purpose is different. In the case of patch-based methods,
wemay generatemany training samples from a single training
image, which can be an advantage in some cases. However,
these patch-based binary labeling methods have some prob-
lems. First, there is a lot of redundancies in the overlapped
patches, which influence the performance both in training and
inferencing. Second, there is a trade-off between the local-
ization accuracy and the abundance of context depending on
patch size. Third, to classify using CNN, the fully connected
layer is required at the end of CNN, which increases the size
of the network. Hence, the reason for using the UNet is that
it does not require fully connected layers (it consists of only
convolutional layers, max pooling layers, and concatenating
paths).

The left side of the UNet structure in Fig. 5 is called
contracting path, which consists of 3 × 3 convolutional
layers and max pooling layers, and the right side is called
expansive path which consists of convolutional layers and
concatenating paths from the layers from the contracting path.

FIGURE 6. Example object O that (a) satisfies convex shape condition and
(b) does not satisfy convex shape condition.

Maxpooling layer in UNet also grows receptive field, which
causes fluctuating error like VGG-style network. However,
in case of UNet, all points around the pupil are classified
as pupil area, and the results are integrated so that the error
can be sufficiently diminished. The left side enables the
multiscale analysis by stacking the image pyramids, and the
right side enables to acquire the pixel-wise classification
results. The UNet also concatenates the reduced feature map
in the contracting path and upsampled output that enables
the output to assemble the information of various scales.
This resolves the trade-off between localization accuracy and
the abundance of context mentioned above. Moreover, since
there is no FC layer, the network requires a less number of
parameters compared to the regression network at the same
depth.

B. CONVEX SHAPE PRIOR LOSS
Typical FCN frameworks employ the pixel-wise binary cross-
entropy loss as a unary loss term, which can be written as

Lce = −
∑
i∈I

∑
p∈�

yip log Sip + (1− yip) log(1− Sip). (2)
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In this case, only the ground truth of the pixel corresponding
to the pupil area is 1, and the rest is 0. Hence, this equation
can be rewritten as

Lce = −
∑
i∈I

(
∑
p∈�O

log Sip +
∑
p∈�Oc

log(1− Sip)) (3)

where �O is pixel space on the pupil area. As mentioned in
Section II-D, we add a convex-shape-prior term that any line
connecting two arbitrary points of the segmentation region
is inside the region. The entire loss term incorporating the
convex shape prior is

Ltotal = Lce +
∑
i∈I

∑
p,q∈�

∑
r∈lpq

Bipqr ×
∣∣yip − Sip∣∣

×
∣∣yiq − Siq∣∣× ∣∣Sip + Siq − 2Sir

∣∣ (4)

where

Bipqr =

{
1, if yip = yiq = yir = 1
0, otherwise

(5)

where the second term in the eq. (4) is the shape-prior term.
To explain the second term in detail, let us consider a point
pair (p,q) inside the segmented region, and a point r lying
on the line that is bounded by p and q. Following the convex
shape property, the point r must have the same ground truth
label. Hence, the shape-prior term of eq. (4) is designed to be
activated when p, q and r have the same label (Bipqr = 1). The
next terms (|yip−Sip| and |yiq−Siq|) ensures that the predicted
results on p and q do not differ from the ground truth label,
and the last term means the convex shape prior that penalizes
r to have the same label as p and q, as illustrated in Fig. 6.

In the training phase, encoding the prior knowledge of
convex shape into the network is a time-consuming task, due
to the times taken for finding the pupil center point in the
ground truth segment and for randomly selecting points that
are used to calculate the loss. But in the inference phase,
the parameters of the network already contains prior knowl-
edge, so the computation time is the same as the baseline that
does not have the shape-prior term.

IV. IMPLEMENTATION
The UNet for the pupil area segmentation in our work is
shown in Fig. 5, the complexity of which is reduced from the
original network for several reasons. First of all, we deal with
a rather simple shape compared to the diverse cell images
for which the original UNet [26] was designed. Specifically,
the UNet consists of several floors, where the first floor
receives the input at the left side and generates output at
the right. The number of channels is increased and their
size is reduced, as the floor is increased downwards (see
Fig. 5). While the original UNet consists of five floors with
64 channels on the first floor and 1024 channels on the fifth,
we reduce the number of channels on the first by half (64 to
32) and the number of floors from five to four.

For training the network, the batch size is set to 20, and the
training epoch 10. All weights of our network are initialized

FIGURE 7. Our dataset images used for (a) training and (b) test.

using the Glorot and Bengio [43],’ and its learning rate is
set to (1e − 4) ∗ 1

10
(iter/maxiter)

, and batch normalization is
not used. In the test stage, a binary image is acquired by
thresholding the UNet response by 0.5. When performing
the CC analysis, we adopt 4-point neighborhood system to
partition the binary map into pupil region candidates. For the
binary image, the largest CC is regarded as the pupil region
O, and the center of mass is obtained as

(m, n) =
∑
p∈�O

(Xp,Yp)/Area(�O) (6)

where (Xp,Yp) is the location of the pixel p. In the implemen-
tation, we use the Pupil-Labs equipment [44] for acquiring the
IR eye image, which has the VGA resolution. We reduce it by
half (320× 240) to save the computations and also to reduce
the inherent noise from the camera.

In the implementation of eq. (4), the loss is not computed
for every possible point because of the implementation effi-
ciency. Instead of calculating the loss for every point on the
line lpq, we randomly select m pixels on the line. Also, p and
q are randomly selected from the intersection points between
the line of d directions extending from the center of the
segmented polygon and the contour of the polygon, not all
possible combination inside the polygon. Thus, all possible
combinations of p and q are dC2 per image. Also, by settingm
random points r for each combination, the number of points r
participating in the loss ismdC2. Since we use d = 16,m = 8
in the experiment setting, the total number of r is 8× 16C2 =

960.

V. DATASET
We make a dataset from 29 IR eye video sequences
(111,581 frames with VGA resolution) acquired from the
Pupil Mobile Eye Tracking Headset for 12 participants, under
the laboratory environment. The participants are requested
to gaze at several target points, and some of the images
are shown in Fig. 7. Also, we make binary ground-truth
labels on the pupil region for all the frames. The dataset
used for training is composed of former 10 sequences (000
∼ 009) among 29, which are the sequences taken from
five subjects. All the gaze tracking methods mentioned in
this paper, including ours, show satisfying results with our
dataset because the sequences are obtained under the lab-
oratory condition that has little noise. We also perform
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FIGURE 8. The process of annotating binary ground-truth map:
(a) Examples of input images, (b) dotting the pupil boundary (blue dots),
(c) ellipse fitting, and (d) labeling the area inside the ellipse.

experiments on ExCuSe and ElSe dataset that are con-
sidered the real-world ones, containing many challenging
images due to reflection, occlusion, blur, and other kinds
of noises. These datasets are composed of 24 IR sequences
(94,113 frames with 384× 288 resolution), and are available
at ftp://emmapupildata@messor.informatik.
uni-tuebingen.de. However, since they provide only
center points of pupils as annotation data while our main
objective is the segmentation, we also annotate the segmen-
tation map for these datasets.

Ten researchers participated in labeling the segmentation
map, who have experiences in annotating hand regions in
video sequences, and also in building semantic segmenta-
tion maps. More precisely, to create a binary ground-truth
label, we first created a label for pupil boundary. Since it is
impossible to annotate ground truth for all boundary points,
we selected several points of the pupil boundary manually
and applied the OpenCV ellipse fitting algorithm, as shown
in Fig. 8. The inner region of the completed boundary
was annotated as the pupil region. The results are double-
checked by several industry researchers who are developing
AR glasses. Hence, we believe that our ground-truth segmen-
tation maps are quite reliable, though not perfect.

VI. EVALUATION
We perform the training and evaluation on a PC with
GTX980 GPU, i5-4570 CPU @ 3.20 GHz, and 16GB RAM,
and implement the CNN using the Pytorch library [45]. In the
training phase, our approach requires 14 GPU-hours, while
the traditional UNet method requires only 2 GPU-hours,
because of our loss term that encodes the convex shape prior.
However, in the inference phase, our approach shows almost
the same inference time (about 7ms), as the traditional UNet
method.

All the parameters in the compared methods, including
non-learning-based and learning-based ones, follow their

FIGURE 9. Examples of detection results. Plus marker of red, green, blue,
yellow indicate the results of the proposed method, StarBurst, ElSe and
Chinsatit, respectively.

default settings. Since the trained weights of learning meth-
ods are not available or not trained for given datasets,
we trained each method to get the detection rate curve
in Fig. 10. The dataset of the eye image is much more redun-
dant than other image datasets for other tasks because most
of the eye images from different people look similar. Hence,
we focus on the rate of pupil detection, instead of the accuracy
of pupil center position, when the validation is performed for
a person who did not participate in the creation of dataset.

We compare the pupil detection rates by calculating the
Euclidean distance between the predicted pupil center and the
ground truth label. Precisely, we count the number of pupil
centers that are within N -pixel error, and denote it as the
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FIGURE 10. All datasets are split into training sequences and validation sequences. Performance comparison on (a) our dataset, and (b) ExCuSe &
ElSe datasets.

TABLE 1. Performance comparison on each data sequence from ExCuSe
& ElSe, in terms of Detection rate (%) allowing 5-pixel error tolerance.
In the case of PupilNet*, we report the performance shown in the original
publication.

detection rates at pixel error N . Note that some existing gaze
estimation methods find the pupil center in sub-pixel resolu-
tions. In this case, the maximum tolerance for the algorithm
on locating the pupil center point is about one pixel, i.e., we
need to evaluate the detection rate at N = 1. However, this
seems rather impractical because creating the ground-truth
of pupil center location is a hard manual task, and hence
a certain amount of error in the ground-truth is inevitable.
Therefore, the results are usually discussed in the tolerance of

five-pixel errors [46], i.e., detection rates at N = 5. We will
also show how pupil center detection using the segmentation
works well under challenging situations. In order to reduce
the computational cost, we will also show how adjusting
the numbers of channels and floors affects accuracy. Also,
we will show how incorporating the prior knowledge on the
loss term affects the shape of the segmented result and the
improvement of the overall detection accuracy.

A. ANALYSIS ON OUR DATASET
For the comparison with our dataset, we train the net-
work using 10 data sequences from 5 subjects, among the
29 sequences. The results of 5-pixel error for the compared
methods are shown in Fig. 10a, where we can see that our
approach shows slightly better results than the traditional
non-learning-based ones, whereas the other learning-based
methods perform worse than the non-learning ones.

B. ANALYSIS ON VARIOUS CHALLENGING SITUATIONS
The datasets ExCuSe and ElSe have challenging images such
as the ones with severe reflection, poor illumination, long
mascara, which works as severe noise, etc. First, we show
some qualitative comparisons in Fig. 9, where the red dot is
the result obtained using the proposed method, and the green,
blue, and yellow are the results using the StarBurst, ElSe
algorithm, and Chinsatit et al., respectively. We can see that
the proposed method shows robust results for the images with
a certain degree of reflection, shaky images, dark images with
mascara, and dark images, as shown in Fig. 9a. The proposed
algorithm does not work well when the pupil is not visible
at all because of the reflected light when the image is very
shaky or when the image is very dark, as shown in Fig. 9b.
However, other algorithms also fail to detect the pupil center
in these cases.
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TABLE 2. Size of the network according to the number of floors and the
number of channels.

For the quantitative analysis, we also show the detection
rates on N = 5 with cross-validation on each data sequence.
Our UNet with unary loss term with cross-entropy is denoted
as UNet (Baseline). Also, we compare our method with three
traditional non-learning algorithms and two learning-based
algorithms. As shown in Fig. 10b, ElSe shows the highest
detection rate (average about 69.3% at N = 5) among the
non-learning based algorithms. However, the results are not
satisfactory to be used for gaze tracking. Existing CNN-based
methods were expected to overcome these limitations, but
they did not show better performance. Specifically, Chinsatit
et al. shows the detection rate of 49.1% at N = 5. It even
shows lower performance on average by 20.2%p than ElSe,
probably due to the limitation of the regression approach
on pupil center detection. On the other hand, our method
shows 85.3%, which is the best among all the compared non-
learning and learning-based methods.

C. ANALYSIS ON CONVEX SHAPE PRIOR
Although our baseline UNet (without shape-prior term)
shows satisfying results, there are some failure cases. These
are the cases when the segmentation is not performed prop-
erly, as shown in Fig. 11. This figure also shows that the
proposed shape-prior term brings better results than the base-
line, which results in the improved N -pixel error, as shown
in Table 1 and Fig. 10b.

D. ANALYSIS ON NETWORK SIZE
In this subsection, we analyze the performance vs. network
complexity. As stated previously, our UNet has a simpler
architecture than the original UNet. However, the reduced
network needs 22 Mb, which is still larger than the PupilNet
with 1.33 Mb. Hence, we attempt to reduce the size of UNet
down to 1.33 Mb and compare the performance in Fig. 12.
Specifically, we reduce the UNet as shown in Table 2, i.e., we
reduce the number of floors and/or the number of channels in
several ways, and plot their detection rate vs. N in Fig. 12.
We can see that the reduction does not much decrease the
detection rates, and we can achieve a better detection rate than
the PupilNet with almost the same complexity.

E. COMPARISON OF UNet WITH OTHER NETWORKS FOR
PUPIL SEGMENTATION
As stated previously, we adopt UNet in this paper because
it is known to provide state-of-the-art performance in many
applications, including the segmentation. In this section,
we validate this by comparing the overall performance when

FIGURE 11. Qualitative comparison of segmentation results with/without
shape-prior term: (a) input image with ground truth (b) result with only
unary term (c) result with additional shape-prior term that encodes the
convex shape prior. Red numbers on the figures denote the errors of pupil
center estimation.

the segmentation is performed by other well-known image
segmentation networks such as FCN [27] and Deeplab [30].
For the fair comparison, the numbers of weights of compared
networks are set to be almost the same. The results are
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FIGURE 12. Performance comparison on ExCuSe & ElSe dataset for each
network size.

FIGURE 13. Comparison of the accuracy of pupil center coordinates.
UNet* is the result after the simple postporcessing that keeps the center
position when the pupil area is not found in the current frame.

summarized in Table 3, which shows that the UNet performs
better than or comparable to the FCN and Deeplab for the
pupil segmentation. The result also indicates that adding our
shape-prior term enhances the performances regardless of the
type of networks used for the segmentation.

F. ANALYSIS OF CENTER POSITION ERROR
Finally, we compare the accuracy of the pupil center positions
in Fig. 13. Specifically, the figure shows the average and
variance of the estimation error of each algorithm. We can
see that the proposed method shows the least mean value
but a relatively higher variance than Chinsatit(ConvNet).
This is because the network output of the proposed method
has a large error when there exists no segmented area. For
example, failure cases such as the bottom row of Fig. 9b has
no detected segments since the eyelid covers the entire pupil
area. We can add a simple postprocessing step to alleviate
this problem, specifically we keep the same center position

TABLE 3. Performance comparisons when different networks (FCN [27]
and DeepLab [30]) are used for the segmentation, for each data sequence
from ExCuSe & ElSe, in terms of detection rate (%) allowing 5-pixel error
tolerance.

when the segmentation area is lost at the current frame. The
UNet* in Fig. 13 is the estimation error after this postpro-
cessing, which shows the least mean and variance, i.e., the
most accurate estimation of pupil center coordinates. The
increase of estimation accuracy by this simple postprocessing
may be another advantage of the segmentation-basedmethod,
which is not easy in the case of regression methods. Precisely,
we can easily see whether there is a pupil segment or not
in our case, and we just do not use the result when the
segment is absent. On the other hand, it is difficult to tell
whether the center point brought by the regression is out of
tolerance or not.

VII. CONCLUSION
We have proposed a method for the detection of the pupil
center in the IR eye images, which can be used for many
human-machine interfaces. Unlike the existing CNN-based
regression methods that directly obtain the pupil center coor-
dinate as the network output, our method segments the pupil
region and calculates the pupil center as the center of mass
of the segmented region. Also, unlike the conventional multi-
scale sliding-window method that uses the VGG-style CNN,
our system exploits the UNet that can naturally exploit the
multiscale features. Moreover, we designed a shape-prior
term for the loss function, which increases the robustness
to the noise. We have also created datasets for training and
testing, on our videos and also on widely used datasets.
Experiments show that our method detects the pupil cen-
ter robustly and yields accurate pupil center positions. Our
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dataset and code are available at https://github.com/
jaegal88/pupil-shape-prior.
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