
Received March 14, 2020, accepted March 30, 2020, date of publication April 2, 2020, date of current version April 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985227

Overall Understanding of Indoor Scenes by
Fusing Multiframe Local RGB-D Data Based on
Conditional Random Fields
HAOTIAN CHEN 1, LONGFEI SU 2, BIAO ZHANG 1, FENGCHI SUN 2, (Member, IEEE),
JING YUAN 3, (Member, IEEE), AND JIE LIU3
1College of Computer Science, Nankai University, Tianjin 300350, China
2College of Software, Nankai University, Tianjin 300350, China
3College of Artificial Intelligence, Nankai University, Tianjin 300350, China

Corresponding author: Fengchi Sun (fengchisun@nankai.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61873327, and in part by the National
Key Research and Development Plan under Grant 2018YFB0204304.

ABSTRACT Indoor mobile robots normally cannot capture the whole information of a scene by a single
frame of perceptive data due to the limited sensor scope. The category of the current scene may be misjudged
by robotics due to incomplete scene information, which leads to operation error. To address this problem,
we propose an approach that leverages conditional random fields (CRFs) to fuse multiframe RGB and depth
(RGB-D) visual data corresponding to the same scene. This method takes full advantage of prior knowledge
that object categories significantly relate to the scene attributes. As a new image arrives, we incrementally
integrate the current object detection results to update scene understanding by identifying duplicate objects
between images, ranking available objects in terms of their relevance to the scene, and fusing new information
with the existing CRF. With this approach, scene classification can be solved with higher precision based
on multiview images than on single image frames sampled in the same places. Additionally, a configuration
map of a scene is incrementally built into the above framework. Themap includes identities of the recognized
objects and various relations between them. This kind of map would not only benefit common robotic
tasks but also offer a novel channel for human-robot interaction. We test the efficiency of our method on
image sequences extracted from the NYU v2 dataset. The results show that our approach achieves the best
performance against state-of-the-art baselines.

INDEX TERMS Conditional random fields, multiframe image fusion, scene configuration map, scene
understanding.

I. INTRODUCTION
In recent years, indoor scene understanding has aroused
immense interest in robotics research [9]. This technique
enables service robots to understand their environment better,
interact with humans and implement tasks more efficiently
[3]. For example, when we ask a robot to take a book left
in the bedroom, it can perform better if it knows where the
bedroom is. In fact, the robot can learn the attributes of
its surroundings by use of scene classification algorithms.
Previous indoor scene classification systems aremainly based
on local or global image features, i.e., local features scale-
invariant feature transform (SIFT) [8] and GIST [11]. The
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performance of these systems is limited without using the
high-level semantic knowledge of the scene. For instance, the
category of a room is often determined by specific objects
inside it. Recently, scene understanding algorithms using
high-level semantic information have emerged. In particular,
Lin et al. [7] proposed a conditional random fields (CRF)
model to jointly implement scene classification and object
recognition in a framework.

Nevertheless, indoor scene understanding remains a dif-
ficult task for robots. On the one hand, the composition
of indoor scenes is more complicated than that of outdoor
scenes. Due to the complexity and diversity of indoor scenes,
the difference is large within the same class and small
between different classes, which is difficult for scene classi-
fication algorithms. On the other hand, for spatial occlusion
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and the limited detection scope of sensors, a single frame of
perception data may not be sufficient to support a description
fully covering the whole scene in many cases.

Furthermore, research on image sequences has been
increasing. References [22], [23] used different methods to
achieve good performance on optical flow estimation of
image sequences. Reference [24] proposed a 3D geometry
estimation method based on image sequences. Reference
[25] presented a novel approach for unsupervised learning
of depth and ego-motion from monocular image sequences.
Reference [26] proposed a method combining convolutional
neural networks (CNNs) and a state-of-the-art dense simul-
taneous localization and mapping (SLAM) system based on
image sequences. However, there are still few studies on
indoor scene understanding by using image sequences to
obtain accurate classification results of the scenes.

For the above reasons, this paper improves the method
proposed by Lin et al. [7] and presents a more powerful
CRF model that fuses multiframe RGB and depth (RGB-
D) images for scene understanding. First, we use two neural
networks to perform object recognition and scene classifi-
cation for each frame in the image sequence of the same
scene. Based on this, to comprehensively infer the scene
category, we build a compound semantic scene model from
the image sequence. The model is completed by identifying
and merging the duplicate objects in different images and,
furthermore, removing the objects that have less impact on
scene classification to increase the difference between scene
classes. The above result is used as one of the object unary
potentials in our multiframe fusion oriented CRF model.
Additionally, we merge the scene classification results for
images appearing in the sequence in terms of the ‘importance
index’ of each frame and use the merged result as scene unary
potential. Finally, we use the scene-object binary potential,
which is estimated from the training set by counting the co-
occurrence frequencies between certain scene-object pairs.
This binary potential can fuse original object recognition and
scene classification results and help to determine the scene
category corresponding to the image sequence. Notably, this
algorithm incrementally updates as a new image arrives
by computing the latest unary potentials of objects and of
the scene to obtain an overall recognition over the scene.
We divide the NYU v2 [16] dataset into image sequences and
test the efficiency of our approach. The experimental results
show that our model achieves the best performance against
state-of-the-art baselines.

To make scene understanding results more applicable,
we build a scene configuration map while fusing images for
scene understanding. After obtaining the results of object
recognition and scene classification for the first image,
we extract the relationship between objects on the single
image and use this information to build the original config-
uration map. Incrementally, we fuse configuration maps of
incoming images and, finally, obtain the configurationmap of
the whole scene. The configuration map can be used to help
the robot conduct topology positioning, object searching,

man-robot interaction, etc. Since the configuration map does
not need specific positioning information, it is not sensitive
to local changes such as object movement. Correspondingly,
the configuration map has the advantages of better robustness
and less time consumption for building than the existing
compound semantic maps [4].

The rest of the article is organized as follows: Section II
briefly reviews the existing work related to this paper.
Section III introduces the multiframe fusion oriented CRF
model, including the potential definition and incremental
update of the model. In Section IV, we show how to build
a configuration map and compare the proposed methods
with existing representative methods on the NYU v2 dataset.
Finally, Section V concludes and discusses future work.

II. RELATED WORK
The work involves research activities in three areas: object
detection, scene classification, and semantic map building.
With the rapid development of computer vision and robot
SLAM, there have been many papers that address scene
understanding. In this section, we discuss some of those that
are closely related to this topic.

A. OBJECT DETECTION
In general, existing object detection methods can be divided
into two categories: traditional methods and methods based
on neural networks. In traditional methods, object detection
results are obtained by the following steps [17], [18]. (1)
Extract object rectangles from the pyramid of the image by
using some prior knowledge. (2) Design features for object
detection and extract the features from the object rectangles.
(3) Design a classifier to determine the object category of the
extracted rectangles.

Neural network-based methods can be divided into single-
stage methods such as YOLO [14] and two-stage methods
such as Faster R-CNN [15]. In two-stagemethods, first obtain
proposal regions where an object may exist, and then use a
neural network to extract features and decide categories of
proposal regions. In single-stage methods, the region pro-
posal step is discarded, and the result of object detection is
obtained in a single branchless convolutional network.

Methods based on neural networks in recent years have dis-
played better performance than traditional methods. Among
them, the detection speed of single-stage methods is faster
than two-stage methods, whereas two-stage methods work
better when objects are relatively small in images. Consid-
ering both the speed and accuracy of the methods, we decide
to use Fast R-CNN [2] as the method for acquiring the seg-
mentation potential in our CRF model.

B. SCENE RECOGNITION
In terms of feature level, the methods of scene recognition
can be classified into fourmajor categories: methods based on
underlying features, methods based on middle-layer features,
methods based on high-level features, and methods based on
multiple-level features.
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Methods based on underlying features extract global or
local appearance features such as color, edge, and texture,
from the images and then use the extracted features to train
a classifier such as KNN and SVM to classify the images.
Many different feature configurations are proposed, and sev-
eral remarkable configurations are widely used. For instance,
the low-dimensional global feature description operator GIST
in scale space [11], the local feature based on gradient his-
togram [1], and the local feature descriptor SIFT [8] are
invariant to uniform scaling, orientation, and illumination
changes. Since the release of the Places dataset, neural net-
works such as AlexNet [5] and ResNet [27] have been used
to extract underlying features and predict scene labels [20].

Methods based on middle-layer features are proposed
to bridge the gap between the underlying features and
global context. The representative is the bag-of-visual-words
(BoVW) [10]. In BoVW, images are treated as a collection of
independent vocabularies and images are classified by trans-
ferring a text categorization method to scene classification.

Methods based on high-level features are consistent with
the human cognitive principle. The objects in the scene are
used as features to train a classifier. The typical method is
the object bank method proposed by Li et al. [6], which first
detects objects and then treats object classes as features to
feed the scene classifier.

The underlying, middle, and high-level features of the
scene are comprehensively utilized by methods based on
multiple-level features. For instance, Lin et al. [7] uses CRF
to combine the underlying and high-level features for deter-
mining the scene category of an image.

In general, by the existing scene recognition methods,
different image features are utilized, and multiple-level fea-
tures can offer a better overall description of the scene than
other feature forms. Based on this consideration, we extend
the method proposed in [7] and adapt it to the case with
multiframe RGB-D image data for the same scene.

C. BUILDING SEMANTIC MAP
There are two different methods for building semantic maps
in the robotics domain. The popular methods are based
on simultaneous localization and mapping (SLAM). These
methods use metric maps obtained by SLAM and add seman-
tic information [12], [19]. The other methods do not involve
low-level metric maps. For example, Ranganathan and Del-
laert used the objects in the scene to build a semantic
map [13].

Semantic maps based on SLAM can represent the scene
in detail, including both space and category information of
the objects. However, this kind of map is complicated and
time-consuming to build and requires substantial memory.
Thus, a lightweight semantic map without spatial details of
the scene is adopted in this paper to serve practical robot tasks
such as topology positioning, object searching, man-robot
interaction, and even man-like navigation. Moreover, our
method is simpler than [13] because it only saves categories
of objects and relations between them.

III. METHODS
A. PRINCIPLE OF MULTIFRAME FUSION BASED ON CRF
Considering that a single image frame may be insufficient
for describing and understanding an entire scene, we pro-
pose a novel framework that fuses multiple frames of
RGB-D images by weighting the importance of an image
to jointly determine the scene category. Furthermore, cur-
rent research shows that the CRF-based model combining
relations between scenes and objects achieves superior recog-
nition performance over purely feature-based methods in
complicated indoor scenes [7]. To improve the result, by inte-
grating multiframe information and extending the model
in [7], we formulate multiframe fusion based on the CRF
model. Specifically, ourmodel fuses scene appearance, object
appearance, object geometry, the context of the scene and
objects in multiframe images to improve scene classifica-
tion accuracy. In this framework, the model incrementally
updates the scene understanding result as a new RGB-D
image arrives.

Formally, we define objects in a given image as yi ∈
{0, 1, . . . ,C} and the scene of an image in a sequence as
s ∈ {1, 2, 3, . . . , S} where C represents the number of object
classes and S represents the number of scene categories.
Moreover, 0 represents the class ‘‘unknown’’. In addition,
we rank recognized objects in terms of their relevance to
certain scenes, deleting unimportant objects that may inter-
fere with scene classification. For example, curtains may
appear in various scenes, such as bedrooms, offices, and
bathrooms, so they are not discriminative for scene classi-
fication and are regarded as unimportant objects. We use
‘importance’ for an object to denote its relevance to scene
classification.

As illustrated in Fig. 1, we utilize the appearance and geo-
metric properties of objects, appearance features of the scene
and co-occurrence relationships between them. Whereas
there are formal similarities to the CRF model in [7],
our model has different definitions for the potential items,
as depicted in (1):

p(yi, s) = (1/z) exp(ωsψs(s)+
∑

t
ωt

∑
i
ψt (yi)

+

∑
m
ωm

∑
i
ϕm(s, yi)) (1)

There are three kinds of potentials in this model. ψs(s)
is a unary potential of scene s. ψs(s) is obtained by
computing the weighted average value with scene clas-
sification results of each frame in the image sequence.
The weight of each frame is determined by the impor-
tance of the objects it contains. ψt (yi) is a unary poten-
tial of object yi, where i = 1, 2, 3, 4, 5, . . . represents
the different objects in an image sequence and t =
1, 2, 3, . . . represents the different object unary potentials.
{ϕm(s, yi),m = 1, 2, 3, . . .} is a set of binary potentials that
capture the relationship between scene s and object yi.With
these three potentials, we can extract the most discrimina-
tive characteristic information in an image sequence of a
scene.
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B. POTENTIALS OF MULTIFRAME FUSION BASED CRF
As shown in (1), the potential configuration we adopt to
depict and use CRF is similar to [7], but we redefine the unary
scene potential to take advantage of the whole information
from multiframe images. Moreover, we manage to cut object
potentials by removing duplicate objects generated during
multiframe integration and unimportant objects somewhat
irrelevant to the scene category. This allows our model to
outperform the work in [7] on datasets with multiview images
for a single scene.

1) UNARY POTENTIALS OF OBJECT
In ourmodel, we define the segmentation potential and geom-
etry potential to describe the properties of objects.

a: SEGMENTATION POTENTIAL
In [7], researchers first generate bounding boxes of objects in
the image and then use six types of RGB-D kernel descrip-
tors to train a classifier to obtain the segmentation potential.
To obtain a more accurate segmentation potential, we use the
Fast R-CNN proposed by Girshick [2] to detect the objects in
the image and use the result of Fast R-CNN as our segmenta-
tion potential. The segmentation potential is defined in (2).

ψseg(yi = v) = PrFast R-CNN(yi = v) (2)

where yi is the i-th object in the image detected by Fast
R-CNN, v is an object category and PrFast R-CNN(yi = v) is
the probability that object yi belongs to object category v.

b: GEOMETRY POTENTIAL
We first map the object bounding boxes detected by Fast
R-CNN to the 3D coordinates and obtain their minimum
circumscribed cuboids. Then, we capture ten properties of
the cuboids, namely, height, width, length, horizontal aspect
ratio, vertical aspect ratio, area, volume, parallel-to-wall,
close-to-wall, and close-to-ground, to train a support vector
machine (SVM) as described in [7]. The geometry potential
is the result of an SVM and can be described as follows:

ψgeo(yi = l) = rl (3)

where rl is the probability that the cuboid corresponds to the
object category l obtained by the SVM.

c: DELETE DUPLICATE OBJECT INSTANCES
One novelty of this paper is to fuse multiframes of images for
a better understanding of the environment instead of using
a single image. This resembles human behavior of looking
around when arriving in a large place. Since one object may
be contained in different frames of images, duplicate object
instances would affect the result of scene understanding and
need to be deleted. The idea is that we first detect whether
a new frame has the same object instances as the exist-
ing frames and then discard unary potentials of duplicate
instances in the new frame. We adopt a method proposed by
[21] for detecting duplicated instances.

d: DELETE UNIMPORTANT OBJECTS
As mentioned before, we delete objects that have little rele-
vance to the scene category and retain the objects that tend to
significantly impact scene classification results. We find that,
statistically, the more likely an object appears in one or a few
scenes than it appears in other scenes, the greater relevance to
these scenes it has. Based on this rule, we propose a method
for calculating the importance of an object to a scene, which
can be defined as follows:

Impi =
∑S

j=1
[(oij/sj)/(

∑S

j=1
oij/sj)− 1/sj]2 (4)

where Impi is the importance of the object class i, and S is
the number of scene categories. oij represents the times that
the i-th object occurs in the j-th scene, and sj indicates the
number of images contained in the j-th scene. The values of
oij and sj are obtained by counting the NYU v2 dataset. Impi
is approximately equal to the variance in the probability of
the i-th object appearing in each scene.

Based on the result of deleting duplicate objects, we retain
the object whose Impi value is greater than the threshold
α. Through extensive experiments, we found that our model
performs stably when α is 0.35.

2) UNARY POTENTIALS OF SCENE
To obtain the unary potential of the scene on the image
sequence, we fine-tune Place365-ResNet [20] to make it
suitable for the NYU v2 dataset and then use it to obtain
the scene category of each image. The output of Place365-
ResNet can be seen as the probability of each scene category.
Then, we obtain the weighted average of the scene category
probabilities over each image in a sequence and use it as the
unary potential of the scene for the image sequence. Specifi-
cally, the weight of each image is based on the importance of
the objects detected in each image, and the unary potential of
the scene is defined as follows:

ψs(s = u) = φs(s = u)/
∑S

i=1
φs(s = i),

φs(s = u) =
∑

p∈P
µp PrResNet(p = u), and

µp =
∑

Impo (5)

In (5), ψs(s = u) is the scene unary potential that the
image sequence s corresponds to the scene category u, and
it is the normalization of φs(s = u). φs(s = u) is the sum
of PrResNet(p = u), and we use it to incrementally update
the unary potential of the scene as a new image is added.
PrResNet(p = u) is the probability that Place365-ResNet
evaluates that the scene category of image p is u. µp is
the importance of image p in the image sequence, equaling
the sum of the importance value of the objects in image p.
In addition, we retain the duplicate objects in the new image
when calculating µp.
In practice, humans generally judge the scene category

by sensing objects in the environment. It is obvious that
images containing important objects carry more informa-
tion about its scene attribution, and this kind of image is
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FIGURE 1. The model of multiframe fusion, wherein Mi , i = 1, 2, 3, . . . represents the number of objects in image i .

more important than the image without important objects.
To determine whether the neural network would change the
probability of the scene class corresponding to the change
in the existing object categories, we perform a regression
analysis on the probability of scene classes and object cat-
egories. For each scene category, we use the probability of
Place365-ResNet output as the dependent variable and use the
presence or absence of objects as the independent variables.
In detail, the regression can be described as follows:

PrResNet(p = u) =
∑C

i=1
ωixi (6)

In (6), PrResNet(p = u) is the probability that Place365-
ResNet classifies the image p as scene u, and xi is a Boolean
variable such that xi = 1 when object i appears in image
p, and xi = 0 otherwise. ωi is the coefficient we want to
obtain by regression. ωi > 0 indicates that the occurrence
of object i increases the probability that Place365-ResNet
classifies the image p as scene u, and ωi < 0 means that the
occurrence of object i reduces the probability that the image’s
scene category is u.

According to regression analysis, we find that when there
are objects typical to current scenes in the image, such
as the sink in a possible ‘‘kitchen’’, the probability of the
current scene is probably increased. When an image con-
tains objects that also appear in other scenes, such as a

sofa in the possible ‘‘kitchen’’, the probability of the current
scene is likely to decrease. This shows that objects contained
in images can influence the result of scene classification
and proves that our weight setting method is correct and
effective.

3) BINARY POTENTIAL BETWEEN SCENE AND OBJECTS
The binary potential between the scene and the objects
can provide effective information for scene understanding.
Through the interaction of the scene and objects, the accu-
racy of both scene recognition and object detection can be
improved. According to the binary potential in [7], our binary
potential is defined as follows:

ϕso(s = k, yi = l) , (
∑Ntr

j=1

∑mj

i=1
L(sj = k, yji = l))/Ntr

(7)

where yji is the i-th object detected in the j-th image of training
samples, and mj is the number of objects in the j-th image.
Ntr is the number of images in the training set. L(•) is an
indication function such that its function value is 1 when the
condition in parentheses is true, and 0 otherwise. The binary
potential can be used to approximate the co-occurrence prob-
ability of the object and the scene.
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FIGURE 2. Incremental update of multiframe fusion CRF.

C. INCREMENTAL UPDATE OF THE MULTIFRAME FUSION
BASED CRF MODEL
When a new image frame arrives, the model is incrementally
updated, as shown in Fig. 2.

We first use the duplicate object detection method men-
tioned above to delete duplicate objects appearing in the new
image. Then, we select the objects with importance above the
threshold and add their unary potentials to the original poten-
tial set. Additionally, we calculate the scene unary potential
of the new image sequence by (8):

ψs(s = u) = φnews (s = u)/
∑S

i=1
φnews (s = i)

φnews (s = u) = φolds (s = u)+ µnew PrResNet(pnew = u)

µnew =
∑

o
Impo (8)

This specifies that we first calculate the importance of the new
image µnew and the probability PrResNet(pnew = u) obtained
by Place365-ResNet. Then, we obtain the final scene unary
potential ψs(s = u) by adding the product of the two to the
original intermediate result φolds (s = u) and normalizing the
new intermediate result φnews (s = u).
Finally, we input the new potentials into the CRF model to

recalculate the categories of the scene and objects.

D. BUILDING SCENE CONFIGURATION MAP
Our scene configuration map for robots has a room-object
hierarchy structure. There is a one-to-many relationship
between the room and the objects, and one-to-one relation-
ship between two objects. Fig. 3 is a sample scene configura-
tion map of the living room including a sofa, a tea table and
a wall-hanging TV.

We complete the construction of the scene configuration
map by the following steps:

FIGURE 3. Sample of scene configuration map.

1. Object detection. Use the Fast R-CNN to detect the
objects occurring in the current image.

2. Relationship detection. Use the object relationship
detection method in [7] to extract the relationships
between the objects in the current image. The relation-
ships between objects include ‘near’ and ‘above’.

3. Duplicate object detection. Use themethod of duplicate
object detection described in Section III.B to detect
whether there are duplicate objects between the current
image and the previous input image.

4. Scene classification. Use the model we proposed in
Section III to classify the scene category of the current
room.

5. Repeat steps 1 to 4 when a new image is input.
6. Integrate the results of single images and visualize the

map. The scene category of the final scene configura-
tion map is the result of the last scene classification,
and the objects in the map are the result of merging
duplicated objects.

IV. EXPERIMENTS
A. DATASETS
We evaluate the model in the NYU v2 dataset [16] and com-
pare it with the method proposed in [7]. NYU v2 dataset is
comprised of video sequences from a variety of indoor scenes
[16]. Many images in NYU v2 dataset contain only a part of
a scene. Incomplete scene information makes it difficult for
existing image recognitionmethods to obtain excellent results
on the NYU v2 dataset. Scene understanding on the NYU
v2 dataset is still a challenging issue.

NYU v2 dataset contains 1,449 densely labeled aligned
RGB-D images. The original annotation of the NYU
v2 dataset assigns all the pixels to 894 object categories.
Because there are too many object categories and some object
categories have few object instances, it is difficult to manipu-
late the 894 categories in practice. To address the problem and
to make it easy to compare with the method proposed in paper
[7], we use 21 object classes and 13 scene classes, which
are also used in [7]. The 13 scene classes are kitchen, office,
bathroom, living room, bedroom, bookstore, classroom, home
office, playroom, reception room, study, dining room, and
others. The 21 object classes are mantel, counter, toilet, sink,
bathtub, bed, headboard, table, shelf, cabinet, sofa, chair,
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TABLE 1. The number of image sequences with different m.

chest, refrigerator, oven, microwave, blinds, curtain, board,
monitor, and printer.

We divide the 1,449 images of the NYU v2 dataset into
different image sequences by manually putting the images
obtained in the same room into a certain sequence. We parti-
tion the dataset into a training set containing 755 images and
a test set containing 694 images using the same split as [7].
Then, we manually divide the test set into image sequences.
Let m be the number of images in an image sequence. We
present the number of image sequences with different m
in Table 1.

B. VISUALIZATION OF EXPERIMENTAL RESULTS
The incremental result on the image sequences of our method
is shown in Fig. 4.

If the initial input frame does not contain overall scene
information, then the model makes an incorrect judgment on
the scene category because the scene information is not suf-
ficient. However, with the addition of new images, the infor-
mation about the scene is gradually complemented, and the
incorrect classification result based on the initial image is
corrected.

Fig. 5 shows the construction process of the scene con-
figuration map. In Fig. 5, (a) (b) (c) (d) are images in the
image sequence, whereas (e) (f) (g) and (h) are configu-
ration maps corresponding to each single frame image. (i)
and (j) list the incremental results of scene configuration
map building, where the map does not change when the
third and fourth images are added without detecting new
objects.

Qualitative experiments are given above and show that
the proposed model yields meaningful results. Hereafter,
we verify our model on an original test set of NYU
v2 and on a combined test set of image sequences in Sec-
tions IV.C and IV.D. Each sequence in the combined test
set contains several images misclassified by the model in
[7]. We want to determine if the fused model can cor-
rect the scene classification fault by the original model.
In Section IV.E, we perform a comparison against another
multiframe fusion method. In Section IV.F, we conduct
four-fold cross validation to select optimal parameters for
the model. In Section IV.G, we compare our method with
state-of-the-art scene classification methods to prove the
effectiveness of our method. In Section IV.H we show the
results of the ablation experiments performed on this method,

FIGURE 4. The incremental results of scene classification. (a) (b) (c) (d)
(e) shows the scene classification results of five different image
sequences. The images in image sequences are input into our model
frame by frame, and the latest result of scene classification is displayed
below the current image frame.

and in Section IV.I we report the time efficiency of our
method.

C. EXPERIMENTS ON THE ORIGINAL TEST SET
We use different object importance thresholds to test our
model on the test set we split and compare the accuracy of our
model with the model proposed in [7]. We take a threshold of
every 0.05 in the range of 0 to 1 and retain the objects whose
importance is greater than the threshold. The test results are
shown in the second and fourth columns of Table 2. It can be
seen from the table that the accuracy of the scene recognition
of our method is higher than that of the method based on a
single image proposed in [7]. The accuracy can be increased
by 14% at most.

D. VERIFICATION OF THE ABILITY TO CORRECT THE
MISCLASSIFICATION ON SINGLE IMAGES
We extract the misclassified images in [7] and use the image
sequences containing these images as the test set. The images
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FIGURE 5. Incremental process of building a scene configuration map. (a) (b) (c) (d) are images in the image sequence, whereas (e) (f) (g) and (h)
are configuration maps corresponding to each single frame image. (i) and (j) list the incremental results of scene configuration map building. (i) is
the final configuration map corresponding to the first image, and (j) is the final configuration map corresponding to the second to fourth images.

in the remaining sequences are used as the training set.We use
different object importance thresholds to test our model. The
objects whose importance is greater than the threshold are
retained. The experimental results are shown in the third and
sixth columns of Table 2. It can be seen from the table that the
accuracy of the scene recognition with our method is higher
than that of the method based on a single image. This shows
that our model can correct the misclassification on a single
image by fusing information from multiview images within
the same scene.

E. COMPARISON WITH OTHER MULTIFRAME FUSION
METHODS
The above two experiments show that the multiframe infor-
mation fusion method can improve the experimental accu-
racy of scene recognition compared with the single image-
based method. Furthermore, we compare our model with the
multiframe voting-based method, which may be considered
the simplest multiframe fusion method. ‘‘Multiframe voting’’
refers to voting using the scene classification result for each
image, and the scene category with the most votes is the final

scene classification result for the image sequence. If there
are two or more scene categories with the same number of
votes, the number of objects contained in each image would
be counted. The scene category including the most objects
is taken as the final scene category of the image sequence.
The last row of Table 2 shows the classification accuracy
of the multiframe voting method. It can be seen from the
table that the accuracy of our model is higher than that of the
multiframe voting method. This proves that our model makes
more efficient use of information in multiframe images.

F. DETERMINING THE THRESHOLD BY
CROSS-VALIDATION
To determine the threshold of retained objects that the model
ultimately uses during fusing multiple frames, we divide the
NYUv2 dataset into five equal parts into units of the image
sequence. Then, we perform cross-validation on the first four
parts and select the threshold with the highest accuracy as the
candidate. Finally, we use the first four parts as the training set
and the fifth part as the verification set to verify the validity
of the candidate threshold.
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TABLE 2. Comparison of scene classification accuracy on the NYU v2 dataset between other methods and our method under different thresholds.

TABLE 3. Cross-validation on NYUv2.

The results of the cross-validation are shown in the first
five columns of Table 3. The last column shows the accuracy
of the verification. It can be seen that when the threshold
is 0.35, the performance of our model is relatively stable.
The performance of the multiframe fusion-based CRF model
is better than that of the single-frame-based CRF method
proposed in [7].

G. COMPARISON WITH STATE-OF-THE-ART SCENE
CLASSIFICATION METHODS
Table 4 shows the performance comparison with state-of-the-
art scene classification methods on the NYU Depth V2 test
dataset. We select the stable experimental threshold obtained
in the four-fold cross-validation and the threshold with the
best experimental results in the original test set to com-
pare with other methods. Since other methods use 10 scene
categories, and our method uses 3 more scene categories,
we map the extra 3 scene categories to ‘others’ and re-count
the accuracy of scene classification. Our CRF with the stable

TABLE 4. Accuracy comparison with state-of-the-art methods on the NYU
Depth V2 test set.

threshold outperforms state-of-the-art methods, and our CRF
with the best performance threshold is 0.2% more accurate
than the former.

H. ABLATION STUDY
We performed ablation experiments on our method on the
NYU Depth V2 dataset, as shown in Table 5. The base-
line multiframe fusion model sends the image in the image
sequence to Place365-ResNet for scene classification. Then,

VOLUME 8, 2020 65043



H. Chen et al.: Overall Understanding of Indoor Scenes by Fusing Multiframe Local RGB-D Data Based on CRFs

TABLE 5. Ablation study for multiframe fusion CRF on the NYU Depth V2
Dataset.

it sums and normalizes the scene probabilities of the images
as the scene classification result of the image sequence.
It achieves 66.2% accuracy, which is already a high baseline
compared with the state-of-the-art methods. The MD model
designs weights for each frame of the image on the basis of
the baseline. It first deletes unimportant objects in each frame
and then uses the remaining objects’ importance to calculate
the image weight. The classification accuracy significantly
improved after adding image weights to the baseline. TheMC
model takes the scene classification result of the baseline as
the scene unary potential of the CRF and uses the relationship
between objects and scenes to adjust the existing scene clas-
sification result. It can achieve better performance compared
with the baseline model. The MDC model takes the classi-
fication result of MD as the scene unary potential of CRF
and uses CRF to adjust the scene classification result. The
accuracy of scene classification improves 1% after adjusting
the MD model by CRF.

I. RUNTIME PERFORMANCE
We test the time efficiency of our algorithm on the NYU
Depth V2 dataset. All tests are performed on an Intel Core
i7-8700 CPU and an Nvidia GTX 1060 GPU. We obtain the
scene unary potential and object unary potential for every
frame. This process takes an average of 0.05 s/frame. Then,
we use these potentials to form the CRF and use it to modify
the results. This phase requires 0.01 s/frame on average.

The time for scene classification using Place365-ResNet
is approximately 0.02 s/frame. Although the method in this
paper is slightly slower than the neural network method,
it still has better real-time performance. Furthermore, our
method has a higher scene classification accuracy than
Place365-ResNet. The time required for CRF iteration in [7]
is approximately 0.01 s/frame, which is almost the same as
the CRF in this paper. This shows that although the CRF in
[7] is extended from a single frame to multiple frames in this
paper, it does not increase the required processing time.

V. CONCLUSION
In this paper, we proposed a multiframe RGB-D image fusion
model based on CRF to recognize the scene category in an
overall view. The configuration map of a scene is incremen-
tally built as an output of the scene understanding to be used
for possible robot tasks. We divided the NYU v2 dataset
manually into image sequences corresponding to different
places and compared ourmodel with the typical single image-

based method. The experimental results show that our model
has a better performance in scene understanding against state-
of-the-art baselines.

Future work can be summarized as two-fold. First, we plan
to optimize the methods for deleting duplicate objects.
We can use the context information in an image, for example,
the relationship between objects, to improve the accuracy
for deleting duplicate object instances with smarter methods.
Moreover, we plan to perform 3D reconstruction of image
sequences and use the 3D reconstruction result to classify the
surrounding scene.
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