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ABSTRACT We propose a set of optimization techniques for transforming a generic AI codebase so that
it can be successfully deployed to a restricted serverless environment, without compromising capability or
performance. These involve (1) slimming the libraries and frameworks (e.g., pytorch) used, down to pieces
pertaining to the solution; (2) dynamically loading pre-trained AI/ML models into local temporary storage,
during serverless function invocation; (3) using separate frameworks for training and inference, with ONNX
model formatting; and, (4) performance-oriented tuning for data storage and lookup. The techniques are
illustrated via worked examples that have been deployed live on geospatial data from the transportation
domain. This draws upon a real-world case study in intelligent transportation looking at on-demand, real-time
predictions of flows of train movements across the UK rail network. Evaluation of the proposed techniques
shows the response time, for varying volumes of queries involving prediction, to remain almost constant (at
50 ms), even as the database scales up to the 250M entries. The query response time is important in this
context as the target is predicting train delays. It is even more important in a serverless environment due
to the stringent constraints on serverless functions’ runtime before timeout. The similarities of a serverless
environment to other resource constrained environments (e.g., IoT, telecoms) means the techniques can be
applied to a range of use cases.

INDEX TERMS Intelligent transportation, predicting train delays, AWS, functions as-a-service, Lambda,
NoSQL, serverless, resource-constrained, serverless codebase optimization, rail traffic big data.

I. INTRODUCTION
Standard architectures for deploying AI workloads currently
mirror typical client-server architectures with the AI models
and data sitting on the server side and requests coming from
the client side. This kind of architecture has been shown to:
not scale well, as larger volumes of requests will require
multiple servers; infer overheads for ensuring all servers are
synchronized; compromise reliability, by introducing failure
points; and, make load balancing even more challenging.
Therefore, deployed AI platforms typically ship with bulky
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system architectures which present bottlenecks and a high
risk of failure.

Serverless architectures in comparison have introduced an
array of benefits to companies as well as developers working
on real-time, cloud-based software solutions [1]. Benefits
include a much easier development pipeline with codebases
abstracted away from architectural complexities. Therefore,
serverless platforms are automatically scalable to demand at
real-time, resulting in cost savings for all parties involved,
and less strain on the developers. Such benefits drive the shift
we are witnessing nowadays from traditional architectures to
‘microservices’ or serverless based solutions.

Serverless architectures abstract away most of the
complexities and bottlenecks mentioned previously that are
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typically associatedwith high volume, production level work-
loads. These architectures place focus on solving the problem
at hand and developing a high quality application rather than
getting lost in the realm of architectural constraints. Code is
bundled in a deployment package, which on demand, runs
in an encapsulated but stateless computing container. The
containers are inflated dynamically and triggered by events
(e.g. APIs) which may last for as little as one invocation.
Following invocation(s), all resources and dependencies are
‘destroyed’, reinforcing the concept of a stateless architec-
ture and consequent billing model. However, the growing
complexity of a codebase, and specifically AI workloads,
could render the application incompatible with serverless
deployment.

In order to deliver the promised benefits, serverless plat-
forms – such as AWS Lambda – come with certain constraints
on developers with regard to what and how it can be done [2].
Limits are placed on physical codebase deployment pack-
age size (up to 250MB for AWS Lambda [3]), maximum
amount of RAM allocated, as well as maximum lifetime
before the running code instance is abruptly interrupted.
These constraints have defined the AWS Lambda Serverless
environment as a resource constrained platform [4], which
is usually intended to perform low level automated tasks
such as scheduled data transfer from one database to another,
or performing some simple post-processing when a new item
enters a storage medium. In addition, the absence currently
of GPU support has also turned developers away from using
serverless platforms for AI production workloads.

The main motivation for looking at AI in resource con-
strained environments and carrying out the study reported in
this paper was the development of a real-time predictive AI
system as part of the Real-Time Flow (RTF) research project
on intelligent transport in digital cities. The RTF project
focuses on novel techniques for monitoring and predicting
the flows of people and goods across transport networks in
an urban environment, and is collaborative effort between
the Ferrovial,1 Amey,2 Emu Analytics3 and the University of
Surrey. The system currently developed deploys a suite of AI
models for predicting train delays across the UK rail network.
Use cases vary in the sense that sometimes, predictions are at
a large scale (e.g., concerning simultaneous train movements
across the whole of the UK rail network), while at other times
they concern a single train. In addition to this scaling up and
down aspect, there are days/times where predictions might
not be requested at all, while at other days/times prediction
requests would come in every second. Finally, the solution
should be as cost-effective as possible for all project partners
involved. The use cases of our techniques in the RTF project
are described further in the evaluation section (Section IV).

The above factors drove the investigation towards a server-
less development. However, given the pairing of traditional

1http://www.ferovial.com
2http://www.amey.co.uk
3http://www.emu-analytics.com

serverless constraints with an increasingly complex RTF
codebase, this would not work ‘out-of-the-box’. In our case,
the codebase involves machine learning and deep reinforce-
ment learning models [5] for prediction and control that
would not originally support serverless deployment due to
factors such as size and runtime.

Serverless deployments can mitigate pitfalls of current
deployments of heavy AI workloads and provide a cost-
effective, automatically scalable (up or down) and elastic
real-time on-demand AI solutions. However, deploying high
complexity production workloads into serverless environ-
ments is far from trivial, e.g., due to factors such as minimal
allowance for physical codebase size, low amount of runtime
memory, lack of GPU support and amaximum runtime before
termination via timeout. This gradually led us to the tech-
niques derived in the research reported in this paper.

In this paper, we propose a suite of optimisation techniques
which can be applied to any AI codebase and transform
it into a package which is ready for serverless deploy-
ment. More specifically, our contribution lies with pre-
senting and evaluating a number of different techniques,
including:

1) Reducing the footprint of the AI (python) libraries &
frameworks used in the codebase

2) Dynamic loading and injection of the AI models into
temporary runtime memory

3) A 2-Step Framework ML Process: Training and
Inference, with ONNX formatted models

4) Improving the handling of data lookup and stor-
age, through innovative partitioning and indexing
techniques.

Our treatment focuses on the key techniques that allow one
to transform and successfully deploy such a system, using
AWS Lambda functions in the context of the RTF project.
There are more test cases and some other minor optimisations
can also be performed.

We note that this paper builds and extends the work that
appeared in the IEEE Conference on Service Oriented Com-
puting and Applications (SOCA) 2019 [6]. More specifically,
the present paper includes a more elaborate treatment of the
data handling aspects (lookup and storage), reports on addi-
tional experiments and associated evaluation, takes a closer
look at related work and the more general context of infras-
tructures for serving AI workloads in the cloud, although this
piece of work is fairly novel.

The remainder of this paper is structured as follows.
Section II presents the key techniques (points 1) - 4) men-
tioned earlier) which comprise the main contribution of the
paper. Section III reports on evaluation via experiments in
the context of a real case study involving a number of
experiments on the lifecycle of predictions on train delays.
Section IV outlines the live deployment of the serverless
AI in a real-time location analytics platform, as part of
an integrated Intelligent Transportation solution. Section V
reports on related work. Section VI contains some concluding
remarks.
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II. OPTIMIZATION TECHNIQUES AS SOLUTIONS TO
SERVERLESS CONSTRAINTS
A. MINIMIZING / SLIMMING’ PYTHON LIBRARIES AND
FRAMEWORKS AND AUTOMATING THE PROCESS
As noted in [7], we observe that similar to other restricted
execution environments, a serverless architecture will always
be constrained by the total physical space (in MB) occupied
by the codebase in question. Especially when dealing with an
AI or Deep Learning codebase, we find that complex libraries
and requirements do not work in our favor. These libraries
quickly consume the minimal package size allowance; thus,
immediately blocking the possibility of code execution /
deployment in a restricted serverless environment.

The first optimisation technique of our multi-step process
is to ‘minify’ the libraries involved. Since python libraries
typically ship with a plethora of functionality - pytorch for
example [7], it is only natural that they are associated with a
huge file size. Since serverless functions are split in such a
way whereby each handles a small task, it is easy to see how
we can begin to isolate sections of a python library into each
individual function’s environment as needed. If a serverless
function is making use of 1% of a library, we can perform
a few operations to discard the other 99% of the library in
a robust manner – thus saving massively on file size which
decreases the final deployment package size.

The key word is robustly – blindly deleting library files
would be catastrophic, since many times even the smallest
file could be referenced somewhere and used by our code.
We must make sure to constantly test our code during the
minimization process. More importantly, upon pushing an
update to our code, this entire process must be performed
again from scratch - starting once again with the full library
package and working our way down to a minified version.

The process involves monitoring read/write operations
to library files during main code execution. We begin by
initializing read/write monitors on library directories using
OS ready monitoring tools. The next step involves running
the production ready code while these monitors are active.
Monitor outputs will produce lists of files that are ‘used’ by
the code during its execution. We define ‘used’ to be a set
of files that have been accessed either by a read or write
operation by the source code.

We then proceed to safely discard any unused files; safely
in the sense that the code is re-tested after every deletion
to ensure it still executes successfully without throwing any
errors. In the case where a ‘sensitive’ file is deleted (i.e. a file
that was necessary and causes exceptions/errors by being
removed), a reference to this file is noted and the deletion
process begins again after restoring an original, unmodified
copy of the library – this time without discarding the discov-
ered sensitive file.

Note that in order to ensure a robust codebase, this pro-
cess should be set to run on every update pushed to a
production workload. Upon source code change, the steps
denoted in Algorithm 1 (see Figure 1) should be re-run as a

FIGURE 1. Pseudocode for minimization automation.

‘fresh pass’ – since updates could reflect a change in library
usage requirements.

We denote the retrieval process of any essential library
file i(x) which contributes to the ‘slimmed’ library package
as:

x ∈ {Rf ,Wf , Sf }\{Tf }

where:
• Rf contains any files accessed by a read operation of the
main code,

• Wf contains any files accessed by a write operation of
the main code,

• Sf contains any ‘sensitive’ files that may cause the main
code to fail execution.

• Tf contains pre-packaged library test files.
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Finally, in some cases, we observe that the codebase is
more complex – i.e. it does not just load a model but also
performs some other tasks, such as creating multidimensional
tensors or sending data to other devices.

Here, we may have less of a ‘deletion margin’ since our
code will be using many more files from the involved python
library. In this case, we may remove any symbolic links from
pre-compiled binaries - greatly reducing total payload size
without impacting performance or code execution. Our use
case on the RTF Project has seen arbitrary executables be
reduced from 400MB all the way down to 80MB. This helps
in overcoming deployment package restrictions.

B. DYNAMICALLY LOADING PRE-TRAINED MACHINE
LEARNING MODELS FROM CLOUD STORAGE INTO LOCAL
TEMPORARY STORAGE
Depending on the problem at hand, the pre-trainedAImodels,
e.g., machine learning models for prediction, such as those
used in the Real-Time Flow project use cases: RNNs, CNNs,
LSTM, LCS [8] (including XCS [9], UCS, and XCSI [10])
models that are associated with a specific use case may
exceed a couple of hundred MB themselves [11]. In an envi-
ronment where total deployment package size is restricted
to just 250MB, it is impossible to dedicate a large chunk
of this to just models. In the cases of small models - less
than 10MB for example - it is sufficient to ship the models
inside the deployment package locally. The latter is a practice
which we have seen in serverless use cases depicted in [12]
but for scalability purposes, it is quite evident that a different
methodology for packaging models is required.

This is why we turn to a solution which involves dynam-
ically loading large models at runtime. In the case of AWS
Lambda, we study how we can use the ‘/tmp’ or ‘temporary’
directory given to us with each instance of an encapsulated
serverless function [3].

All AWS Lambda serverless functions have a non-
persistent ‘/tmp’ directory that allows for up to 512MB of
storage [3]. Typically, this directory is used for items created
by the code which must undergo some processing

before being returned to the user. For example, imagine the
code generates an image – which should be colored grayscale
before being returned. In order to perform this post generation
processing, the image must first be stored somewhere so that
the code can then go on to re-load the image and perform the
processing (gray-scaling). This use case serves as a textbook
example as to when a developer would utilize the ‘/tmp’
directory:
• Generation of the image followed by saving it to the
‘/tmp’ non-persistent, temporary directory

• The image is loaded from the ‘/tmp’ directory
• Processing is performed on the image
• Image is returned following function execution
• Non-persistent ‘/tmp’ means all traces are removed on
function lifetime end

Instead of using this directory for artefacts generated by our
code, we present a new use case which loads a pre-packaged

(ML/DL or otherwise) model from a remote location into
this local ‘/tmp’ directory. The steps for loading a model
dynamically via cloud storage (AWS S3 for example in our
reference implementation) instead of from a local deployment
package include:
• Compress the ML model (.zip)
• Store in persistent cloud storage (e.g., AWS S3); same
geographical region as function environment

• On function invocation, before any code is run, bring
over the model

• Uncompress the model and store it into the local /tmp
directory

• Load the model into the allocated RAM and query it as
needed

One may reasonably assume that these steps could add
latency to the invocation of the serverless functions. This is
not the case however as we can choose to store models in stor-
age which lies in the same geographical region as that which
serves our serverless functions. The chart in Figure 2 shows
a series of 5 tests which aimed to measure the time taken
to perform the above steps within an encapsulated serverless
environment on models of three different footprints (10MB,
100MB and ∼250MB).

FIGURE 2. Time to load & extract varying model sizes from cloud storage
to local ‘/tmp’ directory of a serverless AWS Lambda function.

C. 2-STEP FRAMEWORK PROCESS-UTILIZING
‘FRAMEWORK A’ FOR TRAINING AND ‘FRAMEWORK B’
FOR INFERENCE
The next optimization involves the utilization of differ-
ent machine learning frameworks at different stages of the
AI software development lifecycle (SDLC) [13]. Typically,
developers of AI systems will prefer to use a complex library
for the training stage of the SDLC. Such an example is
pytorch [7], which offers great dynamic graphing capabilities
as well as other training performance boosters [7] which work
in a developer’s favour. Following the training stage however
and entering the production inference / prediction / deploy-
ment stage of the SDLC, such functionalities are generally
not required. The model is already defined and trained. The
framework simply needs to load the model and predict an
output given some vector inputs.

Given this reduction of requirements, we start to see
another opportunity for reducing the overhead of the
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predictive framework. In this case however, as opposed
to Optimization 1 - which involved slimming the origi-
nally used ML framework (‘Framework A’) – we move
away from ‘Framework A’ and completely swap it out for
‘Framework B’.

The chart shown in Figure 3 provides a high-level overview
of this process. The 2-step framework process is denoted
through the 1st and 3rd boxes in the figure. The intermediate
2nd box, simply provides a description for how models are
passed between the two frameworks.

FIGURE 3. High-level overview of 2-step framework utilization process.

An important factor to consider is the selection strategy of
the second machine learning framework. During this selec-
tion we must take into consideration the restrictions of the
deployment platform – in the serverless case, this includes
size constraints, memory constraints and a CPU only envi-
ronment. Remember that there is no GPU attached to AWS
Lambda. As this closely mirrors mobile device environments,
a good selection is the ‘caffe2’ library which is ‘optimized
for mobile integrations, flexibility. . . and running models on
lower powered devices’ as postulated in [14]. Through this,
we therefore introduce a great reduction to the prediction
framework footprint in relation to the main restriction aspects
that ship with such environments during the inference stage.

Another consideration is the format which models are
stored in during their distribution between the two different
frameworks. This is another crucial step as altering model
formats could always have an impact on performance. Rather
than converting between versions solely interpreted by each
framework separately, we turn to the ‘universal’ format lan-
guage of neural networks –ONNX [15], [16]. TheONNX for-
mat allows for framework interoperability – as models can be
stored directly intoONNXafter training by frameworkA; and
loaded directly from ONNX for inference by framework B.

Additionally, by utilizing the Open Neural Network
Exchange format (ONNX)which is an open format supported
by most – if not all – ML/ Deep Learning frameworks,
we minimize the possibility of performance degradation as
described previously.

In summary, the process here involves: a) using a com-
plex framework for training (whose usage would not suffice
in a restricted environment for inference), b) exporting the
trained model to an open format, c) using a much simpler and
resource optimized framework for loading and computation
of the open format model during inference.

D. (AWS ECOSYSTEM SPECIFIC)-IMPROVING DATA
LOOKUP SPEEDS FOR DEALING WITH MAXIMUM
FUNCTION LIFETIME RESTRICTIONS
Another optimization which we considered for our use case
on the RTF Project is to workwith the data itself which is used
to serve predictions. The system serving predictions on this
project (train delay predictions) would first need to lookup
relevant data from a database of over 250M rows – in order
to dynamically construct the multi-dimensional input vectors
which are passed to the predictive models.

This step originally introduced bottlenecks in our produc-
tion environment. We found that functions tend to ‘hang’
and induce latency when waiting for the SQL data lookup to
complete. Furthermore, another pitfall here is the maximum
lifetime allowance of an AWS Lambda serverless function.
Although this has recently been extended to 15 minutes [3],
it is not ideal for the data lookup stage to churn so much of
this lifetime. Lifetime aside, performance pitfalls and execu-
tion delays all compromise the ‘real-time’ and ‘on-demand’
aspect that such services should offer.

This led the investigation in the direction of storing the data
in a modern NoSQL format, utilizing the AWS DynamoDB
platform [17] – thus decreasing the data lookup time by
several orders of magnitude. It is once again important to
note however that failure to effectively use this technique
could result in no change or even worse performance when
compared to the traditional methods.

Effective NoSQL usage revolves around smart partitioning
and sorting of the NoSQL database. We must make sure to
choose a partition key which will ensure that read/write loads
are spread evenly across partitions. This will prevent throt-
tling, bottlenecks and hot/cold partitions during up-scale.
In the case of the RTF data, it made sense to use ‘train_id’
as the partitioning field. Partitioning around this column as
the key is ideal since this key is ‘unique enough’. Each train
is always assigned its own unique ID for data entries; but a
single train can still have multiple row entries in the database
(in which case we will see a repetition of the ID/partitioning
field).

The most effective optimization however comes with using
another field from each entry as a sorting key for each parti-
tion of the NoSQL database. An example entry (with other
columns removed for simplicity) follows:
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Each entry includes a timestamp column, which in its plain
format does not offer any data storage advantage. Converting
these timestamps to UNIX time [18] however allows for their
utilization as a sort key. UNIX/Epoch time is described as ‘the
number of seconds that have elapsed since January 1, 1970
(midnight UTC/GMT)’. Essentially, this is a simple mathe-
matical formula which is used to derive a simple ‘number’
format field from the complex timestamp field. Using the
UNIX form, we observe naturally fully sorted partitions; as
more recent times carry a bigger UNIX/Epoch time value.

Converting the above example to UNIX time yields the
following results:

This factor introduced the biggest performance boost in our
data lookup methodologies – we are able to perform lookups
through the 250M + row database in under 1/2 a second
consistently. In turn, this keeps our serverless functions well
away from the ‘timeout risk’ – i.e., in cases where the maxi-
mum lifetime would otherwise have been approached/passed.
It is not difficult to see how thismethodology could be applied
to other chronological and IoT device-based data (sensor data
for example) [19].

III. EVALUATION
We have demonstrated and shown worked examples of the
4 main optimization techniques developed for working with
complex AI workloads in a restricted environment. We used
example use-cases from the Real Time Flow (RTF) project to
illustrate the key ideas behind the techniques. In RTF, one of
the objectives was to predict the delay on a trainline at any
given time.

Using the aforementioned techniques and optimizations,
the lifecycle of the predictor system involves a) loading the
appropriate predictive model – from a pool of multiple mod-
els, b) querying relative data from aNoSQLdatabase of 250M
+ rows, c) pre-processing the query data, d) preparing the
multi-dimensional input vectors for the predictive model, and
e) running and returning the prediction from the model. For
testing purposes, the serverless system has been attached to an
API Gateway on both ends - for invocation and for returning
predictions back to the user.

Looking further and solely into step b), we turn back to the
legacy SQL-based system used originally in the RTF project
for a head-to-head comparison against the optimized NoSQL
solution derived in Part 4 of Section 3 (Implementation).

The tests that follow aim to provide a finer look into the
exact performance gains behind transitioning over to, and
thus pairing a NoSQL based setup with our serverless AI
deployment.

The format of the ‘Big Data’ in the RTF use case closely
resembles the example tables shown previously. After data
is appended/collated from other sources, the database con-
sists of about 20 columns; with 250M entries which are
cross-referenced upon serving real-time predictions. Using
the original SQL based database system with Microsoft SQL
Server Management Studio (SSMS), we test the query times
in increments. A reading is taken each time the database
grows by 25M rows; a reading being the time taken for the
SQL query to execute to completion. The ‘query’ in this case
would be a request for the set of all occurrences of a certain
‘train_id’. Note that the tests were performed on the Univer-
sity of Surrey’s central SQL Server, which is considered to be
a high spec server.

Figure 4 shows how query time changes (for both SQL
and NoSQL) as database size scales massively up to 250M
rows total. It is obvious how the query time increases linearly
for the legacy SQL system as the database size increases.
Setting aside the linear growth, even at the first reading –
where database size was restricted to just 25M rows i.e. 1

10
total size – we find the query time to be 22 seconds. This
would not work in favor of ‘best-practice’ real time system
design and would not only deteriorate the whole predictive
system’s performance, but also ruin the experience for the
intended end user. The long query times are only part of the
prediction process, which would cause serverless functions
to ‘hang’ and induce lag. In most cases, this is due to the
fact that whole table scans are required in order to retrieve all
occurrences of a single entity (by ‘train_id). It is also worth
pointing out that given a large enough dataset, theoretically
the queries would take so long that the serverless function
maximum lifetime runtime (mentioned previously) would be
exceeded – causing the functions to fail completely.

In the case of our optimized NoSQL solution, we observe
that the query time does not change, rather follows a constant
behavioural trend as the database scales up to the 250M
entries. Queries constantly run in sub-second time intervals
(∼50ms) due to the setup described in Section 3D, regardless
of database growth. The partitions are set up and sorted in
such a way that whole table scans are not required. The
NoSQL solution is extremely horizontally scalable; meaning
that different nodes/storage entities can hold different parts of
the data. In the case of the legacy SQL solution, we observed
a monolithic, vertically scalable solution; meaning that the
only the specifications of the single machine entity holding
the whole database can be boosted to increase performance.
The limitations of hardware do come into play here and as
we have already mentioned the tests were performed on an
already high spec SQL Server instance.

The second chart included in Figure 5 showcases a series
of 10 requests sent to the deployed system via RESTful
HTTP requests [20], performed 4 different times. Each stage
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FIGURE 4. Legacy SQL vs optimised NoSQL query times.

FIGURE 5. Response times of deployed system from 4 different stages/categories of burst requests.

denotes a different ‘state’ of load on the system; in the first
stage we test response time when the system was subject to
only 10 requests. We scale this up to 100, 1000 and finally
10,000 parallel requests to the system to prove that there is
no degrading in the performance of the deployed live system.
There is no ‘flinch’, namely a minor reaction which ensures
response times remain constant across the board.

We observe a consistent response time, evidently with no
negative impact on the whole system’s performance from any
of the optimization techniques. The lifecycle of the request
goes through all steps a) to e) mentioned in the beginning of
the Evaluation section.

A. LIBRARY/FRAMEWORK SLIMMING
The ‘minimization’ technique proves to be a key step in trans-
forming a codebase incompatible with a serverless deploy-
ment into one which is. In our testing and deployed system,
we have slimmed the pytorch library from 467MB down
to 98.6MB using this technique. With this result, we are
technically able to deploy (as we are under the 250MB limit)
without applying any other optimizations.

As stated previously however, since the deletion margin
varies greatly by the actions performed by the code on a case
by case basis, the other recommended methodologies should
also be taken into consideration. The automation strategy
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FIGURE 6. EMU analytics Flo.wTM application visualising population
movements alongside real-time U.K. train movements and metrics for the
RTF project.

presented makes it easy to run this technique automatically
with an ever-changing and on-going development codebase.

B. DYNAMIC MODEL LOADING FROM CLOUD STORAGE;
INSTEAD OF SHIPPING MODELS LOCALLY IN THE
DEPLOYMENT PACKAGE
Through the multiple tests shown in Figure 1, this method
has proven to be robust and should always be used when
serving any type of model in a serverless environment. Since
there are no trade-offs and performance is consistent, using
the ‘/tmp’ directory is a great way to abstract model size and
footprint away from the serverless deployment package – in
turn allowing for the development of a more complex source
code base. Space that would have otherwise been taken up by
models can now even be used for the packaging of additional
frameworks.

C. DUAL FRAMEWORK DEVELOPMENT WITH ONNX IN
BETWEEN; COMPLEX FRAMEWORK FOR TRAINING AND
DEVELOPMENT, SIMPLE FRAMEWORK FOR DEPLOYMENT
AND INFERENCE
In the case where the predictive system source code
is extremely simple and does not even perform some
pre-processing – solely prediction – we have demonstrated
how a mobile framework can be deployed to serve predic-
tions. A key step during this procedure is to utilize the ONNX
format as the ‘middle-man’ when passing models through
different frameworks. This ensures robustness and has no
effects on predictive performance during the inference stage;
as we have seen in our test/re-test situations. The granularity
and complexity of development is maintained - by utilizing
powerful frameworks during the training stage.

D. WORKING ON IMPROVING THE HANDLING OF DATA
LOOKUP/STORAGE METHODOLOGIES
This step is very specific to use cases which handle chrono-
logical data. In the serverless world however, there is

FIGURE 7. University of Surrey serverless AI/ML architecture and model
delivering on-demand predicted train service delays into the
Flo.wTM platform.

definitely a plethora of connected devices and sys-
tems [2], [21] whichmake use of such timestamped data – IoT
sensors is an example. Given a systemwhich handles data in a
manner similar to what we have shown, predictions could be
served in real time even when some complex pre-processing
is in place. In the RTF project use cases, we have seen that
data querying and processing times take 500-600x less when
compared to traditional data handling / storage techniques.

IV. CASE STUDY–THE REAL TIME FLOW (RTF) PROJECT
As part of the RTF project, the previously described Server-
less AI architecture, principles and optimization techniques
are being actively utilized to deliver the benefits highlighted
in Section I. The Real-Time visual analytics software used to
create the user interface for the RTF project is EmuAnalytics’
Flo.wTM solution.

Flo.wTM is an innovative, cloud based geo-spatial analytics
and visualization platform that is designed to ingest, analyze
and visualize high volume, fast moving data of the type
typically delivered from telemetry, IOT sensors and networks.
In the RTF Project it is ingesting, analyzing and visualizing
the movements and metrics of the whole UK rail network
in real-time. In the same interface it provides the ability to
traverse backwards in time over historic information and pat-
terns. Other time-series data including populationmovements
(derived from mobile phone movements) is also ingested
into the platform alongside several other contextual datasets,
including railway infrastructure (lines, stations, level cross-
ings, etc.).

The Flo.wTM platform itself is also based on a micro-
service architecture. For real-time analytics It contains an
enhanced Kafka based ingestion and processing service that
can run its own analytical micro-services or call out to exter-
nal ones. Similarly, the visualisation layer is capable of call-
ing external services when on-demand user interface actions
are initiated. The Flo.wTM user-interface (UI) is delivered
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within an internet browser and is designed to be hyper-
performant. To deliver this performance it places a require-
ment on both its own and external supporting services to be
highly optimised and efficient at all levels of scale.

The predictive AI system, using techniques described in
this paper (developed by the University of Surrey), is ideally
suited for highly effective and efficient integration into plat-
forms such as Flo.wTM. The architectural complexities and
overheads of running an AI workload are abstracted away
from the visualization platform with a simple parameterized
call being all that is required to request predictions. The
suite of developed AI models ensure that predictions can
be requested at the relevant point within the Flo.wTM plat-
form (i.e., within the analytical processing pipeline or on
user-initiated clicks) at both the scope and volume required
(i.e., single station or multiple stations).

The platform aims to commercialize train delay predictions
by targeting Train Operating Companies (TOCs) directly.
Case studies by the UK’s technology and innovation centre
for Intelligent Mobility (Catapult Transport Systems), have
shown funding/investments in public transport; in order to
shift towards a ‘less car dependent’ population [22]. There is a
strongly rising trend in the demand of rail travel - demand has
more than doubled since 1994 [23]. TOCs face the constant
challenge of keeping their rail services running smoothly
in unison with this rising demand. Unfortunately, passenger
satisfaction levels are dropping [23] and TOCs are facing
fines in excess of £100M annually because of compensation
paid whenever their trains are delayed. This highlights the
importance of such a flow prediction platform developed in
RTF, as TOCs can actively monitor their network perfor-
mance into the future and instantly put contingency plans in
place to minimize disruption. These plans will help minimize
delay times and not only drive operating costs down, but also
increase customer satisfaction levels. Furthermore, in some
cases TOCs may choose to reroute/cancel some services
to prioritize others. This factor, together with the fact that
contingency planning will avoid the need to run extra rail
journeys (to make up for delays), means that the total number
of rail journeys a TOC will need to run to achieve the same
commute plan will also drop.

The optimization techniques employed within the server-
less architecture ensure that the response times for delivering
the predictions are compatible with the requirements of the
Flo.wTM platform to be hyper-performant in delivering real-
time, actionable insights to the end user. Finally, the Server-
less approach ensures that the predictive AI solution can
scale up and down as required by different use cases and
deployments at an optimized cost-effectiveness that is based
on demand and not on physical infrastructure.

V. RELATED WORK
Whilst there have been previous attempts at deploying AI
workloads to AWS Lambda [24], the work is performed
within the ‘comfort zone’ of the platform. To the best of
our knowledge, there are no examples of workloads which

proved to be incompatible so that constraints of the serverless
environment had to be breached. Implementations such as the
one described in [24] fall short of the complexity that would
make the associated codebase incompatible with serverless
deployment.

To enforce the above, we refer to the ‘limitations of server-
less computing’ mentioned in [25]. As this piece of research
mentions, there is a direct relationship between the high level
of granularity of serverless computing with the decreasing
compatibility of libraries and frameworks with the serverless
computing deployment model. Code aside, as libraries them-
selves increase in complexity, their usage and inclusion starts
to be almost impossible in a serverless package due to severe
file size restrictions associated with deployment packages.
This is a factor which becomes even more of a problem when
the codebase itself also begins to grow in complexity. With
this, there is even less overhead for the amount of space
allocated to libraries/frameworks; rendering large footprint
versions incompatible with this deployment strategy.

Furthermore, the study mentions the limits of deploying
a ‘single solution’ to a ‘single serverless function’ due to
imposed constraints of serverless environments as mentioned
above. For example, it is argued that sometimes developers
are forced to go ‘too granular’; splitting one piece of work
into two – because of restrictions. This factor causes problems
with monitoring of code, debugging, multiple authentication
or even further complications around code refactoring. This
contradicts the serverless aim of simplifying the architecture
and deployment as much as possible. Instead, the solution is
almost ‘forced’ in some cases to deteriorate (due to vendor
platform restrictions).

Although discussed further in our future work section, it is
worth making a mention of attempts to connect GPU pro-
cessing to serverless environments. Especially in the AI case,
this would speed up execution times even more as server-
less would be ‘GPU enabled’ [26]. The current serverless
platform offerings from cloud vendors do not support GPU
processing within the encapsulated serverless environments.
To date, the primary factor has been cost of GPU resources,
but the high runtime of GPU related activities. The second
factor would not pair with a serverless environment, as one
of the restrictions – as already mentioned – is a limited
maximum runtime allowance for functions. However, there
is further research to be done in this topic as:
• AI inference does not take as long as the training stage.
We show how inference is possible to achieve in current
serverless standards with our optimizations. Therefore,
since exceeding runtime is not a problem during infer-
ence, GPU addition should be considered.

• The current GPU enabled serverless developments are
not ‘truly’ 100% in line with serverless standards; as
some of the modular blocks which host the GPUs still
follow an ‘always enabled’ pattern.

Since current vendor options do not include a GPU enabled
version of serverless, there have been attempts at creating par-
allelization through a custom formula of marriage between
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serverless function ‘workers’ at runtime [27]. The concept
involves a central master which spawns other workers (server-
less functions) which work in parallel to complete a large-
scale optimization problem. Efficiency is almost doubled in
this case when compared to a traditional setup; but again,
it must be noted that the solution is not 100% true to the
serverless name. As in the previous case, we find that the
‘central master node’ is actually a server. Including this in
the architecture – which unfortunately at this stage of tech-
nology is necessary - voids the integrity of labelling this a
fully serverless solution.

Rising codebase complexity could be related to reasons
such as large shipped AI model size, or even high-volume
library usage, which also contributes to mounting codebase
size. For instance, there is a trend in developer behaviour
to roll back to a traditional server-based architecture once a
codebase becomes too complex for serverless deployment.

Research reported in [28], [29] has analysed the ideal archi-
tecture for a microservices / serverless environment, focus-
ing on the turning point when the associated constraints on
deployment package size, limited RAM allocation, restricted
lifetime before termination of running code would fire, caus-
ing a degradation of the performance of an implementation.
However, no implementation strategy has been given on how
one can go about overcoming these constraints.

For these reasons, we thought it appropriate to base our
research on solutions which aim to fill the gaps mentioned
above, thus proving that complex workloads can be adapted
to handle serverless deployment.

Additionally, we pair research on modern NoSQL data
storage mediums [30], [31] with our techniques for optimis-
ing AI workloads, since such workloads are usually associ-
ated with heterogenous datasets. At the same time, we build
on top of this through partitioning and indexing techniques
which make use of data representation transformation.

VI. CONCLUSION AND FUTURE WORK
We have presented and detailed a set of serverless code opti-
mization techniques that can be used to transform production
AI workloads on big data so that they can be deployed in
a serverless architecture. The approach has been illustrated
in the context of monitoring and predicting flows of train
movements, at real-time (Real-Time Flow project). The AI
workload in this case is involved Machine Learning (RNNs,
DRL) models executing on large data set of scheduled vs
actual departure and arrival times, per station, for each train
service across the whole of the UK rail network.

In previous work, we have been concerned with aspects of
specification and verification [32] in service-oriented envi-
ronments [33], which picked up from work on long-running
transactions [34] and a RESTful architecture [35], [36] for
resources in complex digital ecosystems [37], [38]. The
application of rule-based machine learning [39] to complex
networks [40], in combination with identifying overlapping
parts of commuter journeys [41] has been successful in

making accurate personalized recommendations to stranded
passengers for their onward journeys [10].

However, the data sets we are dealing with here are mag-
nitude larger – 6 years of train movements across the whole
of the UK rail network. Additionally, the Intelligent Trans-
portation solution here comes with stringent requirements on
serving the requests for prediction at real time.

Overcoming the constraints typically surrounding a
resource constrained environment is a time-consuming and
risky task. Attention must be constantly noted to performance
in relation to all the trade-offs being made to accommodate
the restrictive environment. In this study we have shown
techniques which can be used to accommodate a complex AI
workload into a resource-constrained serverless environment.
Due to the similarity of such an environment with mobile/IoT
devices, it is easy to see how the learnings can be transferred
over to other use cases.

In addition, we have proven that the techniques can work
together in harmony to deliver an industry level deployed
serverless solution. This has been demonstrated by the inte-
gration into Emu Analytics Flo.wTM geo-spatial analytics
platform. The benefits of shipping serverless over traditional
architectures include massive cost savings, robust scalability
both ways as well as an easier development pipeline [1], [42].

As Cloud Providers work to update serverless platforms,
the next steps include research into how such deployments
could be made even easier through the likes of functionalities
such as AWS Lambda Layers [43]. Additionally, another
possibility includes investigating the development of com-
pression algorithms [44] to reduce the footprint of predictive
models even further.

With the introduction of newly released specialist
AI-accelerator hardware [45], an implementation which
includes such specialized hardware could improve the perfor-
mance of the underlying system even further. In such a case,
it would be ideal to then investigate how such a microservice
architecture can apply to the training stage of the SDLC as
well. We are seeing an ever increasing demand for faster
training times [46], so with such work applied to the training
stage, a serverless batch training solution may be possible.
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