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ABSTRACT Text Summarization is a process which efficiently retrieves the relevant information from
documents. The objective of the proposed, unsupervised approach is to summarize bug reports (software
artefacts) with complete content and diversified information. The proposed approach utilizes Rapid Auto-
matic Keyword Extraction and term frequency-inverse document frequency method to extract meaningful
keywords and key-phrases with a relevant score. For sentence extraction, fuzzy C-means clustering is used to
extracts sentences having high degree of membership from each cluster above a set threshold value. A rule-
engine is used for sentence selection. The rules are generated with the domain knowledge and based on
the extracted information by the keywords and sentences selected by the clustering method. Cohesive and
coherent summary is generated by the proposed method on apache bug reports. For redundancy removal
and to re-rank generated summary, hierarchical clustering is presented to enrich the extracted summary. The
proposed approach is evaluated on newly constructed Apache project Bug Report Corpus (APBRC) and
existing Bug Report Corpus (BRC). The results are compared on the basis of performance metrics such as
precision, recall, pyramid precision and F-score. The experimental results depict that our proposed approach
attains significant improvement over other baseline approaches such as BRC and LRCA. It also attains
significant improvement over existing state-of-art unsupervised approaches such as Hurried, centroid and
others. It extracts significant keyword phrases and sentences from each cluster to achieve full coverage and
coherent summary. The results evaluated on APBRC corpus attains an average value of 78.22%, 82.18%,
80.10% and 81.66% for precision, recall, f-score and pyramid precision respectively.

INDEX TERMS Text summarization, rapid automatic keyword extraction, fuzzy c-means, hierarchical

clustering, bug reports, rule engine.

I. INTRODUCTION

In recent years, plenty of information is available on the
internet from several domains. With huge amount of available
data, it is an arduous and time-consuming task to read entire
text documents and retrieve relevant information. To automat-
ically attain relevant information in brief, text summarization
is used. Generating accurate summary of a text document is
a complex task and requires human intelligence to extract
meaningful information from the text. Automatic text sum-
marization has been used in several domains such as doc-
ument summary [1], [2], essay or news summary [3], [4]
and e-mail summarization [5], [6]. Apart from these, several
software repositories such as Jira, Bugzilla manages numer-
ous bug reports [7]-[9] with several open source projects.
To oversee diverse number of bug reports, several automation
tasks have been conducted such as detection of duplicate bug
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reports [10], [11], fixation of bugs [12], bug report triag-
ing [13]-[15] and others. To accomplish these tasks, software
testers and developers need to wade through entire bug reports
having hundreds of sentences. A tester or developer needs
to understand history of bug reports with specific domain
knowledge as it is not a generic text summarization. In this
research work, authors have focused on generation of a sum-
mary of bug reports which are the most valued artefacts of
software project. It encloses several attributes such as title,
one-line description, BugID, detailed description, comments
made by several contributors and others. This information
is useful for locating and fixing the bug in software project.
To read and understand an entire bug report is a tedious task
and therefore, bug summarization is an emerging field of
research to help several developers to improve bug resolution
process.

In literature, two categories of algorithms exist: abstrac-
tive summarization and extractive summarization. In abstrac-
tive summarization, semantic-representation, word-order and
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natural language of a text is modified with same contex-
tual meaning. In this area, a major breakthrough is achieved
through deep learning techniques. Several researchers have
worked on Convolution neural network (CNN) [16], Recur-
rent neural network (RNN) [17], Reinforcement learning
and Generative Adversarial networks (GAN) [18] with high
accuracy as compared to other approaches used in literature.
The major shortcoming of applying deep learning methods
is the un-availability of training data as it is a supervised
approach and standard golden summaries are not available
in every domain. Whereas, in extractive summarization, sen-
tences are extracted from the text document with same order
and language to produce a condensed summary. In literature,
several supervised [19]-[21] and unsupervised [22], [23]
approaches have been proposed to summarize bug reports
automatically. In supervised approach, one such research is
carried out by Rastkar et al., [19] in which a corpus of 36 bug
reports from various open source projects was created named
Bug Report Corpus (BRC). For each bug report, 24 features
were calculated which comprises of four categories: Lexical,
participant, length and structure. Logistic regression classifier
was used which was trained on corpus of manually gener-
ated golden summaries by annotators. The results illustrate
a low precision of 57%, recall of 35%, 40% f-score and
66% pyramid precision. To improve upon the results of [19],
Jiang et al. proposed another approach PRST [20]. The
authors consider 36 bug reports of BRC corpus [19] and its
duplicate bug reports and constructed a new corpus named
Modified Bug Report Corpus (MBRC). Page-rank algorithm
is used to compute the textual similarity among sentences
and then probability of each sentence was computed using
logistic regression classifier. The results were merged and
then sentences with high probability value were selected to
form a summary. There was a slight improvement in precision
and pyramid precision with same values of recall and f-score.

In contrast, an unsupervised approach, assigns a value
based on some measure to each sentence and top ranked
sentences are selected to form a summary. Lotufo et al. [23]
proposed an unsupervised approach to generate summary by
investigating how a long report is scanned by developers.
In another work, Mani ef al. [22] employed four approaches
viz., Maximal Marginal Relevance (MMR), centroid, diverse
rank and grasshopper. In previous researches [19], [20], key-
words, lexical similarity and sentence weight features were
used as feature set.

In this work, we focus on unsupervised approach and
new method is constructed based on keyword-based fea-
tures and sentence-based features to facilitate bug report
summarization. For keyword-based feature extraction, two
methods term frequency-inverse document frequency(tf-idf)
and Rapid Automatic Keyword Extraction (RAKE) are used.
In previous work, approaches for keyword extraction focus on
corpus-oriented statistics [24], [25]. To avoid this drawback,
documented oriented methods were used [26] which uti-
lizes natural language processing to identify parts of speech
in combination with other statistical, machine learning or
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supervised approaches. To avoid these drawbacks, RAKE is
used which is language independent, domain independent
and unsupervised in nature. It gives reasonable precision
along with simplicity and computational efficiency [27]. For
sentence-based feature extraction, Fuzzy C-means clustering
has been used as compared to other features such as length,
position, title word, thematic word and others as used in past
work [19], [28], [29].

In this work, first, Bug reports from five different
projects of Apache software foundation are extracted using
a tool named Bug report collection system (BRCS) [30].
Among several extracted attributes, one-line description, long
description and comments made by various contributors
of 21 bug reports are collected to form a small sized corpus
named APBRC (Apache Project Bug Report Corpus). The
textual data of bug reports are segmented into sentences and
are preprocessed using standard preprocessing steps.

Second, for feature extraction, first keyword extraction is
done. The keywords extracted by tf-idf and RAKE are con-
sidered as keyword features. In RAKE each concept/word is
assigned a score by calculating the degree of content word in
a sentence. To compute the score of each keyword or keyword
phrase, the sum is computed on the basis of content words in
a text. As compared to tf-idf approach, RAKE extracts more
complicated phrases from the text that implicit more meaning
than individual words. For selecting the unigram words that
is not taken by the RAKE, authors further enhance it with the
tf-idf method.

For sentence-based features, Optimum number of clusters
were identified by several methods such as Gap Statistics,
K-means, Silhuoette, and with-in-squares. Based on opti-
mum cluster, fuzzy C-means clustering is applied on the
bug reports. Membership value of each sentence is computed
and based on it, each sentence is assigned to a cluster with
minimum Euclidean distance from the center of the cluster.
From each cluster, sentences with high degree of membership
are selected.

Third, after extraction of all the features, several rules are
generated and based on these rules, sentences are selected
to form an extractive summary. A compression ratio of 20%
to the original bug report is achieved. The approach is
evaluated using several performance metrics namely; preci-
sion, recall, f-score and pyramid precision and found better
results as compared to state of art methods present in the
literature.

Finally, after generating the summary, a short summary
is also generated using hierarchical clustering. Dendrograms
are generated and with the help of it, sentences are re-ranked
and one sentence is selected from a pair of similar sentences,
to generate a short summary with no redundant information.

The paper is organized as follows. In section II, the moti-
vation of the study is presented. In section III, preliminary
concepts used in proposed approach is presented followed
by research methodology in section IV. The implementation
of the proposed approach is illustrated in section V followed
by results in section VI. The threats to validity are presented
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in section VII. The related work is reviewed in section VIII.
Finally, section IX concludes the paper.

Il. MOTIVATION

Bug reports are the most valued artefact of software system.
It consists of several attributes such as description, id, title
and some predefined fields and numerous comments made by
various developers. In earlier work, it was stated that 200 bug
reports gathered from Mozilla open source project refers
other 275 bug reports. To read and comprehend all the bug
reports manually is arduous task for any tester or developer,
as each bug report consists of hundreds of sentences and
duplicate sentences. To reduce the time and effort of software
testers, a novel approach is developed for summarization of
bug reports.

Our aim is to design an innovative, novel automatic text
summarization approach that discern the domain knowledge
of bug reports and generate high quality bug summary. Sum-
mary consists of prime sentences, viz., description and code
snippets having ‘{‘, ‘}’, ‘{tmp field}’, ‘sql’, ‘<’, ‘public
static’ and ‘=". As stated in literature [21], Tf-idf, unigram,
bigram and centroid methods cannot capture the code snip-
pets from the description and comments which constitutes the
most significant part of bug summary. To achieve these code
snippets, author has used RAKE method which captures all
the code snippets from textual data of bug reports which has
not been covered by any previous work [19]-[21].

Secondly, several optimization techniques have been
applied to generate an extractive summary of text documents
which uncovers numerical features such as similarity among
sentences of text data. Although, for bug summarization,
each bug report is unique and all the sentences are different.
Therefore, in lieu of optimization technique, fuzzy clustering
is enforced to apprehend the important sentences based on
centroid method. Fuzzy clustering attains superior results
as compared to other unsupervised techniques [22], [23].
Consolidating both keywords and sentences, a rule engine
is designed to construct a final unsupervised extractive sum-
mary of bug reports. Further, to generate a short and concise
summary, hierarchical clustering is applied which removed
redundant sentences from the generated summary on the basis
of dendograms and re-rank the sentences.

Ill. PRELIMINARY CONCEPTS

Various concepts used for summarization of bug reports are
discussed in this section. It includes pre-processing of textual
data of bug reports, Rapid automatic keyword extraction,
fuzzy clustering and hierarchical clustering.

A. TEXT PRE-PROCESSING

To generate a summary, some pre-processing is required
to the set of raw bug reports. Standard pre-processing
steps are applied which includes segmentation, tokeniza-
tion, removal of stop words, removal of punctuation and
stemming.
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Segmentation: In this process, each sentence separated
by a delimiter is extracted separately from bug reports.
All extracted sentences are then stored in order of the original
bug report.

Tokenization: It is segmentation of sentences which breaks
text into meaningful elements called as tokens, I.e. words,
symbols and phrases.

Removal of stopwords: In this step, most commonly used
words such as ‘the’, ‘a’, ‘and’, ‘this’ are removed from the
textual data, which does not have semantic information.

Removal of punctuation: In this, punctuations and
special characters like interrogation, exclamation are
removed.

Stemming: It converts the words to their root form by
removing suffix and prefix from the words. For instance,
word ‘presentation’ is reduced to its root form ‘present’.

After performing all these steps, text data is converted
into a structural representation called as Document term
matrix (DTM). It represents the frequency of each term
present in a document.

B. RAPID AUTOMATIC KEYWORD EXTRACTION (RAKE)
Rake is a keyword extraction algorithm which is domain
independent. It partitions the textual data into candidate key-
words which are sequence of one or more content word that
occur in a text. It extracts candidate keywords by analyz-
ing the frequency of co-occurrence of these content words
within a candidate keyword. For keyword extraction, Rake
splits the textual data into an array of words. Then, this
array of words is split into sequence of contiguous words
separated by phrase delimiters and stop word position. The
sequence of contiguous word is called as candidate keyword
and each candidate keyword is assigned a same position in the
text. A matrix of word co-occurrence is constructed which
indicates the frequency of co-occurrence of each content
word within a candidate keyword. Candidate words are also
called as sequence of one or more content words (informa-
tive words) that occur in a text. After the identification of
each candidate keyword, each keyword is assigned a score.
The sum of the score of each content word is the total
score of each candidate keyword [30], [31]. The process
of assigning the score for every keyword is illustrated as
follows:

« First, the frequency (freq) of each content word (CW)
is calculated in a given textual document represented by
freq(CW).

o After computing the frequency, degree of a word
is calculated, represented by deg (CW). To compute
the degree, total number of words that appear in
candidate keywords consisting the content word is
counted.

o At last, ratio of degree of content word to frequency of
content word is computed, represented by

Deg(cw)/Freq(CW) M
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TABLE 1. Sentences in bug Id HDFS-7707.

1.Edit log corruption due to delayed block removal again.

2. Edit log corruption is seen again, even with the fix of
HDFS- 6825.

3.Prior to HDFS-6825 fix, if dirx is deleted recursively, an
Op_CLOSE can get into edit log for the filey under dirx, thus
corrupting the edit log restarting NN with the edit log would

fail.

TABLE 2. Score computation of various content words.

Content Edit Log Corrup | delaye | Block Re Fi
words -tion d mo | x
v-
al
Deg(CW) | 12 12 6 3 3 3 2
Freq(CW) | 5 5 2 1 1 1 2
Ratio 2.4 2.4 3 3 3 3 1
(Deg/fre
a)
Content Recur | Op_ | Corrup | Filey Restart | Dir | fai
words - clos -ting -ing X |
sively | e
Deg(CW) | 2 1 1 1 1 2 1
Freq(CW) | 1 1 1 1 1 2 1
Ratio 2 1 1 1 1 1 1
(Deg/fre
a)
Candidate Words:

1. edit-log-corruption
2.delayed block-removal
3.fix-dirx recursively
4.0p_close — edit

5.log — filey — dirx
6.corrupting — edit log-
7.restarting NN — edit log- fail

The computation of score of candidate keywords is illustrated
on text of bug Id HDFS-7707 as below and in table 2.

Score (edit log corruption) = score (edit) 4 score (log)
+ score (corruption)
=24424+3=78 (2)
Score (edit log) = score (edit) + score (log)
=24+424=438 3

Frequency(edit) is higher than frequency(corruption),
degree(edit) is higher than degree(corruption); but ratio i.e.
deg(corruption)/freq(corruption) is higher than
deg(edit)/freq(edit).

Thus, words that occur predominantly and longer can-
didate keywords are selected by rapid automatic keyword
extraction method. In comparison to other existing key-
word extraction methods such as Tf-idf, TextRank, Ngram
with tag and others, RAKE achieves higher precision and
recall [30], [31].
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C. FUZZY CLUSTERING

Clustering is an unsupervised machine learning method
which divides the data into distinct clusters. Clusters are
formed based on distances or similarity between each data
point. The two main approaches of clustering are: hard clus-
tering and soft (fuzzy) clustering. Every data point can belong
to only one cluster in hard clustering, i.e. it has value of
either O or 1.

In soft clustering, every data point can belong to every
cluster with a certain degree of membership value. Fuzzy
C-means clustering [32] is the most prominent technique
among fuzzy clustering techniques. The main objective of
fuzzy c-means (FCM) is to minimize the overall distance
(Euclidean distance) between data point and center of a clus-
ter. FCM initially selects cluster centers randomly and assign
random membership value to every data point for each cluster.
After every iteration, it updates the center of the clusters and
degree of membership is found by equation (4) and (5).

%Zyime” @

K=1

o (M) xi)
Q4Zﬁﬁmf (5)
ij

for all, j=1, 2, .... C Where, n = number of data points,

Cj = J™ cluster center,

f = fuzziness index, f £ (1, infinity)

c¢= number of cluster center

M;jj = membership of i data to j™ cluster center

Ej = Euclidean distance between i data to j cluster
center

The number of iterations minimizes the objective function
i.e. minimizes the Euclidean distance between the i data and
j cluster center.

Of = 2;1 Z;Zl (Mij)f| ’xl_ _ cj’ |2 ©)

Oy = Objective function

| Lx,' — ¢ & represents Euclidean distance between i data
to j cluster center [32]-[35].

D. HIERARCHICAL CLUSTERING

Hierarchical clustering [36] is an unsupervised clustering
technique that groups similar data into clusters. It is of two
types: Agglomerative and Divisive. Agglomerative is bottom
up clustering approach which assign each data to its cluster
whereas divisive is top down clustering approach, which
partitions a single cluster to number of similar clusters. In the
proposed approach, agglomerative hierarchical clustering is
used. In this, each data point is considered as a separate
cluster and then proximity distance of each data point is
calculated. Based on proximity, similar clusters are merged
together and a single cluster is formed. Iteratively, proximity
of newly formed clusters is computed and merged till a single
cluster is formed. The result of hierarchical clustering is
visualized using a dendogram which is a tree-like structure

65355



IEEE Access

S. G. Jindal and A. Kaur: Automatic Keyword and Sentence-Based Text Summarization for Software Bug Reports

that records several sequences of merges. Further, to com-
pute the proximity or similarity between two clusters, several
approaches are used. in this work, average linking method is
used. In this average distance is calculated between each point
in one cluster to each point in another cluster. It is calculated
using equation as Where, D;& C1 and D;€ C2 [36]

Sim (C1,C2) = Z; Z;’Zl Sim(D;, D)/|C1[*|C2]* (7)

IV. RESEARCH METHODOLOGY
Various concepts used in this research work are explained
in this section. The framework and its various modules are
explained in next section followed by the pseudocode of the
proposed approach in section IV (E).

The proposed approach focusses on four main concepts of
summarization:

« Main content coverage through information richness.

« Diversification of information with minimum content
similarity.

« Re-ranking of summary starting with significant and
meaningful content.

o Compression ration with respect to original content.

Fig. 1 depicts the framework of proposed methodology to
generate extractive summary of software bug reports. Various
components are explained as follows:

A. CORPUS CREATION AND TEXT PRE-PROCESSING

A corpus of bug reports of Apache projects (APBRC) is estab-
lished which consists of twenty-one bug reports. The one-line
description, long description and comments of bug reports
are extracted and are segmented into sentences and corpus
is constructed. The sentences are then pre-processed using
standard pre-processing steps: Tokenization, removal of stop
words and stemming. After pre-processing, document term
matrix (DTM) is constructed. The process is implemented in
R language using ‘tm’ and ‘NLP’ packages.

B. FEATURE EXTRACTION

After pre-processing of textual data, features are extracted.
In feature extraction process, all text features are extracted.
All text features are categorized as word level features or
sentence level features. Several experiments have been per-
formed with different combination to extract text features to
attain best results in terms of relevancy and coverage of bug
reports. The various features used in proposed approach are
explained.

1) KEYWORD FEATURES
To generate extractive summary, sentences are extracted. Sen-
tence is as collection of words and therefore, to select impor-
tant sentences, extraction of significant words/keywords is
necessary. Two different methods used for keyword extrac-
tion are:

1.1 Term-frequency Inverse Document frequency
(Tf-1df) It calculates the term frequency of each word and
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the inverse document frequency for each word in a document
is calculated.

1.2 Rapid Automatic Extraction Process (RAKE)

To automatically extract keywords from documents,
RAKE is used. it uses a list of stop words and phrase
delimiters. It extracts most relevant keywords or keyword
phrases form text by analyzing the frequency of word and its
co-occurrences with other words. It assigns a score to each
content word (informative word) in a keyword phrase and
sum of the score of each content word is the score of keyword
phrase. The procedure of assigning a score is illustrated in
section IIT (B).

2) SENTENCE LEVEL FEATURES
After selecting sentences based on most relevant keywords,
other features are also investigated which are termed as sen-
tence features. Various sentence level features are described
as follows.

2.1 Position of a sentence: It states that leading sentences
in document are always important and must be included in a
summary. It is computed as:

PSy=1-C"1 (8)

Si— i gsentence in a document, N- total number of
sentences

2.2 Sentence Length: It states that longest sentences are
more informative and crucial and must be a part of a summary
as compared to short sentences. It is computed as:

number of words in S;

(Si) &)

 Total numnber of words in longest sentence

2.3 FUZZY C-MEANS
To extract sentences, Fuzzy C-means algorithm is used.
The process of selection of sentences is illustrated as below.

e Firstly, clustering is performed on a set of sentences.

e To apply clustering, computation of optimum number
of clusters is necessary. In this approach, four meth-
ods are used, Gap Statistics (GSS), K-means, With-in
sum of squares (WSS) and Silhouette. The output of
all these methods are recorded and same number of
clusters computed by two or more methods is selected
as optimum number of clusters [37].

e Based on optimum number of clusters, fuzzy C-means
clustering is applied. It assigns a degree of member-
ship (probability) to each sentence of belonging to each
cluster.

e From each cluster, sentences which are more nearer
to the centroid or having high degree of member-
ship (DOM) are selected as they contain more signif-
icant information to be included in a summary.

e From each cluster, minimum two and maximum of four
sentences are selected, in order to obtain summary with
complete coverage and relevancy.
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| Re-Ranking & Short Summary

FIGURE 1. Process Flow Diagram of proposed approach.

C. RULE ENGINE
To generate a complete, concise and coherent summary,
the process of rule designing is an utmost important phase.
All the rules have been built manually with expert domain
knowledge. All rules are designed by assigning priority to all
the features. Some notations used are:
o Degree of Membership — D.O.M
o Threshold Value — ®
« Length of a sentence — L(S;)
The designed rules are as follows:
o If (D.OM > 0) for each cluster THEN (sentence is
selected)
« If (Keyword(score) > 6) THEN (sentence is selected)
o If (Keyword(score)>1) for two or more keywords
THEN (sentence is selected)
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o If (Bugld is present) N (function() is present) THEN
(sentence is selected)

o Id (L(S)) = ®) U (Keyword(score) > 1) THEN (sen-
tence is selected)

Based on these above rules, sentences are selected to form
an extractive summary. The sentences in a summary are
extracted as per their original position in the source docu-
ment. A compression ratio of 20% with respect to original
bug report is achieved.

D. HIERARCHAL CLUSTERING

The generated extractive summary of bug reports is further
processed to reduce redundancy of sentences and re-rank
the sentences in the summary. To perform re-ranking and
redundancy removal, hierarchical clustering is applied to the
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generated summary. In average linking method is applied
and clusters are visualized as dendograms. Dendograms are
tree-like graph structure which depicts hierarchical relation-
ship between sentences. The significance of sentences can be
determined by focusing on the height at which they occur
in a tree-like structure. The sentences with less height are
more significant and are arranged as top sentences. Sentences
which are at the same height depicts more similar sentences
and thus redundancy can be removed by selecting only one
sentence among them.

Thus, after re-arranging the summary sentences on the
basis of hierarchical clustering. It was deduced that redundant
sentences from the summary are removed. Sentences are
re-ranked which depicts that sentences at a lower position in
original extractive summary are more important and relevant
as per the original document. Thus, hierarchical clustering
generates more cohesive, concise and relevant summary. This
summary can be considered as short summary which will help
developers and other contributors to get a crisp information
of original bug report.

The proposed methodology is illustrated through one of
bug report of Apache project HDFS-13112 in section V (E).

E. PSEUDO CODE
See Algotithm 1.

V. IMPLEMENTATION

A. DATA COLLECTION

To assess the effectiveness of proposed approach, the prime
requirement is a corpus of bug reports. For this, a corpus
named Apache Projects Bug Report Corpus (APBRC) is
constructed which consists of 21 bug reports of five differ-
ent projects of Apache Software Foundation: Hadoop-Hdfs,
Hadoop-common, hive, groovy and hbase. The bug reports
were extracted from the duration of 2015-2018 by a tool
named bug report collection system (BRCS). A pool of bug
reports was extracted which has immense data such as title,
description, comments and other attributes. From this, 21 bug
reports were fetched to form APBRC. Bug reports of varied
lengths were fetched which consists of minimum 10 number
of comments. For construction of corpus, links of patches
were removed. The statistical information related to bug
reports is presented in table 3. The proposed approach is also
evaluated on existing bug report corpus (BRC) which con-
sists of bug reports form four open source projects: mozilla,
eclipse, gnome and Kde. All the bug reports and source code
is available at link.!

Further, newly created bug report corpus APBRC is differ-
ent from existing BRC corpus in a way that, code snippets are
included in bug report while generating the summary, which
is not present in bug reports of BRC corpus.

Also, the number of sentences in a bug Report are more in
the APBRC corpus as compared to BRC corpus.

1 https://drive.google.com/drive/folders/1xV2QWHITtglauTD 1LxTJh
VycOLNHLN4E?usp=sharing
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Algorithm 1 Keyword and Sentence Extraction algorithm

Input: S, set of all sentences of bug reports
Output: Fg, Final Summary
for each sentence, S; € §
Extract bug reports of Apache Projects from Jira Repository
Text Corpus S = Description and comments of bug reports
Decompose the given set S into sentences Sy, Sp, ...vvevnnnn.n S;.
Pre-process the corpus S and remove stop words etc..
Create Document term matrix, DTM;
//Feature Extraction process
// Identify the set of most frequent words
MFW; =0
for each term, T in DTM;
{
If (frequency of T > 10)
Then MFW; = MFW; U{T,

}
// Automatic keyword extraction
CW <« set of candidate words
SW <« set of stop words
for each CW; € CW
{
CW; < S;NSW;

i
Score (CW;) = Degree(CW ;)

n
Score (CW) = Y CW;
i=1
} Ik
//For sentence extraction
//To compute optimum number of clusters,N¢
Nci < — — nbclust (Kmeans)
N¢j < — — nbclust (GSS)
Nck < — — nbclust (WSS)
Ner < — — nbclust (Silhouette)
Ne < — —min (Ngj, Ngj, Neg, Net )
# DOM= Degree of membership
foreach S; € §
{
Compute DOM <« fem(N;,"” correlation)
for each N,
{
for each S;
{
if (DOM > 0)
Fg < S;
}
}
} //Rule based system
Rule Generation
foreach S; € §
{
If (DOM > 0)
Fg < S;
Elseif (Score (CW;) > 6) Then
Fg < S; D CW;
Elseif (Score(CW; C CW) > 1) Then
Fg < S;
Elseif (Sp ey = 6 U score (CW;) > 1) Then
Fg < S;

Fsg < {S;
Return Fg
Hierarchal Clustering
Input: Final Summary,Fg
Output: Short Summary,Sg
For each §; € Fg
{
1) PSEUDO CODE
2) Begin with disjoint clustering with level L(0)= 0 & sequence number, n=0.
3) Let ¢ & r are pair of clusters, d [(¢), (r)] = avgd [(i), ()]
4 n=n+1
Merge cluster (¢) and (r) into a single cluster to reach next cluster n L (n) =
d[(c), (N]
1) Update Distance Matrix, D
2) Goto Step (2) till one cluster is reached.
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TABLE 3. Statistical information of corpus APBRC.

TABLE 4. Extracted keyword phrases with score.

Name of the | Total # of | # of bug | Total # of Keyword/Keyword phrases Score
Project bug reports | reports sentences in general {{fseditlog}} thread safety 16.366667
selected selected bug issue
reports normal edit logging activities 11.05113
Hadoop- 10423 3 349 nointerruptslock technically isn’t 9.000
Hdfs log queue overflows 8.363636
Hadoop- 13229 5 620 start segment edits 8.18750
Common expiry isnt essential 8.00000
Hive 13949 5 309 public void logupdatemasterkey 8.0000
Groovy 7957 2 201 concurrent edit logging 7.55113
Hbase 16757 6 707 abstract secret manager 7.47619
async edit logging 7.05113
token expiration edits 6.06250
B. ANNOTATION OF BUG REPORTS Jocks intgrruptible method 5.082707
Annotation of bug reports by annotators is necessary to create whitespace issues 4.20000
a manual summary. To annotate the bug reports of APBRC exit condition 4.0000
corpus, each bug report is assigned to three annotators. Each log corruption 3 8636

annotator selects sentences, results of all three annotators are
combined and each sentence is assigned a score from O to 3.
If a sentence is not selected by any annotator, score of 0 is
assigned, score 1 is assigned if selected by one annotator, sim-
ilarly, score 2 and 3 are assigned. Golden standard summary
is generated with sentences of scores 2 and 3.

C. RESEARCH QUESTIONS
To analyze the performance of proposed approach for bug
summarization, few Research Questions (RQ) have been for-
mulated.
RQ1. Does the proposed approach attain improved results
as compared to state-of-the-art approach on existing corpus?
RQ2. Does the proposed approach perform well on other
bug reports corpus?

D. EVALUATION METRICS

As per literature, various metrics are used to assess the per-
formance of algorithms viz., Precision, Recall, F-score and
Pyramid Precision. Precision selects the number of sentences
common in both Generated Summary (GS) and Golden Stan-
dard Summary (GSS) divided by the total number of sen-
tences in Generated Summary (GS).

|GS N GSS|
|GS|

Recall emphasizes on selecting unique number of sentences

from Generated as well as Golden Standard summary divided

by total number of sentences present in golden standard
summary.

Precision = (10)

|GS N GSS|
|GSS|
F-score indicates the harmonic mean of precision and recall

calculated and depicts the overall performance of the pro-
posed approach.

Recall = (11)

Precision.Recall
F-score = 2. — (12)
Precision + Recall
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Pyramid Precision predicts the annotators perspective. It is
measured by the number of links (AL) a sentence is assigned
by all the annotators in ratio with maximum number of links
assigned to all sentences by annotators.

#AL(toprankedsentences)
Total#AL (Summarylength

Pyramid precision =

13)

E. PROCESS ILLUSTRATION

The process of proposed approach is illustrated through a
bug report #Hadoop-Hdfs-13112 from Hadoop-hdfs apache
project.

Step 1: Extraction of keywords

For keyword extraction, Pre-processing of textual data is
performed and a document term matrix (DTM) is constructed
and most frequent terms are extracted.

Cause, Corruption, deadlock, expiration, token, acquire,
change, nointerruptslock, transitions, fseditlog, concurrent,
getdelegationtoken, locking, interrupte, expose, exception

Step 2: Extraction of Keyword Phrases

This is the second step for keyword extraction. The entire
bug report is passes through Rapid automatic keyword extrac-
tion module for extracting keyword phrases which are more
significant and convey important meaning. The package
“rapidraker” is installed and keyword phrases with their
score is determined. Some of the phrases with high scores
are depicted in table 4.

Step 3: Find optimum number of clusters

To select sentences, this is the first step to find optimum
number of clusters. Clusters are computed through four dif-
ferent methods: Gap Statistics (GSS), K-means, With-in sum
of squares (WSS) and Silhouette. The graphs obtained are
depicted in fig.2.

From the obtained graphs, K-means and Silhouette attains
optimum number of clusters as 3, while GSS and WSS
attains 1 and 7 optimum clusters. Therefore, as two methods
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FIGURE 2. Computation of Optimum number of clusters.
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FIGURE 3. Membership value of each sentence.

attains 3 optimum clusters, the dataset is partitioned into three
clusters as depicted in fig. 3.

Step 4 Fuzzy C-Means Clustering
After attaining optimum number of clusters, fuzzy c-means
clustering is applied. In this, membership value is assigned

to each sentence using ‘“‘correlation” as fuzzy membership
function. Each sentence is assigned a membership value for
each cluster. The sentences with high membership value
belong to that particular cluster and that sentence is selected
as a part of summary. To illustrate this, membership value

65360 VOLUME 8, 2020



S. G. Jindal and A. Kaur: Automatic Keyword and Sentence-Based Text Summarization for Software Bug Reports

IEEE Access

Hierarchal Clustering

Top S Sentences

Cluster Dendrogram

16

[16] "So why I do I leave the interrupt set instead of
throwing? Less risky to avoid changing the abstract secret
manager. Rolling a key will catch the interrupt. If it also
decides to expire tokens in the same cycle, it will try to
acquire the read lock again, and deadlock again. Leaving
the thread interrupted prevents that and allows the run loop
to hit the exit condition."

[18] "One question\n  {code:title=FSNamesystem.java};
public void logUpdateMasterKey(DelegationKey key) {
assert hasReadLock();
getEditLog().logUpdateMasterKey(key);
getEditLog().logSync(); }{code}"

[15] "The abstract secret managers master key roll
currently catches ioes and plows ahead. Expects the while
(!done) to exit cleanly.Survives the interrupt. But can cause
expiry to crash.”

[9] "And only the secret manager is edit logging with a
read lock and all others are using a write lock, there can be
no concurrent edit logging and it covers the general
{{FSEditLog}} thread safety issue, not only the issue
between logging and rolling."

[10] Now, if we believe that it is only unsafe between edit
logging and rolling (i.e. normal edit logging activities are
thread safe), we could make {{getDelegationToken()}},

{{renewDelegationToken()}} and
{{cancelDelegationToken()} } acquire a read lock. And
perhaps lease-related calls too. Any thoughts on this?"

FIGURE 4. Dendrogram and a short summary.

of all sentences of each cluster are depicted through a graph
in fig.3.

Step 5 Fuzzy Rule Generation

After sentences are selected from each cluster based
on high degree of membership value, other sentences are
selected based on other features such as keywords, keyword
phrases, sentence length and sentence position. Sentences are
examined through various generated rules in section III (B)
and if sentence covers that rules, it is selected to be a part of
summary.

Step 6 Generated Summary

On the basis of several rules generated, final summary is
formed. The generated summary as well as manual summary
id depicted in table 5.

Step 7: Hierarchical Clustering

The generated summary consists of distinct sentences that
can be similar in meaning. Hierarchical clustering is used
to remove redundancy and re rank the sentences in gen-
erated summary. Redundancy removes the sentences with
similar meaning and re-ranks the sentences as any sentence
in lower order can describe the full bug report as com-
pared to sentences in higher order as depicted by dendogram
in fig. 4.
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VL. RESULTS

The research questions formulated to analyze the perfor-
mance of the proposed approach are discussed and analyzed
in this section. The performance of the proposed approach is
evaluated in terms of four performance measures: Precision,
Recall, F-score and Pyramid Precision.

A. RESEARCH QUESTION 1

In RQI, the performance of the proposed approach is inves-
tigated against the existing supervised and unsupervised
approaches for bug report summarization. The experimental
results in terms of four evaluation metrics is presented in table
and depicted in the form of bar graphs in fig 5. The result
illustrate that proposed Automatic keyword and Sentence
based approach attains improved results over BRC [19] and
LRCA [21] by 34.3%, 25.77%, 12.77% and 24.23%, 16.83%,
6.88% in terms of Recall, F-score and Pyramid Precision
whereas BRC and LRCA achieves better result by 2.19% and
3.52% in terms of precision. However, overall performance is
measure by F-score in which 25.77% and 16.83% improve-
ment is achieved. When comparing the proposed approach
against unsupervised techniques, proposed approach outper-
forms Hurried [23] by 7.19%, 26.03%, 20.95% and 15.44%
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TABLE 5. Manual and generated summary for bug Id #13112.
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Manual S ry

Generated Summary

Token expiration edits may
cause log  corruption  or
deadlock

Token expiration edits may
cause log corruption or
deadlock

HDFS-4477 specifically did not
acquire the fsn lock during
token cancellation based on the
belief that edit logs are thread-
safe.

HDFS-4477 specifically did not
acquire the fsn lock during
token cancellation based on the
belief that edit logs are thread-
safe.

{{getDelegationToken()} },
{{renewDelegationToken()} }
and
{{cancelDelegationToken()} }
acquire a read lock. And
perhaps lease-related calls too.
Any thoughts on this?

{{getDelegationToken()} },
{{renewDelegationToken()} }
and
{{cancelDelegationToken()} }
acquire a read lock. And
perhaps lease-related calls too.
Any thoughts on this?

Failure to externally
synchronize on the fsn lock
during a roll will cause
problems.

For sync edit logging, it may
cause corruption by
interspersing edits with the
end/start segment edits.

The handler for
{{enterSafeMode} } has
acquired a write lock.

The handler for
{{enterSafeMode} } has
acquired a write lock.

The secret manager is stuck
waiting for read lock.

The secret manager is stuck
waiting for read lock.

For sync edit logging, it may
cause corruption by
interspersing edits with the
end/start segment edits.

Async edit logging may
encounter a deadlock if the log
queue overflows.

Async  edit logging may
encounter a deadlock if the log
queue overflows.

However, HDFS-13051 lost the
race with async edits.

The nolnterruptsLock
technically isn't necessary
anymore if caller stopping the
secret manager has the write
lock, but per comments I left it
there for safety.

The nolnterruptsLock
technically isnt necessary
anymore if caller stopping the
secret manager has the write
lock, but per comments I left it
there for safety.

Luckily, losing the race is
extremely rare. In~5 years,
we've never encountered it.

Submit is pending HADOOP-
15212.

The methods no longer throw
InterruptedIOException, but
leave or set the interrupt flag if
interrupted. Why?

The addition of read locks
ensures these edit logging
activities do not collide with
edit rolling or HA transitions(In
addition to the level of safety
provided by
{{nolnterruptsLock} }).

The addition of read locks
ensures these edit logging
activities do not collide with
edit rolling or HA transitions(In
addition to the level of safety
provided by
{{nolnterruptsLock} }).

The abstract secret manager's
master key roll currently catches
ioes and plows ahead. Expects
the while (!done) to exit
cleanly. Survives the

interrupt. But can cause expiry
to crash.

The abstract secret managers
master key roll currently catches
ioes and plows ahead. Expects
the while (!done) to exit
cleanly.Survives the interrupt.
But can cause expiry to crash.

A write lock is not required
since these don't change any
state other threads are accessing
with a read lock.

And only the secret manager is
edit logging with a read lock
and all others are using a write
lock, there can be no concurrent
edit logging and it covers the
general {{FSEditLog}} thread
safety issue, not only the issue
between logging and rolling.

And only the secret manager is
edit logging with a read lock
and all others are using a write
lock, there can be no concurrent
edit logging and it covers the
general {{FSEditLog}} thread
safety issue, not only the issue
between logging and rolling.

Now, if we believe that it is
only unsafe between edit
logging and rolling (i.e. normal
edit logging activities are thread
safe), we could make

Now, if we believe that it is
only unsafe between edit
logging and rolling (i.e. normal
edit logging activities are thread
safe), we could make

So why I do I leave the interrupt
set instead of throwing? Less
risky to avoid changing the
abstract secret

manager. Rolling a key will
catch the interrupt. If it also
decides to expire tokens in the
same cycle, it will try to acquire
the read lock again, and
deadlock again. Leaving the
thread interrupted prevents that
and allows the run loop to

hit the exit condition.

So why I do I leave the interrupt
set instead of throwing? Less
risky to avoid changing the
abstract secret manager. Rolling
a key will catch the interrupt. If
it also decides to expire tokens
in the same cycle, it will try to
acquire the read lock again, and
deadlock again. Leaving the
thread interrupted prevents that
and allows the run loop to hit
the exit condition.

Went ahead and individually
lock per-token, in the off case
there's a glut of tokens to expire
and edit logging is being slow

Went ahead and individually
lock per-token, in the off case
theres a glut of tokens to expire
and edit logging is being slow

(think QIM).

(think QIM).

{code:title=FSNamesystem.java
}; public void
logUpdateMasterKey(Delegatio
nKey key) { assert
hasReadLock();
getEditLog().logUpdateMasterK
ey(key);
getEditLog().logSync(); }

One question\n
{code:title=FSNamesystem.java
}; public void
logUpdateMasterKey(Delegatio
nKey key) { assert
hasReadLock();
getEditLog().logUpdateMasterK
ey(key);
getEditLog().logSync(); }

it on failover, and new NN will
still remove it in the next
interval.

Expiry edits dont need a sync
for the reason you state.
Failover will expire

them. Unlike an explicit cancel,
an expiry isnt essential for
consistency.

I think {{logSync}} is usually
done outside of the FSN lock,
why not do the same here?

I think {{logSync}} is usually
done outside of the FSN lock,
why not do the same here?

Also just to confirm my
understanding: the comment in
{{logExpireDelegationToken} }
says that expiration edits are
batched, which is reasonable.

Also just to confirm my
understanding: the comment in
{{logExpireDelegationToken} }
says that expiration edits are
batched, which is reasonable.

The only "risk" is issuing
tokens with a lost key, which
isn't an issue because if the
token is synced, its secret was
implicitly synced.

In code there is no {{logSync}}
called at the end of the
{{removeExpiredToken} }, but
we dont necessarily have to call
it because worst case is we lost

VOLUME 8, 2020



S. G. Jindal and A. Kaur: Automatic Keyword and Sentence-Based Text Summarization for Software Bug Reports

IEEE Access

TABLE 6. Results on APBRC corpus.

Number of Sentences in | 21

Generated Summary (GS)

Number of Sentences in Golden | 18

Standard Summary (GSS)

Number of sentences in common | 16

(GSNGSS)

Precision |Gs|25c755| =(16/21)=0.7619

Recall % = (16/18)=0.8888
_ Precision.Recall =0.8203

F-score 2. Precision+Recall

Pyramid Precision | = (45/53) = 0.8490

# AL (top ranked sentences)

Total # AL(Summary length

in terms of Precision, Recall, F-score and Pyramid Preci-
sion respectively. From the bar graph, it is clearly illustrated
that proposed approach attains much more improved results
compared to other unsupervised algorithm such as Centroid,
Maximum Marginal Relevance (MMR), Grasshopper and
DivRank. The above observations established that the new
proposed approach consistently outperforms other compara-
tive techniques. Thus, it could provide effective and improved
summary for bug reports. Shown in Fig 5.

B. RESEARCH QUESTION 2
To further validate the results of proposed approach, it is
also evaluated on newly created APBRC corpus and RQ?2 is
addressed. The summary of each bug reports is generated
based on automatic keyword and sentence extraction using
RAKE and Fuzzy C-means clustering. It is an unsupervised
learning method and shows an improved result as com-
pared to BRC approach. Average values of 78.22%, 82.18%,
80.10% and 81.66% are obtained for Precision, Recall,
F-score and Pyramid Precision respectively. The results
achieved in terms of Precision, Recall, F-score and Pyra-
mid Precision are calculated. For illustration #HDFS-13112
as in table 6. Table 7 illustrates the number of sentences in
Generated and Golden Standard Summary for all bug reports
of APBRC corpus.

Comparison of results on APBRC (21 bug reports) and
BRC (36 bug reports) Corpus using Proposed methodology
is depicted in fig. 6.

Vil. THREATS TO VALIDITY
In this section, various threats to internal and external validity
are discussed.

A. INTERNAL THREATS TO VALIDITY

One of the primary threats to internal validity is splitting the
paragraphs into sentences. In this study, sentences are splitted
when punctuations like ‘., ;” “?” *...” are encountered. As dif-
ferent developers have distinct writing style, it is not possible

to provide accurate results. Therefore, to minimize the risk,
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Camparsion of Different Techinques
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n
H BRC 67.79 @ 28.16 38.19 58.99
N LRCA 69.12  38.27 47.13  64.88
Centroid 5426 @ 28.61 36.35 46.11
MMR 62.72 3734 45.06 55.67
H DivRank 59.03 35 54 43
M Grasshopper 51.83 = 30.15 36.65 @ 50.63
M Proposed
Method 65.6 62.5 63.96 71.76
W BRC HLRCA
Centroid MMR
M DivRank B Grasshopper

M Proposed Method

FIGURE 5. Comparison of different algorithm on BRC Corpus.

most of sentence terminators are identified and paragraph is
split into sentences. Another threat to validity is annotations
done by various annotators. As each bug report is interpreted
differently by each annotator based on their understanding.
To minimize the risk, three annotators are selected to provide
annotation to each bug report. A sentence is selected to be a
part of summary, if selected by two or more annotators.

B. EXTERNAL THREATS TO VALIDITY

To employ our proposed technique, a corpus consisting of bug
reports is required. It does not require any training set as it
is an unsupervised approach. For training only few corpora
such as brc is available. So, to generate summary of any bug
report, without the availability of manually generated golden
standard summary, an unsupervised approach is proposed.
This reduces the threat as proposed technique is evaluated on
other corpus and results are generalized.

VIil. RELATED WORK

In this section the work done to automatically gener-
ate summaries of bug reports summarization approach is
explained.
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TABLE 7. Detailed description of APBRC corpus.

#
# sentences | #sentences sentences | #sentences

# total manual generated # total manual generated
Bug# | sentences | summary summary Bug # sentences | summary | summary
Bug 1 137 23 22 Bug 12 | 81 20 19
Bug 2 136 24 24 Bug 13 |29 8 7
Bug 3 57 19 21 Bug14 | 53 13 11
Bug 4 154 28 26 Bug 15 | 38 10 9
Bug 5 47 12 10 Bugl6 | 124 28 29
Bug 6 197 40 41 Bug 17 | 57 18 19
Bug 7 160 35 34 Bug 18 | 48 12 11
Bug 8 107 23 23 Bug19 | 117 27 25
Bug 9 103 24 23 Bug20 | 275 50 52
Bug 10 | 53 12 13 Bug?2l | 86 22 21
Bug 11 | 108 26 27

A. EXTRACTIVE SUMMARIZATION

Extractive summarization is a method to generate summary
of documents by extracting sentences from the original doc-
uments. It has been used in several areas of applications
such as web articles [2], meeting and telephonic conversa-
tions [3], multi-document summarization [1], [38], [39], auto-
matic highlighting of text [40] and many others. To produce
an extractive summary various technique are used such as
genetic algorithm [41], conditional random fields [42], neural
networks [43], semantic similarity such as latent semantic
analysis [44]-[46]. Along with these supervised learning
techniques, unsupervised learning methods such as fuzzy
logic [28], [29], [47], [48], k-means clustering along with
term frequency-inverse document frequency [49] has been
used. Patel et al. proposed a method for multi-document
summarization using fuzzy logic. Based on word and sen-
tence features, fuzzy rules were created to generate summary
of documents. To remove redundancy among sentences of
generated summary, cosine similarity measures is used. The
approach was evaluated on DUC 2004 news dataset by several
metrics namely, pyramid precision, content coverage score,
relative utility and ROUGE [28]. R. Abassi-Ghaletaki et al.
used fuzzy logic system along with evolutionary algorithm
and cellular learning automata to generate a summary of DUC
2002 dataset. The approach was evaluated using ROUGE-1
performance measure and results were compared with several
other methods. The results indicate that evolutionary algo-
rithms combined with fuzzy logic method outperforms other
techniques [47]. Goularte et al. proposed a method that used
fuzzy metrics to extract most informative sentences. After
pre-processing of textual data, sentence score was identified
using several features and scores was normalized in range
of 0 to 1. In fuzzy analysis, 27 rules were produced in a
rule base system and relevance was computed using bell
membership function. The proposed method was evaluated
on Portuguese texts collected in VLE. The results conclude
that fuzzy summarization improves the informativeness of
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generated summary along with identification of concepts to
guide teachers and students in VLE [29]. In another research,
Valdes et al. combined semantic graphs and fuzzy logic to
generate an extractive summary of documents. A semantic
graph is generated between the concepts, based on semantic
relationships obtained through wordnet. Further, semantic
graphs of each document are merged and concept cluster-
ing algorithm is used to identify the relevant topics. For
relevance assessment of sentences, fuzzy aggregation func-
tion is applied to compute the combined results of several
features [48]. Khanna ef al. [S0] proposed an unsupervised
extractive summarization approach for summarizing text doc-
ument. In this, after pre-processing of text data, various
features such as bitoken, position of a sentence, tritoken,
sentence length, cosine similarity and term frequency-inverse
document frequency are extracted. After extraction, features
are converted into numerical data and are fed to fuzzifier
to attain linguistic value of each feature. Based on obtained
values, fuzzy rules are generated and summary is produced.
The approach is evaluated on DUC2004 and BBC news
datasets using evaluation metrics such as precision, recall and
F1 score. Sanchez-Gomez et al. [51] performs a comparative
study of disparate criterions applicable for generic extractive
summarization for multi-documents. In this, authors execute
experiments on DUC datasets with all possible combinations
of various criterions, namely Content Coverage, Redundancy
Reduction, Relevance and Coherence. Authors observed total
of eleven possible combinations. Multi-Objective Artificial
Bee Colony (MOABC) algorithm has been used as an objec-
tive function. Results conclude that including coherence and
relevance with content coverage and redundancy reduction
attains the best results followed by content coverage, redun-
dancy reduction and relevance. Coherence criteria has the
highest computational cost as it requires sorting of sentences.
In another work [52], author proposed a novel unsupervised
approach Karci Summarization for text data. It measures the
extent to which each sentence can represent the meaning of
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FIGURE 6. Various metrics Precision, Recall, F-Score and Pyramid Precision on APBRC and BRC corpus.
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FIGURE 6. (Continued.) Various metrics Precision, Recall, F-Score and Pyramid Precision on APBRC and BRC corpus.
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FIGURE 6. (Continued.) Various metrics Precision, Recall, F-Score and Pyramid Precision on APBRC and BRC corpus.

entire text in a numerical form. In this, for pre-processing
of text documents, a tool named KUSH is developed which
transfers the relations between sentences into representative
graphs. The authors used two significant concepts such as
graph theory and entropy. The performance is evaluated in
terms of Recall Oriented Understudy for Gisting Evalua-
tion (ROUGE). In successive study [53], author utilizes two
concepts: textual graph and maximum independent sets to
generate an extractive summary of pre-processed documents.
From textual graph, maximum independent sets were iden-
tified and nodes with independent sets were removed. The
remaining nodes were used as main concepts and are included
in the document summary. The approach is evaluated on
DUC 2002 and DUC2004 datasets and achieve a rouge score
of 0.38072 for 100-word summaries, 0.52954 for 200-word
summaries and 0.59208 for 400-word summaries. To address
the issue of summarization of multiple documents, Rautray
and Chandra [54] proposed a new approach based on Cat
Swarm Optimization (CSO). In this approach, after pre-
processing of text documents, similarity between sentences
is computed and sentences with similarity above threshold
value are selected. On selected sentences, CSO algorithm
is applied and final summary is generated. The approach is
evaluated on DUC data and performance is measures using
metrics such as F-score, Rouge Score and Summary Accu-
racy. The approach is also compared with two other existing
approaches namely, Harmony Search and Particle Swarm
Optimization. The results indicate that CSO attains improved
results as compared to other approaches.

B. BUG SUMMARIZATION

Few researchers have worked on summarization of bug
reports that have been reviewed in this section. Rastkar et al.
used a summarizer developed to summarize e-mail and meet-
ing conversations [4] to summarize bug reports. Thirty-six
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Bug reports of four open source projects: mozilla, eclipse,
Gnome and Kde were extracted to construct a corpus named
Bug Report Corpus (BRC). 24 conversational features were
computed for each sentence of bug report and probability was
computed. The sentences with high probability were selected
to be a part of summary. The results were compared with
the golden standard summary created by annotators and a
precision of 57%, recall of 35%, F-score of 40% and 66%
pyramid precision was attained [19]. Jiang et al. believed that
duplicate bug reports contain information related to master
bug reports and can generate more accurate summary. So,
he modified existing BRC corpus to add duplicate bug reports
of existing master bug reports. Along with 24 conversational
features pagerank algorithm was used to compute the textual
similarity among sentences. Sentences with high probabil-
ity value and sentences with high textual similarity were
selected and were merged using ranking merger. In con-
trast to previous study, results were improved in terms of
pyramid precision and precision with values of 60.39% and
59.62% respectively [20]. In another work, Ferreira et al. pro-
posed that comments of bug reports generate more accurate
summaries. Summary of 50 bug reports were generated by
ranking the comments using various ranking techniques and
conclude that pagerank combined with cosine similarity gen-
erates better results [55]. Huai et al. proposed a new method
of summarization using human intentions. Intentions were
classified into seven categories: bug description, fix solu-
tion, opinion expressed, seeking information, giving infor-
mation, meta/code and emotion express. Intentions of BRC
corpus were mined and Intention Bug Report Corpus (IBRC)
was constructed. The results conclude that improvement was
attained for precision, recall, pyramid precision and f-score
with values of 5%, 3%, 5% and 3% [56]. Jiang et al. [21]
proposed a supervised approach to summarize bug reports
named as Logistic Regression with Crowdsourcing Attributes
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(LRCA). In this proposed approach, a survey is conducted to
identify the existing techniques for the process of attribute
construction. Further, a new method crowd attribute is pro-
posed to infer attributes from crowd generated data for sum-
marization. By this method, 11 new attributes are constructed
under the guidance of heuristic construction rules and LRCA
is used to generate more accurate summaries. The approach is
evaluated on existing SDS dataset and achieves an improve-
ment of 1.33%, 10.11%, 8.94% and 5.89% for precision,
recall, f-score and pyramid precision respectively when com-
pared against state of art BRC approach.

Contrary to these supervised learning methods, few
researchers have proposed unsupervised approaches.
Mani et al. proposed an approach which removes noise
from bug reports and classifies bug reports into three types:
question, investigative or a code snippet. If a sentence is not
classified into any of three categories, it is discarded [22].
Nithya et al. used a similar approach to remove duplicated
bug reports [57]. Lotufo et al. proposed an unsupervised
approach to improve the summary generated by email sum-
marizer. Four summarizers were created to test each of the
three hypothesis and a combination of all three hypotheses.
The approach was evaluated on BRC corpus and an improve-
ment of 12% and 8% was attained in terms of precision
and pyramid precision [23]. Kukkar et al. proposed an unsu-
pervised approach for bug summarization to generate more
informative summary to meet developer’s expectation. Four
challenges were identified from the previous researches and
to overcome these challenges, two features: informative and
phrase-ness were extracted to generate all possible subsets
for the summary. Particle swarm optimization (PSO) is used
to effectively search the semantic text and select the best
possible subset of summary. The approach was evaluated
on 10 bug reports of BRC corpus [58]. In another work,
Li et al. [59] incorporates deep neural network to summarize
bug reports. The authors proposed an approach, DeepSum,
which identifies similar bug reports to form a training set and
trained an auto-encoder network to accredit scores to each
sentence of new bug report. The approach is evaluated on two
datasets: Summary Dataset (SDS) and Authorship Dataset
(ADS). The results indicate an improvement of 13.2% and
9.2% in terms of F-score and Rouge-n metrics as compared
to state-of-art existing techniques.

In this work, an automated keyword and sentence based
unsupervised learning method is proposed. For keyword
extraction Tf-Idf and RAKE are employed which extract all
significant keywords including code snippets. For Sentence
extraction, Fuzzy C-Means algorithm is employed and Rule
Engine is developed to incorporate sentences from both key-
words and sentence extraction. For summarization, only few
attributes are used namely, Tf-1df, RAKE, Sentence Position,
Sentence Length and Fuzzy Clustering as compared to several
attributes used in previous work. A final summary of bug
report is generated. To further remove redundant sentences in
generated summary, Hierarchical clustering is performed and
top 5 most significant sentences are extracted to generate a
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TABLE 8. Different method in literature.

Author Learning Algorith Attributes Corpus
& Year Method m used Selected
Rastkar Supervised BRC MXS, MNS, SMS, BRC
et.al. MXT, MNT, SMT,
2014[60] TLOC, CLOC,
SLEN, SLEN2,
TPOS1, TPOS2,
PPAU, SPAU,
COSl1, COS2,
CENTI1, CENT2,
PENT, SENT,
THISENT, DOM,
BEGAUTH, CWS,
Lotufo Un- Hurried TITLE, DES, BRC
et.al., supervised SENTIMENT
2012[23]
Mani Un- Maximu WORD, BRC
et.al.[61]  supervised m SENTENCE
marginal
relevance
, centroid
grasshop
per,
divrank
Jiang Supervised ~ PageRan MXS, MNS, SMS, BRC,
et.al., k MXT, MNT, SMT, MBRC
2016 TLOC, CLOC,
[20] SLEN, SLEN2,
TPOS1, TPOS2,
PPAU, SPAU,
COSl1, COS2,
CENTI1, CENT2,
PENT, SENT,
THISENT, DOM,
BEGAUTH, CWS
Kukkar  Unsupervis Particle INFORMATIVE, BRC
et.al., ed Swarm PHRASENESS
2019 Optimizat
[58] ion
Jiang Supervised LRCA SLOC, SLEN, BRC
et.al., REP, DES
2018[21]
Li et.al, Unsupervis  DeepSum  WORD, BRC,
2018 ed SENTENCE ADS
[591

short summary of bug report. Table 8 depicts the comparison
of previous studies on bug report summarization.

IX. CONCLUSION

This paper proposes an unsupervised approach to automat-
ically summarize software bug reports based on keywords
and sentence-based features. To eliminate the drawbacks of
corpus-oriented and document-oriented approaches as used
in literature, two feature extraction methods are used: Term
frequency-Inverse document frequency and Rapid automatic
keyword extraction are used. RAKE is language and domain
independent and is unsupervised in nature which does not
require any domain knowledge. For sentence extraction, bug
reports are divided into clusters. To compute optimum num-
ber of clusters, four methods: K-means, GSS, Silhouette and
WSS are used. For optimum number of clusters obtained,
fuzzy c-means clustering is utilized to deal with uncertain
information in bug reports and sentences in each cluster with
high degree of membership value is selected. Rule based
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system is used to combine keyword and sentence features and
a cohesive summary is generated. The generated summary
may consist of distinct sentences with similar meaning or
may contain an informative and most relevant sentence in
lower order. Therefore, to reduce redundancy and re-rank the
sentences in a generated summary, Hierarchical clustering is
performed. Compression ratio of 20% with respect to original
bug report is achieved. The approach is proposed for bug
report summarization. In bug report summarization since
training corpus is not easily available and limited to only BRC
corpus this unsupervised learning approach can be applied
to any corpus of bug report and will generate relevance and
accurate summary. This is due to the fact that fuzzy c-means
algorithm reduces the issues of ambiguity, vagueness and
incompleteness. Fuzzy C-means clustering extracts the most
important and relevant sentences from each cluster, thus pro-
viding complete coverage of entire bug report.

The proposed approach is an unsupervised approach which
can be evaluated on any dataset to retrieve concise and com-
plete summary as it does not require bug training dataset.
The approach is evaluated on newly constructed APBRC
corpus and existing BRC corpus. The proposed approach
is compared against existing supervised (BRC and LRCA)
approaches and Unsupervised (MMR, Centroid, DivRank,
Grasshopper and Hurried) approaches. The result illus-
trate that proposed Automatic keyword and Sentence based
approach attains improved results over BRC and LRCA by
34.3%, 25.77%, 12.77% and 24.23%, 16.83%, 6.88% in
terms of Recall, F-score and Pyramid Precision whereas BRC
and LRCA achieves better result by 2.19% and 3.52% in
terms of precision. However, overall performance is measure
by F-score in which 25.77% and 16.83% improvement is
achieved. Significant improvement had been achieved against
existing unsupervised approaches. It also attains an average
value for precision, recall, f-score and pyramid precision as
78.22%, 82.18%, 80.1% and 81.66% for APBRC corpus. The
proposed approach is an automatic approach and outperforms
other existing approaches used for bug summarization.

In future, different clustering algorithms will be employed
and their impact will be analyzed. Also, the performance
of the proposed approach is evaluated through various per-
formance metrics. However, in literature, ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) is used for text
documents. It has not been used in evaluating the performance
of bug reports. In future, it will be considered to employ on
bug reports.
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