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ABSTRACT Wepropose an open source hardware platform called Blinky, a sound-to-light conversion sensor
that harvests sound power at low-rate and conveniently. Blinkies are made up of a central processing unit
connected to two microphones and a few light-emitting devices, are powered by a battery, and protected
by a robust enclosure. Distributed in space and combined with a conventional video camera, they allow to
practically sense sound power over a very large area without hassle. We give a comprehensive overview of
the proposed system and its potential applications. We describe the hardware design and trade-offs made.
We provide a model for the channel between sound power measurements and signal acquired by the video
camera. Because each sensor is potentially affected by a different attenuation due to the channel, we propose
a calibration procedure to restore the scale of the measurements. The effectiveness of the calibration is
validated in an experiment. Finally, we demonstrate sound source localization using a hundred-and-one
actual Blinkies in highly reverberent environment.

INDEX TERMS Blinkies, acoustic power sensors, distributed sensing, sound source localization, sound-
to-light conversion.

I. INTRODUCTION
Sound is a powerful medium for sensing the world. Beyond
voiced communication, sound provides very detailed infor-
mation about our direct surroundings. We can, for exam-
ple, distinguish a busy shopping street from a factory or
a library, know when it is raining outside, or diagnose a
malfunctioning washing machine. Spatial cues are funda-
mental to hearing in both humans and animals [1]. They
come in two flavors: interaural differences in levels and time
delays, that is the amplitude and the time of arrival of sound
vary between the ears. Humans leverage these differences to
excel at many tasks such as sound source localization and
understanding. Using recordings frommultiple microphones,
so-called microphone arrays, it is possible to similarly take
advantage of spatial cues for audio processing tasks [2].
Notable examples are speech enhancement via beamform-
ing [3], [4], source separation [5], source localization [6]
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and tracking [7], room geometry inference [8], dereverber-
ation [9], and acoustic scene analysis [10]. Common to most
of these techniques is that they disproportionately rely on
timing cues. As a result, most microphone array designs
perform synchronous sampling of all the channels, for exam-
ple the Pyramic [11] and LOUD [12] arrays, or that of
Perrodin et al. [13]. Not withstanding, the design of syn-
chronous microphone arrays is challenging. Wired micro-
phone designs are straightforward but favor compact arrays
for practical reasons, and often require specialized hardware
for acquisition and processing [11]–[13].

Covering larger areas with microphones allows more
sources to be close to at least one microphone, providing
cleaner information about these sources. In a compact array,
on the contrary, information about distant sources is tightly
correlated among the microphones. To cover larger areas,
wireless arrays are preferable but require taking care of
synchronization and sampling frequency mismatch. In some
cases, this can be achieved with an extra time alignment
step [14]. Yet, wireless arrays still must contend with network

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 67603

https://orcid.org/0000-0002-5205-8365
https://orcid.org/0000-0003-4242-2773
https://orcid.org/0000-0002-5798-398X


R. Scheibler, N. Ono: Blinkies: Open Source Sound-to-Light Conversion Sensors

bandwidth and latency issues. More fundamentally, when
relying on timing cues, all wavelengths smaller than twice
the inter-microphone distance will be affected by spatial
aliasing [3]. For microphones spread over a large area, this
drastically reduces the range of frequencies where timing
cues based methods can be applied.

We recently proposed an alternative way of sensing acous-
tic information using Blinkies [15]. A Blinky is a compact,
battery-powered microcontroller unit (MCU) equipped with
at least one microphone and one light emitting diode (LED).
It converts the collected sound power into a luminous signal
emitted by the LED. Once distributed over space, the signals
from the Blinkies can be harvested by a conventional video
camera. Such a system is very easy to distribute over a large
area and can easily scale up to hundreds or thousands of
sensors. However, due to the frame acquisition rate of con-
ventional video cameras, the effective sampling rate is in the
30Hz to 60Hz range. This makes the proposed system very
different from conventional microphone arrays and suitable
to tackle a different range of problems. An illustration of the
system is showed in Fig. 1.

FIGURE 1. Illustration of the Blinky large-scale sensing system. The
Blinkies closer to the sound source are brighter due to the larger sound
power. The video camera is used to record the signals from all Blinkies
simultaneously. In the upper right corner, an example of a speech signal
waveform and its short term power envelope.

Such sensors seem particularly suitable for auditory scene
analysis [16]. Indeed, Blinkies can potentially measure the
spatial cepstrum which has been proposed as a robust and
reliable feature [17]. Localization is another example where
having sensors over a larger area allows localizing sources
more precisely. Indeed, compact arrays are not able to gauge
the distance to sources in the far field. Finally, there are a
number of scenarios where joint use of conventional micro-
phones and Blinkies has been already shown beneficial for
speech enhancement [15] and separation [18], [19]. A number
of specific use-cases are discussed in Section I-B.

The main thrust of this work is to explain in details the
design and operation of Blinkies. We describe the hard-
ware design of our prototype system, including trade-offs
and rationals behind the choice of components, possible

extensions of functionalities, as well as the choice of a
camera. We analyze the whole signal path between sound
acquired at a Blinky’s microphone and signal recorded by
the video camera. Accordingly, we devise a data encoding
strategy to maximize the information received at the cam-
era as explained. Because the brightness of each Blinky is
attenuated differently by the channel, we propose a calibra-
tion strategy to restore the relative scales of all the signals.
To validate the proposed system, we perform a live source
localization experiment with a hundred-and-one Blinkies we
built. We show that we are able to precisely localize a source
in an environment with reverberation time over 1.5 s.

The remainder of this paper is organized as follows.
Section II covers the system design, including hardware and
software aspects. The signal path analysis is in Section III.
Section IV explains the data encoding strategy. Calibration is
discussed in Section V. The experimental setup and results
are in Section VI. Section VII concludes this paper.

A. CHALLENGES
To make the proposed platform as useful as possible to the
community, we included features beyond the strict needs of
the current work. For example, while we advocate optical
communication, the device itself is Wi-Fi enabled. It also has
two microphones and four LEDs, while the strict minimum
would be one of each. We hope that these provisions will
extend the relevance of the device to a larger audience.

The encoding of the data to reduce distortion at the recep-
tion is an important topic. We propose a simple scheme
described in Section IV that naturally allocates more bits to
signal intensities more represented in the target audio signals.
For many applications, it is crucial that themeasurement from
the sensors are corrected for the light attenuation occurring
between sensor and camera. We show that this is possible and
discuss different strategies in Section V.
Algorithmically speaking, the vast majority of array signal

processing literature relies on phase information. In con-
trast, the proposed system has a sampling frequency in the
tens of Hertz which renders most conventional algorithms
unsuitable. To tackle this issue, we measure signal power
for which a number of algorithms have been proposed over
the years in the areas of low-rate and asynchronous sys-
tems [17], [20]–[23]. In addition, we previously proposed
algorithms for scenarios mixing Blinkies and conventional
microphones [15], [18]. Localization with 101 Blinkies is
demonstrated in Section VI-B.

Finally, a number of challenges arise due to the nature
of the optical communication channel. While left for future
work, we enumerate them here for completeness. Obviously,
due to human activity, numerous sources of interference exist
in the visible light spectrum: daylight, house lights, etc. At the
same time, Blinkies using visible light for operations can
be distracting, or even obnoxious, to bystanders. A sim-
ple way around these problems is to use infrared LEDs in
deployments. An extra challenge is that of sensor occlu-
sion when an object stands between Blinky and camera.
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While no work has been done in that direction yet, we believe
that with a sufficiently large number of Blinkies, algorithms
could be made insensitive to short occlusions of some of
them.

B. APPLICATION SCENARIOS
While motivated by some of the same applications as conven-
tional audio signal processing, the system proposed differs
sufficiently that its applications are not completely obvious.
We include here a non-exhaustive list of possible applica-
tions. We focus specifically on areas where sound has already
been found to be effective.

1) SMART SPACES
Blinkies can be used to add perception of sound field to
smart spaces. In the home, a camera-equipped voice assis-
tant becomes aware of the distribution of sound sources
in the room. In an office or conference setting, they can
be distributed around locations where public speaking hap-
pens, allowing to enhance the audio of video recordings
without extra equipment [15]. In particular, this could be
used to improve the audio of videos taken with smart-
phones. Finally, museums could use them to provide inter-
active experiences to visitors in addition to straight security
monitoring.

2) FACTORY MONITORING
Factories typically contain expensive machines and equip-
ment that need to run with high availability. Monitoring
is required to ensure the swift detection of malfunction or
failure, and otherwise ensure production efficiency. Smart
factories have been proposed to tackle these challenges and
in particular internet-of-things (IoT) is seen as an enabling
technology [24], [25]. While many IoT-based solutions rely
on specialized sensor for monitoring, sound carries a lot of
information regarding the state of operations and mechanical
integrity of machines. It has been used in a variety of areas
including gas and pipeline leak detection [26], [27], as well
as structural integrity of equipment [28]. Combined to the fre-
quent availability of CCTV cameras for site surveillance, this
means that a number of smart factory tasks could be handled
by only adding Blinkies at critical locations. They appear thus
as an attractive, polyvalent, and cost-cutting solution.

3) TRAFFIC MONITORING
Traffic engineering is the discipline tasked with designing
efficient roads and highways network systems [29]. Monitor-
ing of said networks is necessary to identify bottlenecks and
devise countermeasures. In addition to conventional induc-
tion loop vehicle counter [29], video [30] and audio [31]
based systems have been proposed. A Blinky based sys-
tem would benefit from the existing camera infrastructure
while enabling vehicle detection in low light and challenging
weather conditions. It would also be less computation and
data-intensive than video based systems.

4) SECURITY
Besides obvious applications to gunshot [32] and car crash
detection [33], monitoring elderly people living alone, for
example for falls, is increasingly relevant in our aging soci-
ety [34]. Due to privacy concerns, placing cameras or sending
raw audio in homes is generally not possible. In contrast,
sound power is sufficiently informative for efficient monitor-
ing while avoiding privacy leaks.

While ubiquitous when it comes to surveillance, cameras
are less useful in dark environment or in the presence of
obstruction. Sound on the other hand travels around obstacles
and sound-to-light sensors will work in dark conditions. The
proposed sensor thus complements well existing security
installations that might not be equipped with sound to provide
a level of acoustic monitoring on top of visual.

5) DISASTER AREA MONITORING
During natural disasters, it is necessary to quickly deploy
monitoring equipment over potentially large and remote
areas. Such networks can be used for examples to locate
survivors and guide rescue efforts. An alternative to wireless
sensor networks (WSN) [35] could be to air drop robus-
tified Blinkies to monitor sound in the disaster area. The
signal acquisition can subsequently be done with a manned
or unmanned aerial vehicle.

C. RELATED WORKS
In terms of hardware systems converting sound to light,
there is a number of precedents. An early example is for
the visualization of sound fields [36]. More recently, a sys-
tem akin to Blinkies but based on analog technology was
used to monitor frogs chorus [37]–[39]. Pablo Nava et al.
proposed a microphone array using multiple LEDs per sensor
and a high speed camera for light-based digital transmission
of the audio signal [40]. It has also been proposed to use
light-based signaling to synchronize arrays of asynchronous
microphones [41].

Spatial sound power measurements, as collected by
Blinkies, have already been proposed for a few applica-
tions. Several sound source localization algorithms exist
in the context of wireless sensor networks [20], [21],
[42]–[44] and speaker localization in meetings [45], [46].
A couple of speech enhancement techniques have been
developed [22], [23]. Finally, the spatial cepstrum has been
show to be effective for acoustic scene analysis [17].

Because Blinkies carry out some computations directly,
they belong to the edge computing paradigm [47]. Neural pro-
cessing has been shown to be viable in edge computing [48]
and could potentially replace sound power for specific appli-
cations, for example acoustic event detection [49].

D. CONTRIBUTIONS
• The new open source hardware platformBlinky for large
scale acoustic sensing. This contribution includes the
circuit schematics, bill of materials, firmware, and the
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FIGURE 2. (a) A Blinky prototype built on a breadboard from off-the-shelf components. (b) Top and bottom view of the custom PCB for our Blinky design.
(c) View of the Blinky with enclosure. (d) System diagram and wiring of the components to the CPU.

accompanying documentation in the companion mate-
rial to this paper. We also share a graphical user inter-
face (GUI) software for easy data acquisition of Blinky
signals.

• We describe in details the channel between the sensor
microphone and the signal collected by the video camera
and propose a data encoding strategy accordingly.

• We propose and validate a calibration procedure to com-
pensate for the channel attenuation.

• We demonstrate sound source localization with
a hundred-and-one Blinkies in highly reverberent
conditions

II. SYSTEM DESIGN
The acoustic sensing system we are designing is composed
of three parts.
• The sensor, that we call Blinky, is equipped with a
microphone and LED and converts the sound intensity
to light intensity.

• A video camera simultaneously acquires the light emit-
ted by multiple Blinkies in a video signal.

• A specialized video processing software extracts the
individual sensor signals and records them to a file for
later processing.

In the rest of this section we discuss in details the design
choices made for each of these components.

A. SENSOR DESIGN
At a high level, a functional sound-to-light sensor requires a
minimum of three components
• a microphone to capture sound,
• an LED to emit light,
• processing power.

In fact, recently, these three items do in fact correspond to
commercially available hardware components that can be
purchased and easily assembled into a working sensor (see
Fig. 2 (a)). In addition to these fundamental requirements,
we would like the sensor to be battery powered so that many

devices can be used with minimum hassle. Finally, the sensor
should be robust and easy to operate.

We made two specific choices to reduce the design com-
plexity to a minimum. First, we decided to use a digital
microphone requiring only minimal external components.
Second, we built our prototype around a pre-assembled pro-
cessor board including power, battery, and communication
management. In fact, our prototype is so simple that it can
be assembled on a breadboard with only four commercially
available discrete components, as shown in Fig. 2 (a). In our
final prototype, the microphones, LEDs, as well as a few
switches used for easier operations, are assembled on a
custom printed circuit board (PCB) which docks onto the
pre-assembled processor board. The circuit is then housed in
an enclosure with custom holes drilled for the microphones
and LEDs to stick out. The PCB and final prototype are shown
in Fig. 2 (b) and (c).We describe inmore details the choice of
the key components in the next few subsections.

1) PROCESSOR
We selected the ESP32 processor from ESPRESSIF
SYSTEMS because it combines the right features with a
very low cost and a wild popularity [50]. Its central process-
ing unit (CPU) has two cores running at 240MHz, 520 kB
SRAM, 4MB of flash memory, and a floating-point unit.
These specifications are good enough to run fairly sophisti-
cated processing in real time. It comes with a number of hard-
ware peripherals, including two inter IC sound (I2S) modules
allowing connecting audio peripherals easily, pulse-width
modulation (PWM) to control the brightness of LEDs, and
a dual channel 8 bit digital-to-analog converter. A diagram
of the CPU and its peripherals is shown in Fig. 2 (d). The
market price for a raw module is around USD 3 at the time of
writing of this paper. In addition, a number of breakout boards
designed around the ESP32module and including USB-serial
conversion, power regulation, and battery charging circuits
are available for as low as around USD 7, e.g. WEMOS
D32 [51]. For our prototype, we selected the HUZZAH32
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board from the well-known open source hardware maker
Adafruit [52].

Two other important criteria for choosing this platform
were the availability of documentation and long term support.
Due to its high popularity, in addition to the detailed offi-
cial documentation, there is a profusion of tutorials, videos,
and projects shared online. The processor is programmed
in C++ via the official software development kit (SDK) or
the popular Arduino IDE [53], and also supports Micropy-
thon [54] (a port of Python for embedded devices). Last but
not least, ESPRESSIF system has committed support for the
ESP32 until January 1st, 2028 [55].

2) MICROPHONES
In the last few years, MEMS microphones have become
widely available and provide high quality sound input at low
cost and tiny form factor. Moreover, whereas analog micro-
phones would require an operational amplifier, some signal
conditioning, and analog/digital conversion, modern digital
MEMS come with everything included in a tiny package.
In particular, a few models output the Inter-IC Sound (I2S)
standard directly, such as the ICS-43432, from InveSense,
that we selected. This is especially convenient as they can
be directly wired to the ESP32 and provide pulse code mod-
ulation (PCM) audio format directly. Because one I2S bus is
stereo, we decided to equip Blinkies with two microphones.
This opens the door to simple array processing, such as DOA
or null beamforming, for example.

3) LEDs
A major requirement for light-based communication is that
the luminosity of the LED be not too dependent on the pose
angle with respect to the camera. Surface mount technol-
ogy (SMT) LEDs have a wide aperture, and high luminosity
at low current. However, when mounted on a PCB inside an
enclosure, even with a proper hole, their aperture is dramat-
ically reduced. This could be mitigated by using Plexiglas
light conductor at an increased assembly cost and design
complexity. Instead, we opted for through-hole LEDs that
can be elevated to stick out from the enclosure. While typical
through-hole LEDs have an aperture of only 30 degrees, they
can be made visible from nearly any angle by using diffuser
caps. The aperture provided by different LED systems is
illustrated in Fig. 3.

Another aspect to consider is the color of the LEDs. Con-
ventional cameras typically use a layer of microfilters on top
of the imaging sensor to acquire the red, green, and blue
layers [56]. By using LEDs of various colors, it might be
possible to take advantage of these filters to perform infor-
mation multiplexing. With this vision in mind, we decided
to equip each Blinky with four LEDs: white, red, green, and
blue. As shown in Fig. 2 (d), all four LEDs are connected
to the PWM. Two of the LEDs are in addition connected to
the digital-analog converter (DAC) module which allows to
run them at audio rates if necessary. Whether to use PWM or
DAC can be selected in software.

FIGURE 3. Illustration of surface mount versus through-hole LED
visibility. When in an enclosure, SMT LEDs tend to sit too deep and thus
have a poor aperture. Through-hole LEDs can stick out of the enclosure
and use a diffuser cap to widen their aperture.

4) BATTERY
The device should be battery-operated with sufficient charge
to last for several hours, or days, depending on the applica-
tion. We selected rechargeable (Li-Poly) battery over regular
alkaline dry cells. While the initial cost is higher, it amortizes
over time. In addition, we do not need to carry large stocks of
spare batteries for potentially hundreds of devices. Opting for
USB rechargeable batteries allows the device to be charged
with widely available smartphones chargers. For the proto-
type, we used a 400mAh battery. Without enabling any of
the power saving features of the processor, the device could
be used for approximately half a day on a full charge. The
battery life can be easily extended by enabling said features,
or selecting a larger battery.

5) ENCLOSURE
We chose to house the Blinky in an enclosure to add robust-
ness and visual appeal. It protects the circuit from physical
damage and sensitive electrical components from direct con-
tact. It also prevents excessive accumulation of dust on the
components.

B. DESIGN EXTENSIONS
1) INFRARED LEDs
While visible light LEDs stand out for demonstration and
make it easy to explain how the device works, they get irri-
tating for users after some time. Replacing them by infrared
LEDs would make the device essentially invisible while still
being observable with many consumer cameras.

2) WIRELESS
Thanks to the Wi-Fi and Bluetooth capabilities of the proces-
sor, we can imagine different extensions and improvements
of the device. We have already implemented over-the-air
firmware update in the current device. Upon boot, it looks
for a specific Wi-Fi network and server and checks if its own
firmware is up-to-date. If a new firmware is available, it is
installed and the device reboots. In addition, by changing
the firmware, it is possible to turn the device into a wireless
microphone that can then be re-used for a different style of
distributed array processing. Finally, we can imagine using
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Wi-Fi to transmit sound power in situations where light can-
not work.

C. VIDEO ACQUISITION SYSTEM
The concurrent acquisition of the light signals emitted
by the Blinkies is carried out by a video camera. It is
a critical part of the system that needs to be carefully
selected. The two most popular camera sensor types are
charge-coupled device (CCD) and complementary metal-
oxide-semiconductors (CMOS) sensors [57]. CCD has gen-
erally higher performance and is preferred for professional
equipment, while CMOS is prevalent in consumer electronics
due to its lower price. There are also two types of shutter
mechanisms. Global shutter types read out all pixels simul-
taneously and so-called rolling shutters read rows sequen-
tially [58]. For color imaging, a Bayer filter is placed on
top of the sensor to split the light into red, green, and blue
pixels [56]. While this could allow discriminating to some
extent LEDs of different colors, it also reduces the amount of
light acquired. A monochrome sensor should be favored for
more precise measurements.

A small but important detail is whether the camera pro-
vides manual control of the acquisition parameters such as
sensor sensitivity, exposure, etc. Many consumer-level video
cameras dynamically adjust the sensitivity which might jeop-
ardizemeasurements when done unexpectedly. On top of this,
such cameras usually apply gamma correction to the recorded
light energy, a lossy dynamic range compression operation
described in Section III-B. Cameras providing the option
to fix the sensor sensitivity should be preferred. In general,
industrial cameras are more flexible and provide raw sensor
data.

The frame rate of cameras vary from typically 30 frames-
per-second (FPS) for consumer models to over 10000 FPS
for specialized equipment [59]. Due to our focus on low
communication overhead and price, we focus our attention on
the low range between 30 and 60 FPS which is readily avail-
able in off-the-shelf video cameras. For applications requiring
sampling close to audio rates, models in the 1000 FPS or
above range can be selected at a higher cost.

Finally, in addition to garden-variety cameras, there exists
a menagerie of specialized cameras available for more spe-
cialized deployment of Blinkies. Here are just a few exam-
ples. Infrared cameras can be used together with IR LEDs to
make the Blinkies invisible. Panoramic surveillance cameras
allow to monitor a large number of Blinkies in a tight indoor
space. Stereo or multi-view cameras allow the localization of
Blinkies using computer vision techniques [60] which can be
useful for subsequent source localization in space.

We experimented with two different cameras. The Shoden-
sha DN3V-130BU, a monochrome industrial camera with
global shutter, and the Sony HDR-CX535, a color consumer
camera with rolling shutter and no access to raw frames.
As detailed in Section VI, the consumer camera could be
used for simple applications, but for calibrated measurements

of the light intensities, the industrial camera and its wider
dynamic range was needed.

D. SOFTWARE
A straightforward approach to collecting data from Blinkies
goes as follows. First, record a scene that contains Blinkies
with a camera and save the video to a file. Second, find the
pixel locations of the Blinkies in the video. Third, process
the video to extract only the value of the pixel at the Blinky
location, or a small patch around it.

This naive procedure has several drawbacks. Video files
are in general very large, especially for raw format. Stor-
ing the whole file before discarding most of it is wasteful,
or might be impractical. In addition, transfer between devices
may be long or cumbersome. Another problem is finding the
Blinkies in the video. Depending on the lighting conditions—
the scene might be very dark, e.g. to allow sufficient dynamic
range of the Blinkies— itmight be difficult, if not impossible,
to visually locate the devices. Finally, identifying the correct
settings for the camera for optimal acquisition might require
several iterations of this lengthy process.

FIGURE 4. A screen capture of the GUI developed for easy data
acquisition with Blinkies. On the top left is the video stream. On the top
right is the time signals of selected pixels. Just below, middle right, is the
zoomed-in area. At the bottom are the controls and console.

We overcame these challenges by creating a GUI for
data acquisition with Blinkies. A screen capture of the
GUI is shown in Fig. 4. Based on OpenCV [61], the GUI
allows to process both live camera streams or to operate on
pre-recorded files. The live or recorded video is played in a
large monitor window. A few buttons are available to show
saturated pixels, or to apply a log transformation that makes
objects in very dark videos visible. Pixels of the video can
be selected by clicking on them. The last few seconds of
the time signal of the selected pixel is then live streamed
in a graph on the top right. The area around the clicked
pixel is also displayed zoomed in on the right. By clicking
in the zoom monitor, the choice of the pixel can be refined.
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FIGURE 5. Overview of the Blinky acquisition system model. On top, the signal path from sound event to video file is detailed, including the processing in
the Blinky. On the bottom left, the two factors impacting the light transmission between the Blinky and camera are illustrated. On the bottom right, the
processing internal to the camera is shown.

Multiple pixels can be selected this way. Then, by pressing a
button, it is possible to record the signals of only the selected
pixels, or small patches around them. The signals recorded
this way are saved to a file in the MessagePack format [62],
which is both standard and efficient for binary data. The
whole software is written in Python and thus easily runs on
any operating system.

III. SYSTEM MODEL
The relationship between the sound incident onto the micro-
phone and the corresponding pixel recorded by the video
camera can be summarized by breaking down the system in
three parts. In a Blinky, the sound is recorded and digitized
as signal x[n], with n being an arbitrary time index. This
digital signal is processed and pre-conditioned to obtain a
PWM duty cycle to drive the LED. Then, the light emitted by
the LED is attenuated due to a combination of distance and
incidence angle. Finally, the video camera sensor records the
light and encode it in a video file format. This section focuses
on the last two stages while the data encoding in the Blinky
is covered in Section IV.

A. CHANNEL
The brightness of the LED is determined by the B-bit PWM
duty cycle, `[n] ∈ {0, . . . , 2B − 1}, set in the Blinky. The
actual emitted light intensity is given by

I [n] =
`[n]

2B − 1
Imax (1)

where Imax is the intensity of the LED driven continuously.
The two major factors affecting the light propagation

between the LED and camera are the distance and pose angle
between the two. An illustration is provided in Fig. 5. Let us
first consider the distance. One can consider the LED to emit
a fixed number of photons per time unit at a given bright-
ness. The intensity recorded by the camera is then directly
proportional to the number of photons hitting the detector.

Naturally, when moving the detector further away from the
LED, fewer photons hit the fixed surface of the detector and
the recorded intensity is smaller.

The second factor is due to LEDs emitting photons
unevenly, as mentioned in Section II-A.3. They are brightest
when aligned with their radial symmetry axis, and gradually
get dimmer when looked at an increasing angle. The angle
at which the intensity drops by half is typically 10∼15◦.
Thus, when the camera is looking at a Blinky from an angle,
it will record a lower intensity. In practice, both factors can
be bundled into a single attenuation factor denoted by α.
Finally, ambient light reflected on the LED will add a pos-

itive bias β to the measured values. In Section V, we describe
a procedure to calibrate α and β.

B. VIDEO PROCESSING
The light impinging on the lens, v[n] in Fig. 5, is focused
on the sensor. For color cameras, the sensor is further cov-
ered by a Bayer filter splitting the light into red, green,
and blue (RGB) channels [56], vr [n], vg[n], and vb[n],
respectively. The light energy is integrated over short inter-
vals before being sampled at the frame rate (typically
30 or 60 FPS). This integration process is equivalent to
a moving average in signal processing terms. Cameras for
industrial applications usually provide the raw video frame
without further processing. However, consumer cameras will
in general apply a video compression scheme. Most video
formats apply gamma correction to the recorded light energy.
The exact operation depends on the format, but a popular
function is x1/γ with γ = 2.2 [63]. Thus, the pixel value
is p[n] = (v[n])1/γ for a monochrome camera. For a color
camera, the RGB triplet is given by

p[n] = [(vr [n])1/γ , (vg[n])1/γ , (vb[n])1/γ ]. (2)

It should be noted that the value of the pixels might be
further affected by the video compression format [64].
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However, we did not find these other effects significant in
our experiments.

IV. DATA ENCODING
Between the audio input of the Blinky and the signal acquired
by the camera, there are two lossy operations that we must
take into account to avoid artefacts. The first is the mapping
of the sound power range to the discrete PWM duty cycles.
The second is the large difference of sampling rate between
the audio and video at 16 kHz and 30Hz, respectively.

The 24-bit audio signal provided by ICS-43432 micro-
phone is converted to a floating-point value for convenience.
First, a notch filter is used to remove any DC offset the signal
might have. The output of this filter is used to compute the
instantaneous power of the audio signal. The power envelope
is obtained by low-pass filtering the instantaneous power of
the output of the filter at a suitable rate for acquisition by
the video camera. The low-pass filter is described in detail
in the next section. The filtered signal is then decimated by
64 before applying an optional range compression function,
f (.) in Fig. 5. How to choose f is discussed in Section IV-B.
The value thus obtained is quantized to the closest integer,
giving the PWM duty cycle to drive the LED. This process is
illustrated in Fig. 5.

A. LOW-PASS FILTERING
Within the Blinky, the instantaneous sound power is collected
at 16 kHz. However, the camera sensor only sample lights
at approximately 30Hz and it is necessary to reduce the
sample rate by computing the power envelope of the sound
signal. A simple way to do that is by averaging power over
short frames. The computation of the power envelope is akin
to low-pass filtering and should ensure that the transmitted
signal is not overly affected by aliasing.

In our implementation, the Blinky averages the power over
64 samples before updating the PWM duty cycle of the LED.
This corresponds to an update frequency of 250Hz of the
LED. In addition, the light accumulation in the sensor of the
camera also acts as an extra moving average of approximately
1/30 s for a camera recording at 30 FPS. It was empirically
determined that aliasing was not problematic in this config-
uration. An alternative to moving average could be infinite
impulse response filters combining low-complexity with a
sharper transition band [65].

B. RANGE COMPRESSION FUNCTION
Here we explore some coding strategies that can be applied to
Blinky signaling. We would like to reduce the average error
between the measured sound power and the signal received at
the video camera. If we map the sound power linearly to the
PWM range, all the small amplitude components of speech
will be mapped to the lowest bits of the PWM range, resulting
in a lot of inaccuracies. The larger elements which are rel-
atively rare in speech would be assigned a disproportionate
number of bits. Instead, what we would like to do is assign
more bits to more frequent elements. What we propose is to

first apply a non-linear transformation to make the speech
power uniformly distributed. Then, by standard coding the-
ory, uniform quantization can be applied to minimize the
mean-squared error [67].

In practice, however, we do not know the optimal
non-linear mapping, but we know that applying their cumu-
lant distribution function (CDF) to samples from a given
distribution will make them uniformly distributed. Because
we also do not know the CDF of the sound power, we need to
use a proxy to estimate it. As an example, we use the TIMIT
corpus [66] to estimate the CDF of speech power. We break
the speech samples into blocks of 4ms, as in the Blinkies, and
compute their variance. We remove all blocks with variance
very close to zero as they correspond to silence. We then
form the empirical CDF of the remaining and use a piecewise
linear approximation to make it a continuous function. The
histogram and CDF obtained are shown in Fig. 6. We see that
by applying the inverse CDF, very small and very large values
that are relatively infrequent will be mapped to a narrower
range, as expected.

FIGURE 6. The empirical cumulative distribution function of the variance
of short speech blocks computed on the TIMIT corpus [66].

While the presented methodology was used to obtain the
compression function used in the experiments of Section VI,
it might not be the optimal choice in general. Indeed,
the speech samples in the TIMIT dataset are all recorded
when the speaker is relatively close to the microphone, which
is not realistic for Blinkies. In real environment, speech
signals might be arbitrarily attenuated due to the distance
between the source and the Blinky. A simple strategy to obtain
a better CDF would be to place several Blinkies in a target
environment and modify them to compute the microphone
input power CDF over a long period. Then, the above pro-
cedure can be applied to this new dataset.

C. POTENTIAL FOR EDGE COMPUTING
In this paper, we have concentrated on using Blinkies for
sound power measurements. However, they pack enough
computing power to perform more complex processing.
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A simple example is to add a denoising step so that only sig-
nals of interest are included in the sound power computation.
This could be done by traditional means [68] or with a neural
network [69].

V. CALIBRATION
As described in Section III-A, channel propagation and ambi-
ent lights add to each Blinky measurement a different atten-
uation α and offset β, respectively. For some applications,
e.g. voice activity detection [15], this is not a problem. How-
ever, when correct relative sound power measurements are
required, it is necessary to estimate the values of α and β.
The calibration is also important if a non-linear range com-
pression function, as described in Section IV-B, was used and
needs to be inverted. An example application that requires
this is the sound power separation by non-negative matrix
factorization [19].

There are several ways to achieve the calibration, but all
rely on having the Blinky transmit a known pilot signal.
We consider the simplest case with an on/off signal whereas
the LEDs is periodically turned off and then driven at a known
duty cycle `ref ∈ {0, . . . , 2B − 1}. For example, this can
be done in a calibration step at the beginning. Alternatively,
Blinkies could periodically go into calibration mode and
transmit the known signal for a short duration, e.g. every tens
of minutes. Finally, a second auxiliary LED can be set to
continuously transmit the pilot signal. We will now describe
this last strategy in more details, as it is the most general.

The top of Fig. 5 summarizes the propagation model from
sound power to pixel value. First, we need to estimate the
luminosity of the LED from the pixel values recorded by the
camera. To get a better estimate, we can sum the luminosity
over several pixels illuminated by the target LED. We denote
the set of these pixels by A.
For monochrome, raw video frames, we can directly esti-

mate the amount of light in the ith pixel by its value,
i.e. v̂i = pi, for i ∈ A. If gamma correction was applied to the
recording, it must be inverted, i.e. v̂i = pγi , for all i ∈ A. For
color cameras, we further need to sum the light of all color
channels, i.e. v̂i = v̂ri + v̂gi + v̂bi , where v̂

r
i , v̂

g
i , and v̂

b
i are

the value of the red, green, and blue channels, respectively,
possibly with gamma correction inverted .1 The final value is
obtained by summing over A,

v̂ =
∑
i∈A

v̂i. (3)

Let `sig and `ref be the PWM duty cycles of the signal
and calibration LEDs, respectively. We assume the two LEDs
sufficiently close so that α and β are the same. Then, by (1),
the corresponding light intensities impinging on the camera
sensor are

vsig = α
`sig

2B − 1
I (sig)max + β, (4)

1In image processing, weights are often applied to each color channel to
match the sensitivity of human vision. We do not use such weights since we
would like to measure the physically correct luminosity of the Blinky.

vref-lo = β, (5)

vref-hi = α
`ref

2B − 1
I (ref)max + β, (6)

where vsig is for the signal LED, and vref-lo and vref-hi are for
the low and high levels of the calibration LED, respectively.
Here, we assume that the signal and calibration LEDs might
have different maximum intensities, I (sig)max and I (ref)max , respec-
tively, which can happen if they are of different physical
construction. We assume these maximum values to be the
same on all devices with the same construction. Our estimate
of `sig is then

ˆ̀sig =
v̂sig − v̂ref-lo
v̂ref-hi − v̂ref-lo

`ref ≈ `sig
I (sig)max

I (ref)max
. (7)

In case I (sig)max = I (ref)max , we recover `sig exactly. In the alterna-
tive, a global scaling occurs. When undesirable, it is possible
to measure I (sig)max and I (ref)max in advance and simply scale the
result by their ratio.

VI. EXPERIMENTS
As a proof-of-concept for the Blinky system presented in
this paper, we show the results of two experiments. The first
one demonstrates recovery of correct audio levels at different
locations. In the second, we perform localization of a moving
sound source with a hundred-and-one actual Blinkies.

A. SOUND POWER ESTIMATION
Our aim in this experiment is to validate the calibration proce-
dure described in Section V. To do so, we playback sound and
simultaneously record the sound power and waveform with
Blinkies and microphones placed within a few centimeters,
respectively. We then measure the discrepancy between the
sound power measured by Blinkies and microphones.

1) EXPERIMENTAL SETUP
We used the Shodensha DN3V-130BU industrial camera
placed in an office at 6.6m and 7.6m from two Blinkies,
respectively. During a calibration phase, the Blinkies were
set to cycle the LED between full on and off with a period
of 3 s and half duty cycle, as described in Section V. The
software described in Section II-D was used during this phase
to locate the Blinkies within the video frame and set the
aperture of the camera so that the LEDs did not saturate
the camera sensor. The two Blinkies were located at pixels
(861, 174) and (1003, 576), respectively, in the 1280× 1024
video frame. We setup the system to record patches of 3× 3
pixels around the locations of the sensors that were then
averaged to estimate the light intensity. We recorded 30 s of
signal in this mode. Then, we ordered all the recorded values
and separated the bottom and top 50%. Finally, we estimated
v̂ref-lo as the minimum of the lower half, and v̂ref-hi as the
median of the top half.

In the second part of the experiment, we placed a sound
source at 2.17m and 0.84m from the Blinkies, respectively.
The Blinkies were then switched from calibration to sound
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FIGURE 7. Comparison of the sound power recorded by two Blinkies and two microphones placed within a few centimeters. On the left are the
uncalibrated Blinky signals together with the minimum and maximum sensor values obtained during calibration. On the right, we overlap the sound
power measured by Blinkies and microphones. We observe that they match tightly.

level monitoring where the intensity of the LED is propor-
tional to the sound level. In this mode, the following process-
ing was applied in the Blinkies to compute the duty cycle of
the LED from the microphone input. The audio input was
normalized to be between -1 and 1. The sound power was
then computed as described in Section IV and transformed
to decibels with the reference being the maximum power,
i.e. 1. The power was clipped between −80 dB and −10 dB
as we determined empirically that most sounds in our envi-
ronment fell in this range. The dynamic range compression
function used was the empirical CDF from Fig. 6, but with the
x-axis stretched to cover [−80,−10]. This choice is arbitrary
and could easily be changed to a more appropriate function
according to the target application.

The sound source played speech from the JNAS
database [70] for approximately 2min. During this time,
the signal from the Blinkies was recorded with the same setup
as the calibration. Simultaneously, we recorded the same
sound signal using conventional microphones placed within
a few centimeters of the Blinkies. We thus expect that the
sound power recorded by the microphones should be very
close to that recorded by the Blinkies and will use this as a
reference signal. After recording, we applied (7) with v̂ref-lo
and v̂ref-hi obtained during calibration to recover the sound
level Pblinky[n] from the Blinky signal.

Because the Blinkies, cameras, and microphones are all
asynchronous, we needed to match the sampling frequency
and time offset of the microphone signals to the camera’s
before comparing the signals. Then, the sound power mea-
sured by the microphone Pmicrophone[n] was computed at the
rate of the Blinky signal. We measure the accuracy of the
calibration in terms of average Blinky-to-microphone power
ratio (ABMPR) computed in the following way,

ABMPR =
1
T

T∑
n=1

∣∣∣∣10 log10 Pblinky[n]
Pmicrophone[n]

∣∣∣∣ , (8)

where n and T are the index and number of samples,
respectively. We further averaged over the two Blinky loca-
tions. With perfect calibration, we expect Pblinky[n] =
Pmicrophone[n] for all n which would result in ABMPR = 0.

2) RESULT
We find that ABMPR =2.85 dB. This means that the two
power signals are within a factor two in average, which is
sufficient for many applications based on sound power. Note
that the microphone signal used as a reference here is not
the true signal form the Blinky microphone and that some
discrepancy is thus expected. Fig. 7 shows a 3 s extract from
the signals before and after calibration. We observe that the
calibration is excellent for larger power, but somewhat off
for small amplitudes. While a more careful analysis would
be needed to determine the cause, we conjecture that a more
careful design of the range compression function could allevi-
ate such problems. We can also see that the calibration faith-
fully restores the relative amplitude of sound at the different
sensors that was lost due to the channel attenuation. In addi-
tion, the non-linear mapping is successfully inverted after
propagation and acquisition. This demonstrates the proposed
system is able to accurately measure sound power over space.

B. SOURCE LOCALIZATION WITH 101 BLINKIES
We will now demonstrate the use of Blinkies in a practical
experiment of sound source localization. For this purpose,
we deployed 101 Blinkies in a highly reverberant environ-
ment. Unlike our previous work [15], the localization is
not done in space, but within the video frame captured by
the camera. The goal is to recover the pixel coordinate of
the sound source. We compare two methods of localization
neither of which require calibration of the Blinkies. The
first one uses the brightest Blinkies to estimate the location.
The second is data-driven and uses a neural network trained
on a subset of the collected data.
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1) NOTATION AND PROBLEM STATEMENT
We assume M Blinkies with pixel coordinates rm ∈ R2,
m = 1, . . . ,M . The Blinky signals `m can be recovered by
extracting the pixel values around their locations in the video
frame as in (3).

Assuming a sound source is located at s (in pixel space),
the sound power measured at the m-th Blinky will be approx-
imately inversely proportional to their distance (in real space).
As the source moves in the scene, the brightness of the
Blinkies will follow it. Thus, by concatenating the signals
from all M Blinkies, we obtain a fingerprint of the sound
source location.

2) BASELINE ALGORITHM
In the presence of a single sound source, the Blinky closest is
usually also the brightest. This observation is the basis for our
baseline localization algorithm. Namely, the estimated source
location is the weighted average of that of the K brightest
Blinkies

ŝ =
K∑
k=1

`(k)

Z
r(k) (9)

where `(1) ≥ . . . ≥ `(K ) and {r(k)}Kk=1 are the ordered
signals and locations, respectively, of the Blinkies, and
Z =

∑K
k=1 `(k) is a normalization factor. When K = 1,

the algorithm assigns the location of the brightest Blinky to
the source. Note that the weighting scheme is completely
heuristic since we do not know the exact relationship between
distance to a Blinky and the intensity of its signal.

3) LEARNING-BASED LOCALIZATION
A different approach is to learn the mapping between sound
source location and Blinky intensities directly using a dataset
set aside for this purpose. We create a neural network withM
inputs and 2 outputs. The network consists of three stages of
residual networks [71] sandwiched between input and output
fully connected layers. The input layer is followed by 10%
dropout for regularization [72]. Rectified linear units (ReLU)
are used for activations. The loss function is the mean squared
error. The network structure is shown in Fig. 8.

FIGURE 8. The neural network architecture used in the localization
experiment. The inputs are the M = 101 sensor values and the outputs
the x, y coordinates of the source in the video frame.

4) EXPERIMENTAL SETUP
The M = 101 Blinkies are deployed in a 34.3m-by-
29.3m gymnastic hall with ceiling height between 8.7m and
12.9m, and reverberation time of over 1.5 s. The Blinkies
were arranged in an approximate grid. A Sony HDR-CX535

camera was placed in the corner of the hall at a height of
approximately 4m from the ground. The video format was
H264with resolution 1440×1090 pixels at 30 frames per sec-
ond. The sound source, a Bluetooth speaker, was mounted
onto a radio-controlled (RC) model car. A red light bulb
was added onto the car to provide its groundtruth location in
the video. The car was then piloted on three different paths
between the Blinkies, once parallel to each side of the grid,
and once in diagonal. The setup is illustrated in Fig. 9. The
experiment was repeated once with white noise and once with
speech. In addition, five short segments with a static human
speaker at distinct locations were recorded.

FIGURE 9. Top: a frame of the video (truncated to 1440× 670) with
source location and Blinkies highlighted. Bottom: diagrams of the paths
of the RC car and their assignment to training/testing.

The locations of the Blinkies in the image were manu-
ally recorded and the pixels intensities in a 3 × 3 square
around were averaged after inverse gamma correction with
γ = 2.8. The data was split between parallel paths for
training and validation (20739 and 2304 examples, respec-
tively), and diagonal paths and human speaker for test
(12727 and 905 examples, respectively). The neural network
was trained with Chainer [73] and the Adam optimizer [74]
for 3000 epochs and with a mini-batch size of 200.

TABLE 1. The 50-th and 90-th percentile of localization error (in pixels) of
baseline (BL) and neural network (NN).

5) RESULTS
The results of the evaluation on the test sets (RC car and
human speaker) is given in Table 1. The baseline method
works best with K = 2 and achieves median error of
37.5 and 28.7 pixels, respectively. The neural network
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achieves the best performance with 29.6 and 22.9 pixels error,
respectively. In addition, the distribution of error is much
more compact for the neural network. The 90-th percentile
of its error distribution is 99.2 and 130.1, while it is always
over 300 for the baseline method. Thus, we confirmed that
sound source localization with Blinkies is effective, even in
reverberant environments.

VII. CONCLUSION
We presented a new open source hardware platform for
large-scale acoustic sensing that we call a Blinky. The sensor
converts sound power to a luminous signal emitted by an
LED. The signals from numerous Blinkies can be recorded
simultaneously by a video camera. We described the hard-
ware in details and also offer schematics, software, and doc-
umentation to reproduce the platform in the supplementary
material. We discussed a number of possible applications of
Blinkies alongwith their merits and limitations.We presented
a model for the signal path and a method for the calibration of
the sensors, which was experimentally validated. In an exper-
iment with a hundred-and-one Blinkies, we demonstrated
sound source localization in highly reverberent conditions.
Due to their versatility and extensibility, we believe Blinkies
can be of interest to a large community.

In future work, we would like to focus on applications
of Blinkies, in particular to acoustic event detection. There
are also a number of practical challenges, such as sensor
occlusion, to which we would like to find algorithmic solu-
tions. Beyond sound power, we are interested in applying
sophisticated processing directly in the Blinky. We believe
this could boost performance significantly, especially in chal-
lenging environments.
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