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ABSTRACT In some computed tomography (CT) applications, limited-angle projections are used for
image reconstruction, and traditional reconstruction methods, such as filtered back-projection (FBP) or
simultaneous algebraic reconstruction technique (SART), cannot reconstruct high-quality CT imageswithout
prior knowledge assistance. For limited-angle CT reconstruction, total variation minimization (TVM)
method is not conductive to recovering image structures. Image reconstruction methods based on anisotropic
total variation (ATV) and reweighted anisotropic total variation (RwATV) can significantly reduce the
shading artifacts using prior knowledge of the scanning angular range and image sparsity. However, using
the knowledge of image sparsity does not further improve image quality in some applications. In this
paper, we propose a new reconstruction method based on anisotropic relative total variation (ARTV) for
limited-angle CT reconstruction. In ARTV, the windowed inherent variation (WIV) indicates the strength of
structure information and WIV values are adaptively determined by local structure information. In limited-
angle CT, particular scanning angular range urges us into exerting different strengths on different directions
of ARTV. Experiments on FORBILD HEAD phantom, a thoracic image and real projections of a walnut are
performed to test the new method. Experimental results show that the destroyed structures are recovered to
some extent, andwe acquire higher image quality compared to some existing limited-angle CT reconstruction
methods.

INDEX TERMS Computed tomography, image reconstruction, limited-angle computed tomography,
anisotropic total variation, relative total variation.

I. INTRODUCTION
Computed tomography (CT) is used in various applications,
such as medical examination [1]–[3], industrial nondestruc-
tive testing [4], and security inspection [5], [6]. In medical
CT, people pay more and more attention to X-ray radiation
dose, since it is harmful to patients [7]. Reducing radiation
dose is of realistic significance to patients. To this end, one
can reduce the X-ray tube current or the number of projection
views. For example, limited-angle CT scanning is a simple
and effective way to achieve this goal. Limited-angle CT

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

scanning may be encountered in other applications where
projection views are restricted to a limited angular range as
shown in Fig. 1. For example, in nondestructive testing of
pipeline in service [8], scanning environment forces us to
perform CT scanning in a limited angular range; besides,
limited-angle CT scanning is used to increase temporal res-
olution in coronary computed tomography angiography [9].
In micro-CT applications, some detected objects have spe-
cial structures, such as long objects and discoid objects.
At this time, the object can only rotate a limited range
due to the limitation of imaging geometry, or the X-ray
is completely absorbed in some projection views, resulting
in projection loss [10]. In a word, limited-angle CT has
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FIGURE 1. Diagram of limited angle CT scan [θ, π − θ].

attracted more and more attention in recent years. However,
for limited-angle CT, FBP cannot reconstruct high-quality
CT images, and the reconstructed images often suffer from
obvious artifacts. In limited-angle CT, these artifacts resem-
ble shadows and are therefore referred to as the shading
artifacts in our work. Iterative reconstruction method SART
can reduce partial artifacts, but a more effective approach
is to constrain the reconstructed images using appropriate
prior knowledge during iterative reconstruction. One of the
most commonly used prior assumptions is that CT images
are sparse or approximately sparse in the gradient domain.
Based on this knowledge, TVM is developed for few-view
and limited-angle CT, and it performs better than algebraic
reconstruction technique and expectation-maximization algo-
rithm [11]. More specifically, TVM can reconstruct high-
quality CT images using few-view projections [11], [12], but
the images reconstructed from limited-angle projections still
suffer from residual artifacts. TV is defined as the sum of
all image gradients, minimizing TV would equally penal-
ize all the image gradients, thus smoothing image struc-
tures and weakening structures that are destroyed by the
shading artifacts. Some improved methods are proposed for
edge-preserving CT reconstruction, such as such as edge-
preserving TV [1], adaptive-weighted TV (AwTV) [13] and
so on. AwTV method utilizes anisotropy features of image
edges to acquire adaptive smoothing. Besides, reconstruction
methods based on L0 norm minimization of wavelet coeffi-
cients [14] or image gradient [15] are used to reduce the shad-
ing artifacts. L0 norm directly measure the image sparsity.
Minimizing L0 norm effectively reduces the shading artifacts
and does not penalize large image gradients, thus preserving
image structures. For some limited-angle CT applications,
some prior images are available for image reconstruction,
so these images are incorporated into image reconstruction
model to further improve image quality [9], [16]. In fact,

using prior images can greatly improve reconstructed image
quality, but these reconstruction methods often require accu-
rate image registration that is difficult. And unfortunately,
in many cases there is no prior image available. For example,
in micro-CT applications, a long object may not have a prior
image. Besides, the above mentioned reconstruction models
using a prior image does not consider the anisotropy charac-
teristics of the limited-angle CT. Based on wavelet frame [14]
and guided image filtering (GIF) [17], Wang et al. proposed
a limited-angle CT reconstruction algorithm [18], where the
output result of wavelet frame step is used as the guidance
image of GIF step and the output result of SART step is used
as the input image of GIF step. In this way, this method does
not need prior images. However, this kind of method is not
designed according to the characteristics of limited-angle CT
reconstruction.

A breakthrough in limited-angle CT reconstruction is the
analysis about the reconstructed images and the shading arti-
facts made by Quinto et al. [19]–[21]. Their analysis shows
that image edges (including structures and details) that are
tangent to transmitted X-rays could easily be reconstructed,
otherwise, they would be missing and replaced by the shad-
ing artifacts in reconstructed images. In fact, the available
projections are distributed in a known limited angular range,
which inspires researchers to incorporate this prior knowl-
edge and the above analysis results into reconstruction model
to improve image quality. Jin et al. proposed an image recon-
struction method based on anisotropic total variation (ATV)
for limited-angle CT [22]. Then blurred image structures
are free from serious regularization constraint, and on the
contrary, the data fidelity constraints imposed by the pro-
jections make these the structures clear gradually. Following
this idea, Chen et al. proposed another form of ATV [23].
Due to different recoverability of image structures in dif-
ferent directions, the intensity of the one-dimensional total
variation (1D TV) regularization in each direction is variable.
The two ATV methods can reduce artifacts in reconstructed
images by gently penalizing blurred structures. The idea of
‘‘anisotropy’’ is extended to exterior CT [4] and multiple
limited-angle CT [24] to reduce the shading artifacts; in
these applications, this idea indeed improve image quality.
However, ATV is still defined as the weighted sum of image
gradients in x and y directions. In order to measure image
sparsity more directly, reweighted ATV (RwATV) [25] is
used to reduce the dependence of image sparsity measure on
image gradients. Using the reweighted technique, RwATV
can better approximate image gradient L0 norm. Therefore,
minimizing RwATV subject to constraints imposed by CT
projections is conductive to preserving image structures and
reducing shading artifacts. Reconstruction method based on
‘‘anisotropy’’ and L0 norm minimization of image gradient is
also proposed to reduce shading artifacts [10]. However, L0
norm minimization is a non-deterministic polynomial-hard
problem. All these reconstruction methods show that using
the idea of anisotropy has the potential to further improve
image quality in limited-angle CT. However, one common
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disadvantage of these image gradient based methods is that
they cannot effectively distinguish the gradients in image
structures and flat regions.

In CT reconstruction, image structures are key information.
However, some image structures in limited-angle CT images
aremissing or weak due to incomplete projections. Therefore,
we propose to use ‘‘anisotropy’’ to enhance weak structures.
Recently developed relative total variation (RTV) is origi-
nally used to extract image structures from regular or irregular
background [26]. In addition, RTV and its variant have been
applied to different CT reconstruction problems [16], [27].
RTV is defined based on windowed total variation (WTV)
and WIV. And WIV can indicate strength of image struc-
tures, even if image structures are weak. Therefore, WIV
helps preserve structures and suppress artifacts as adaptive
weights of WTV. In an image reconstructed from limited-
angle projections, some structures are weak due to missing
projection views, so isotropic regularization would weaken
these structures. In this study, we first define anisotropic
WTV (AWTV) and ARTV, and then propose a new recon-
struction method based on ARTV measure. We call this
method ARTV method for short. In the proposed method,
the structures of image itself are represented as adaptiveWIV
values in the process of image reconstruction. So ARTV
method has the ability to extract image structures. Besides,
we reasonably adjust constraint strength of regularization on
image structures along x and y directions according to the
scanning angular range. Experiments on FORBILD HEAD
phantom, a thoracic image and real projections of a walnut
are performed to test the ARTV method. And we compare it
with existing CT reconstructionmethods, such as TVM,ATV,
AwTV, and RwATVmethods. Reconstruction results indicate
that ARTVmethod significantly reduces shading artifacts and
performs better than other competing methods.

This paper is organized as follows. In section II, we intro-
duce TVM method and reconstruction methods based on
ATV and RwATV, then we define AWTV and ARTV, finally
we propose ARTV method. In section III, we test ARTV
on FORBILD HEAD phantom and real CT data, and report
experimental results. In section IV, we discuss the issues that
need further explanation.We give the conclusion of this study
in section V.

II. METHODOLOGY
A. CT IMGAING MODEL
In practical CT applications, the projections are approximated
by the following linear system,

Af = g. (1)

where g = (g1, g2, · · · , gM )T is the acquired projection
data with D detector units at Np projection views, and M =
Np · D. And f = (f1, f2, · · · , fP)T is the image vector to be
reconstructed. We also use this form of f , f =

(
fi,j
)
∈ RI×J ,

i = 1, 2, · · · , I and j = 1, 2, · · · , J ; the conversion between
this two forms are written as p = (j− 1)×I+ i. A ∈ RM×P is
the system matrix. In limited-angle CT applications,M < P,

that is to say, image reconstruction is an ill-posed inverse
problem.

B. RELATED RECONSTRUCTION MODEL
1) TOTAL VARIATION MINIMIZATION
TVM has been used to suppress artifacts in limited-angle
CT. The TV of one image is defined as the sum of image
gradients [11],

TV (f ) = ||∇f ||1 =
P∑
p=1

√(
∂x fp

)2
+
(
∂yfp

)2
. (2)

where || · ||1 denotes the L1 norm. Thus TV is a L1 norm,
which counts image gradient magnitude. In practice, ∂x fp and
∂yfp are approximated by difference operators, for example,
∂x fi,j ≈ fi,j − fi−1,j, ∂yfi,j ≈ fi,j − fi,j−1. Based on this defini-
tion, TVM method is written as the optimization problem,

min
f

TV (f ) s.t. Af = g, f ≥ 0 (3)

TV is a rotationally invariant term, so TVM is direction-
irrelevant. Minimizing TV (f ) would equally penalize all
image gradients in different directions, and then weak struc-
tures in limited-angle CT may be further weakened by TVM.

2) ANISOTROPIC TOTAL VARIATION MINIMIZATION
The scanning angular range is known in limited-angle CT.
Jin et al. first incorporated this knowledge into reconstruction
model and proposed anisotropic total variation (ATV) [22],
whose definition is as follows,

ATV (f ) = ||∇α,β f ||1 =
P∑
p=1

√
α
(
∂x fp

)2
+ β

(
∂yfp

)2
. (4)

where α and β are parameters for adjusting weights in x and
y directions. Then ATVmethod is to minimize the measure of
ATV subject to constraints imposed by projections. When α
and β are the same, ATV degenerates to TV. However, unlike
TVM method, ATV minimization is direction-relevant. For
example, when α < β, the difference in x direction con-
tributes less to ATV, then ATV minimization imposes gentle
constrains on image gradients in x direction; on the contrary,
the data fidelity constraints imposed by the projections make
these weak gradients strong gradually.

3) REWEIGHTED ANISOTROPIC TOTAL VARIATION
MINIMIZATION
In order to make better use of the prior knowledge of sparsity,
reweighted anisotropic total variation (RwATV) combines
reweighted technique and ATV measure, and RwATV mea-
sure is defined as follows [25],

RwATV (f ) = ||8 · ∇α,β f ||1 =
P∑
p=1

φp|∇α,β fp|. (5)

where |∇α,β fp| =
√
α
(
∂x fp

)2
+ β

(
∂yfp

)2, and φp is the
element of weight matrix 8, which is updated iteratively
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and defined as φ(k+1)p =
1

|∇α,β f
(k)
p |+ξ

, k is the iteration

number. The parameter ξ is a small constant to avoid
zero denominators. Then RwATV method is to minimize
RwATV measure subject to constraints imposed by projec-
tions. When all the elements of weight matrix 8 are set to 1,
RwATV degenerates to ATV. RwATV method inherits the
properties of ATV method, and in addition, the reweighted
technique makes the sparsity measure less dependent on
image gradients. Therefore, RwATV has greater potential
to reconstruct CT images with clear structures and few
artifacts.

4) ADAPTIVE-WEIGHTED TOTAL VARIATION MINIMIZATION
The reconstruction method based on AwTV utilizes
anisotropy features of image edges to acquire adaptive
smoothing. AwTV measure is defined as follows [13],

AwTV (f ) =
∑
i,j

√
$i,j,i−1,j∂x fi,j +$i,j,i,j−1∂yfi,j.

where weight $i,j,i−1,j = exp
[
−
(
∂x fi,j

/
δ
)2], and weight

$i,j,i,j−1 = exp
[
−
(
∂yfi,j

/
δ
)2]. Parameter δ is a constant

to adjust diffusion strength. Then AwTV method is to min-
imize AwTV measure subject to constraints imposed by
X-ray projections. When parameter δ approaches infinity,
the two weights are close to 1, and then AwTV degenerates
to TV.

C. ANISOTROPIC RELATIVE TOTAL VARIATION
In this section, we introduce the proposed ARTV
reconstruction method. The ARTV measure is defined
based on RTV that is originally used for structure
extraction.

1) RELATIVE TOTAL VARIATION
The RTV of an image pixel is defined as follows [26],

RTV
(
fp
)
=

Dx (p)
Lx (p)+ ε

+
Dy (p)

Ly (p)+ ε
. (6)

where Dx (p) and Dy (p) are called the WTV and defined as
follows,

Dx (p) =
∑

q∈W(p)
hp,q ·

∣∣(∂x f )q∣∣,
Dy (p) =

∑
q∈W(p)

hp,q ·
∣∣∣(∂yf )q∣∣∣; (7)

where W(p) is a local rectangular window that is centered
as pth pixel of f ; hp,q is a Gaussian function whose standard
deviation is σ ; p and q are image indexes. The definition of
WTV indicates that image gradients of image structures and
textures or noise increase WTV. Lx (p) and Ly (p) are called
the WIV and defined as follows,

Lx (p) =
∣∣∣∑

q∈W(p)
hp,q · (∂x f )q

∣∣∣,
Ly (p) =

∣∣∣∑
q∈W(p)

hp,q ·
(
∂yf
)
q

∣∣∣; (8)

FIGURE 2. (a) A noisy CT image of Shepp-Logan phantom, (b) WTV,
(c) WIV.

By this definition, we know that if the signs of (∂x f )q or(
∂yf
)
q are the same in W (p), WIV and WTV values are

equal. Otherwise, summing these partial derivative values
with different signs may produce a smaller WIV compared to
WTV. In fact, most partial derivatives corresponding to edges
or structures often have the same sign, while the signs of
the partial derivatives generated by noise are mostly random.
Therefore, WIV in a noisy region is much smaller than that in
a region with more structures. As shown in Fig. 2, image (a) is
a noisy image, theWTV image (image (b)) contains the struc-
ture information of image (a), but the flat region is polluted
by noise. The WIV image (image (c)) indicates the structure
information of image (a) and gets rid of most of noise effects.
Images in Fig. 2 show that WIV andWTV images are similar
in regions with more structures, butWIV value is smaller than
WTV value in flat regions. Therefore,WIV values are consid-
ered to be well-defined weights of WTV to highlight image
structures.

2) ANISOTROPIC WINDOWED TOTAL VARIATION
In this section, we define the anisotropic windowed total
variation (AWTV) as follows,

AWTV
(
fp
)
= αDx (p)+ βDy (p), (9)

where α and β are weighted parameters. In order to better
observe their effects, we display AWTV images in Fig. 3
under several different settings. When α and β are equal,
AWTV degrades to WTV, and the AWTV image (Fig. 3(a))
contains complete image gradient information. When α is set
to 0.1 (Fig. 3(b)) and 0.01 (Fig. 3(c)), gradient information
in x direction contribute less to AWTV image. The definition
of AWTV indicates that complete gradient information of an
image is composed of that in x direction and y direction. In the
reconstructed images in this study, the shading artifacts are
distributed in a specific direction that is determined by the
scanning angular range. In Fig. 1, the scanning angular range
is symmetrical about x-axis, then in the reconstructed images
the structures in x direction are weak, while the structures in y
direction are strong; in this case, image gradient information
in x direction ought to contribute less to AWTV, which makes
it easy to preserve image structures and suppress shading
artifacts during CT reconstruction. In a word, AWTV has the
ability to characterize the gradient information of an image
with shading artifacts.
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FIGURE 3. AWTV images of Fig. 2(a) with different α and β. (a) α = 1 and
β = 1; (b) α = 0.1 and β = 1; (c) α = 0.01 and β = 1; the display window
is [0, 0.1]. The close-ups indicate that when α decreases image structures
along x direction contribute less to AWTV, and then the image structures
would be penalized gently during CT reconstruction.

3) ANISOTROPIC RELATIVE TOTAL VARIATION
Based on the above analysis on RTV and AWTV, we propose
ARTV defined as follows,

ARTV
(
fp
)
=

αDx (p)
Lx (p)+ ε

+
βDy (p)
Ly (p)+ ε

, (10)

as shown in Fig. 1, when ARTV is optimized, weak con-
straints are imposed on image structures in x direction, thus
leaving room for image structure recovery. Parameter ε is
a small constant to avoid zero denominators. On this basis,
we propose a new reconstructionmethod based onARTV, and
we call it ARTV method for short,

min
f≥0
‖Af − g‖22 + λ ·

∑
p
ARTV

(
fp
)
, (11)

where λ is the regularization parameter. The first term, known
as data fidelity term, imposes constraints generated by X-ray
projections; the second term, known as regularization term,
preserves image structures and suppresses the shading arti-
facts. In limited-angle CT reconstruction, parameters α and β
are set to different values, in fact, one of them is fixed to 1. For
example, in the case shown in Fig. 1, β is set to 1 and α < β.
This setting makes image structure information in x direction
contribute less to AWTV; relatively speaking, the data fidelity
term is more restrictive in x direction. Therefore, the fidelity
of image gradients in x direction becomes stronger under
the constraints of projections, and ARTV model can enhance
weak structures in limited-angle CT reconstruction.

A two-step algorithm has been used to solve a CT recon-
struction model based on RTV iteratively [27]. We also use
this algorithm to solve problem (11). The first step is to use
SART [28] to acquire an intermediate image f (k+1/2) to fit
the data fidelity term, where k is the iteration number. For
convenience, the first step is written as follows,

f (k+1/2) = SART
(
f (k), g

)
. (12)

Then, the intermediate image is used as the input image of the
second step to minimize ARTV measure,

min
f≥0

∑
p

[(
fp − f (k+1/2)p

)2
+ η · ARTV

(
fp
)]
. (13)

where η is the newly-formed regularization parameter of
problem (13). The numerical solution of this problem can be
solved iteratively. Following the strategy in reference [27], we
rewritten x part of the measure of ARTV as follows,

∑
p

αDx (p)
Lx (p)+ ε

= α ·
∑
p

∑
q∈W(p) hp,q ·

∣∣(∂x f )q∣∣
Lx (p)+ ε

= α ·
∑

q∈W(1)

h1,q
Lx (1)+ ε

·
∣∣(∂x f )q∣∣+ · · ·

+α ·
∑

q∈W(P)

hP,q
Lx (P)+ ε

·
∣∣(∂x f )q∣∣

= α ·
∑
q

∑
p∈W(q)

hp,q
Lx (p)+ ε

∣∣(∂x f )q∣∣
≈ α ·

∑
q

∑
p∈W(q)

hp,q
Lx (p)+ ε

1∣∣(∂x f )q∣∣+ τ (∂x f )2q
= α ·

∑
q

ux,qvx,q (∂x f )2q. (14)

where τ is a small constant to avoid zero denominator, and
ux,q and vx,q are written as follows,

ux,q =
∑

p∈W(q)

hp,q
Lx (p)+ ε

=

(
Hσ ∗

1
Hσ ∗ (∂x f )

)
q
, (15)

vx,q =
1∣∣(∂x f )q∣∣+ τ , (16)

whereHσ is a Gaussian filter whose standard deviation is set
to σ , and ∗ is convolution operator. Similarly, we rewritten y
part of the measure of ARTV as follows,

∑
p

βDy (p)
Ly (p)+ ε

= β ·
∑
p

∑
q∈W(p) hp,q ·

∣∣∣(∂yf )q∣∣∣
Ly (p)+ ε

= β ·
∑

q∈W(1)

h1,q
Ly (1)+ ε

·

∣∣∣(∂yf )q∣∣∣+ · · ·
+β ·

∑
q∈W(P)

hP,q
Ly (P)+ ε

·

∣∣∣(∂yf )q∣∣∣
= β ·

∑
q

∑
p∈W(q)

hp,q
Ly (p)+ ε

∣∣∣(∂yf )q∣∣∣
≈ β ·

∑
q

∑
p∈W(q)

hp,q
Ly (p)+ ε

1∣∣∣(∂yf )q∣∣∣+ τ
(
∂yf
)2
q

= β ·
∑
q

uy,qvy,q
(
∂yf
)2
q. (17)
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And uy,q and vy,q have the following definitions,

uy,q =
∑

p∈W(q)

hp,q
Ly (p)+ ε

=

(
Hσ ∗

1

Hσ ∗
(
∂yf
))

q

, (18)

vy,q =
1∣∣∣(∂yf )q∣∣∣+ τ , (19)

Then, on the basis of above decomposition, ARTV is rewrit-
ten in terms of multiple products, which enables problem (13)
to be reformulated as follows,

min
Qf ≥0

(
Qf −Qf (k+1/2)

)T (
Qf −Qf (k+1/2)

)
+ η ·

(
α ·QT

f G
T
x UxVxGxQf + β ·QT

f G
T
y UyVyGyQf

)
,

(20)

where Qf and Qf (k+1/2) are vector forms of image f and
f (k+1/2), Gx and Gy are Toeplitz matrices from discrete gradi-
ent operators with forward difference. And Ux , Vx , Uy, and Vy
are diagonal matrices with diagonal elements ux,q, vx,q, uy,q,
and vy,q, respectively. For the sake of convenience, we denote
α · GT

x UxVxGx + β · GT
y UyVyGy by S, then minimization

problem (20) is transformed into solving a system of linear
equations iteratively,(

I + η · S(t)
)
·Q(t+1)

f = Qf (k+1/2) , (21)

where I is an identity matrix, t is the iteration number in the
second step, and the total iteration number of the second step
is denoted by NARTV ;

(
I + η · S(t)

)
is a symmetric positive

definite Laplacian matrix. The output image of the second
step is denoted by f (k+1) and then it is used for the next
iteration until the algorithm terminates.

D. THE RELATIONSHIP BETWEEN ARTV AND TV, ATV, AND
RwATV
We first compare the measure of ARTV (equation (10)) and
TV (equation (2)). We reorganize ARTV into the form in
equation (14) and (17). Newly-formed ux,q, vx,q, uy,q, and
vy,q act as weights in equation (14) and (17); if they are set
to 1, and α = β, ARTV degenerates into

∑
q
(∂x f )2q +

(
∂yf
)2
q,

which counts image gradient magnitude like TV. If ux,q, vx,q,
uy,q, and vy,q are set to 1, and α 6= β, ARTV degenerates into∑
q
α · (∂x f )2q + β ·

(
∂yf
)2
q, which is mathematically equiva-

lent to ATV.
In the definition of RwATV (equation (5)), φp serves as the

weight of |∇α,β fp|; φp is small at image edges or structures,
while φp is large at flat regions. Therefore, RwATV has
less dependence on image gradients. Compared to RwATV,
ARTV has the same properties. In fact, WIV in a noisy region
is smaller than that in a region with more structures. Thereby,
the reciprocal of WIV value is small at image structures,
while it is large at flat regions. So ARTV has the advantages
of RwATV. However, ARTV and RwATV are different in
essence. It should be pointed out that weight φp is calculated

FIGURE 4. CT image of FORBILD HEAD phantom.

using two adjacent pixels, andWIV is calculated using pixels
in a local rectangular window. More importantly, RwATV is
defined on the basis of image sparsity, and its focus is to
reconstruct an CT image that is sparse in the gradient domain;
ARTV is defined on the basis of this knowledge that WIV
in a noisy flat region is smaller than that in a region with
more structures, and its focus is to highlight main structures in
CT images. In a word, ARTV has the excellent properties of
RwATV, and has stronger ability to preserve image structures
and suppress noise. Based on the analysis, we know TVM,
ATV, and RwATV methods are developed on the basis of
image sparsity, while the starting point of ARTV method
is to protect image structures. AwTV method considers the
anisotropic edge property among neighboring image pixels,
but it does not consider the prior information of the scan-
ning angular range, while ARTV method considers structure
features of an image and the anisotropy characteristics of
limited-angle CT.

III. EXPERIMENTAL RESULTS
Experiments on FORBILD HEAD phantom and real projec-
tions of a walnut are performed in this work to test the new
method. The used FORBILD HEAD phantom has 256 ×
256 pixels; for experiments on this phantom, we assume
that the detector is composed of 512 units and the length
of the detector is 0.75 × 512 mm. The distance from the
X-ray source to the rotation axis is 500 mm, and the distance
between the rotation axis and the detector is 250 mm. The
phantom itself is used as reference image to calculate root
mean square error (RMSE) for image quality comparison,
besides, we also calculate peak signal to noise ratio (PSNR),
and structural similarity index (SSIM) [29] of reconstructed
images. We compare ARTV method to TVM, ATV, AwTV,
and RwATV methods.

A. EXPERIMENTS ON FORBILD HEAD PHANTOM
We conduct three group experiments on FORBILD HEAD
phantom to compare different reconstruction methods; the
phantom is shown in Fig. 4. We add Gaussian noise to the
acquired noise-free projections, the mean value is zero, and
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FIGURE 5. Images in experiments on FORBILD HEAD phantom, the
projections are in the range of (a) [45◦, 135◦] and (b) [135◦, 225◦]. The
images from left to right are reconstructed by TVM, ATV, AwTV, RwATV, and
ARTV methods in the first row. The images in the second row are
difference images between the first-row images and the reference image.
The images from left to right are reconstructed by TVM, ATV, AwTV, RwATV,
and ARTV methods in the third row, respectively. The images in the fourth
row are difference images between the third-row images and the
reference image.

the standard deviation is 0.1 percent of the maximum value of
the acquired simulation projections. In the first group exper-
iments, the used projections are limited in the range of [45◦,
135◦] and [135◦, 225◦]; in the second group experiments, the
projections are limited in [30◦, 150◦] and [120◦, 240◦]; in the
third group experiments, the projections are limited in [15◦,
165◦] and [105◦, 255◦], respectively. As shown in Fig. 1,
the positive direction of y-axis points to projection view
that corresponds to 0◦. Different angular ranges are used to
evaluate the capability of ARTV in suppressing the shading
artifacts. Noisy projections are used for assessing noise sup-
pression capability of these reconstruction methods. Besides,
these angular ranges are symmetrical about the axes. For
example, [45◦, 135◦] ([135◦, 225◦]) is symmetrical about the
positive direction of x-axis (y-axis). RMSE, PSNR, and SSIM
are used for image quality comparison. Besides, the differ-
ence images corresponding to these reconstructed images
are used to display the shading artifacts remaining in the
reconstructed images. The display windows for reconstructed
images and difference images are [0.5, 1.5] and [−0.5, 0.5],
respectively.

In the first group experiments, the projections are in the
range of [45◦, 135◦] and [135◦, 225◦], and the reconstructed
images are shown in Fig. 5(a) and Fig. 5(b). The first- and
third-row images from left to right are reconstructed by
TVM, ATV, AwTV, RwATV, and ARTVmethods.We can see
that the image reconstructed by TVM suffers from obvious
artifacts, and some structures are weak. ATV method can
strengthen these weak structures. This result indicates that
incorporating angular range into reconstruction model indeed

TABLE 1. The RMSE, PSNR and SSIM of the FORBIHEAD HEAD CT images
reconstructed from projections in the range of [45◦, 135◦] and
[135◦, 225◦].

TABLE 2. The main reconstruction parameters of TVM, ATV, AwTV, RwATV,
and ARTV in the experiments on FORBILD HEAD phantom.

works for limited-angle CT image reconstruction. However,
from the difference images we can see that obvious shading
artifacts remain in the images obtained from ATV method.
Without using the prior knowledge of the scanning angular
range, AwTV method can also reduce the shading artifacts,
but some structures of the reconstructed image are lost.
RwATVmethod inherits the advantages of ATVmethod. And
on the basis of ATV method, the measure of RwATV has less
dependence on image gradients, which is more convenient to
recover weak structures in the iterative process. The images
in the fourth column of Fig. 5 show that RwATV method
significantly reduces the shading artifacts, and the recon-
structed images have clearer structures. This result indicates
that the reweighted technique indeed improves image quality
by reducing the dependence of sparsity measure on image
gradients. From the images in the fourth and fifth column of
Fig. 5, we observe that the images obtained by RwATV and
ARTV methods have similar quality. However, their corre-
sponding difference images indicate that the images recon-
structed by ARTV method are closer to the reference image.
In order to evaluate the reconstruction results quantitatively,
we calculated their RMSE, PSNR, and SSIM and list them
in TABLE 1. From these values, we can obtain the same
results. In this group experiments, the main reconstruction
parameters of TVM, ATV, AwTV, RwATV, and ARTV are
determined by trial and error and are shown in TABLE 2.
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FIGURE 6. Images in experiments on FORBILD HEAD phantom, the
projections are in the range of (a) [30◦, 150◦] and (b) [120◦, 240◦]. The
images from left to right are reconstructed by TVM, ATV, AwTV, RwATV, and
ARTV methods in the first row. The images in the second row are
difference images between the first-row images and the reference image.
The images from left to right are reconstructed by TVM, ATV, AwTV, RwATV,
and ARTV methods in the third row, respectively. The images in the fourth
row are difference images between the third-row images and the
reference image.

Parameter µ represents the step size to reduce image gradient
in TVM, ATV, AwTV, and RwATV methods, NTVM , NATV ,
NAwTV ,, and NRwATV represent the number of gradient decent
in each step of TVM, ATV, AwTV, and RwATV methods,
respectively.

In the second group experiments, the projections are lim-
ited in [30◦, 150◦] and [120◦, 240◦], and the reconstructed
images are shown in Fig. 6(a) and Fig. 6(b). In the third
group experiments, the images reconstructed from projec-
tions in the range of [15◦, 165◦] and [105◦, 225◦] are shown
in Fig. 7(a) and Fig. 7(b). As the scanning angular range
increases, the reconstructed image quality is gradually get-
ting better. The reconstructed images show that RwATV and
ARTV methods perform better than TVM, ATV, and AwTV
methods. The difference images indicate that the images
reconstructed by ARTV method are closer to the reference
image than that reconstructed by AwTV and RwATV meth-
ods. In order to evaluate the reconstruction results in Fig.6 and
Fig. 7 quantitatively, we calculate their RMSE, PSNR, and
SSIM and list them in TABLE 3 and TABLE 4, respectively.
From these values, we can obtain the same results. In these
two group experiments, the main reconstruction parameters
are not listed for the sake of brevity.

For FORBILD HEAD phantom that satisfies the spar-
sity assumption, ARTV method reconstructs high-quality CT
images, which means that ARTV measure also objectively
and effectively characterizes image sparsity like RwATV
or ATV measure. In fact, the measure of ARTV can be
considered as a generalization of ATV. ARTV method
inherits the advantages of ATV method, and WIV reduces

FIGURE 7. Images in experiments on FORBILD HEAD phantom, the
projections are in the range of (a) [15◦, 165◦] and (b) [105◦, 255◦]. The
images from left to right are reconstructed by TVM, ATV, AwTV, RwATV, and
ARTV methods in the first row. The images in the second row are
difference images between the first-row images and the reference image.
The images from left to right are reconstructed by TVM, ATV, AwTV, RwATV,
and ARTV methods in the third row, respectively. The images in the fourth
row are difference images between the third-row images and the
reference image.

TABLE 3. The RMSE, PSNR and SSIM of the FORBIHEAD HEAD CT images
reconstructed from projections in the range of [30◦, 150◦] and
[120◦, 240◦].

TABLE 4. The RMSE, PSNR and SSIM of the FORBIHEAD HEAD CT images
reconstructed from projections in the range of [15◦, 165◦] and
[105◦, 255◦].

the dependence of ARTV on image gradients. So ARTV
method also has the advantages of RwATV method. Besides,
ARTV method has good capability of structure extraction.
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FIGURE 8. Reference images: (a) thoracic image, (b) walnut image and it
is reconstructed by SART (10 iterations) using complete-angle projections.

In limited-angle CT, ARTV method recognizes weak struc-
tures and recovers them in iterative reconstruction. FORBILD
HEAD phantom is sparse in image gradient domain; coin-
cidently, RwATV and ARTV method comply with this fact,
thereby, they effectively improve the quality of the recon-
struction results. In practice, a normal CT image may not sat-
isfy the sparsity assumption, therefore, it is a promising work
to pursue a more effective tool to describe image features.
As far as we know, image structures are main features of CT
images, so it is promising to improve image quality by focus-
ing on preserving image structures. In order to test ARTV
method, experiments on real CT image and CT projections
are performed in the next section.

B. EXPERIMENTS ON CT IMAGE FROM TCIA
In this section, one thoracic image obtained from The Can-
cer Imaging Archive (TCIA) [30] is used to verify the per-
formance of ARTV method, the reference image is shown
in Fig.8 (a). The image has 256 × 256 pixels and it is
200 × 200 mm2. The detector is composed of 512 units.
The distance from the X-ray source to the rotation axis is
400 mm, and the distance between the rotation axis and the
detector is 400 mm. We acquire the simulation projections of
the thoracic image following above imaging geometry. Then
Poisson noise with incident intensity 1 × 105 is added to
the projections; besides, Gaussian noise is also added to the
projections, themean value is zero, and the standard deviation
is 0.1 percent of the maximum value of the acquired simula-
tion projections. Projections in the range of [10◦, 170◦] are
used for CT reconstruction in this section. The images recon-
structed by TVM, ATV, AwTV, RwATV, and ARTV methods
are listed in Fig. 9. We can observe that TVM and ATV
reconstruct images with obvious shading artifacts, and some
image edges or structures are a little blurry. Their difference
images also illustrate this result. AwTV and RwATV meth-
ods greatly reduce the shading artifacts. This result shows
that using anisotropy features of image edges effectively
improve image quality and confirms the validity of the prior
information of scanning angular range. However, AwTV and
RwATV methods do not further reduce the shading artifacts,
while ARTV method greatly reduces these artifacts and the

FIGURE 9. Thoracic images reconstructed from projections in the range of
[10◦, 170◦]. In the first-row images, the first one is the reference image,
and then the images from left to right are reconstructed by TVM and ATV;
the images in the third row are reconstructed by AwTV, RwATV, and ARTV
methods, respectively. The images in the second row are difference
images between the first-row images and the reference image. The
images in the fourth row are difference images between the third-row
images and the reference image. The display windows for the
reconstructed images and difference images are [0, 0.8] and [0, 0.12],
respectively.

reconstructed image has clear structures. The difference
images show that the image reconstructed by ARTV method
is closest to the reference image. To demonstrate the conver-
gence of the proposed method, the curve of RMSE versus
iteration numbers are plotted in Fig. 10 in this experiment,
we can see that ARTV method converges to a smaller value
quickly.

C. EXPERIMENTS ON REAL CT PROJECTIONS
Experiments on real projections of a walnut are performed
to test ARTV method in this section. The complete-angle
projections were obtained from Chongqing University and
collected by a micro-CT system. We select projections in the
center slice of the flat panel detector for two-dimensional CT
reconstruction. The image reconstructed by SART algorithm
(10 iterations) is used as reference image (Fig. 8(b)) for image
quality comparison; the used projections are complete-angle
fan-beam projections. In the experiments, the projections of
a real walnut for image reconstruction are in the range of
[30◦, 150◦] and [15◦, 165◦], respectively. The reconstructed
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FIGURE 10. The convergence curves of TVM, ATV, AwTV, RwATV, and ARTV
methods in experiments on the thoracic image.

FIGURE 11. CT images of a walnut reconstructed from projections in the
range of [30◦, 150◦]. In the first-row images, the first one is the reference
image, and then the images from left to right are reconstructed by TVM
and ATV; the images in the third row are reconstructed by AwTV, RwATV,
and ARTV methods, respectively. The images in the second row are
difference images between the first-row images and the reference image.
The images in the fourth row are difference images between the
third-row images and the reference image. The display windows for the
reconstructed images and difference images are [0, 0.04] and [−0.02,
0.02], respectively.

images are displayed in Fig. 11 and Fig. 12. We observe that
TVM reconstructs images with obvious shading artifacts, and
image edges or structures are a little blurry. ATV, AwTV, and
RwATV methods can reduce the shading artifacts; however,

FIGURE 12. CT images of a walnut reconstructed from projections in the
range of [15◦, 165◦]. In the first-row images, the first one is the reference
image, and then the images from left to right are reconstructed by TVM
and ATV; the images in the third row are reconstructed by AwTV, RwATV,
and ARTV method, respectively. The images in the second row are
difference images between the first-row images and the reference image.
The images in the fourth row are difference images between the
third-row images and the reference image. The display windows for the
reconstructed images and difference images are [0, 0.04] and [−0.02,
0.02], respectively.

we can still observe residual artifacts. When comparing ATV,
AwTV, and RwATV methods, we observe that they recon-
struct CT images of similar quality, the difference images also
proves this result. This result indicates that using image spar-
sity cannot further significantly improve image quality in this
case. ARTV method further reduces the shading artifacts and
the reconstructed image has clear structures. The difference
images also show that ARTVmethod performs best among all
competing methods. In this section, the main reconstruction
parameters are shown in TABLE 5.

IV. DISCUSSIONS
In this study, ATV and RwATVmethods improve image qual-
ity using image sparsity and the idea of anisotropy. However,
a normal CT image may not be sparse in the gradient domain.
We notice that image edges or structures are key information
of an image, whether the image is sparse or not. AwTV
method considers the anisotropic edge property among neigh-
boring image pixels, but it does not consider the prior infor-
mation of the scanning angular range. We know RTV can
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TABLE 5. The main reconstruction parameters of TVM, ATV, AwTV, RwATV,
and ARTV in the experiments on real CT projections.

effectively highlight the structure information in an image.
Inspired by the characteristics of RwATV and RTV, we define
AWTV andARTVmeasures and then propose ARTVmethod
towards limited-angle CT. In the process of image recon-
struction, WIV values guide image reconstruction using the
structure information of the current reconstructed image.
Experimental results show that ARTV method performs bet-
ter in preserving image structures and suppressing the shad-
ing artifacts than other competing methods. However, there
are some related issues that need to be pointed out and further
studied in the follow-up works.

A. LIMITATIONS OF ARTV METHOD
The proposed ARTV method focuses on image reconstruc-
tion towards limited-angle CT. However, when the available
projections are incomplete, some structures of reconstructed
images may be missing, not just unclear. At this time, TVM,
ATV, AwTV, RwATV, and ARTVmethods cannot reconstruct
high-quality CT images. Therefore, in ultra-limited-angle CT
(for example [0◦, 60◦]), more information is needed to ensure
reconstructed image quality. In this paper, the scanning angu-
lar range for experiments on real CT image or projections is at
least 120◦. In aword, ARTVmethod is effective, but its ability
to suppress artifacts is still limited by incomplete projections.

B. PARAMETERS SELETION
In the ARTVmethod, we need to determine the values of mul-
tiple parameters. But CT image quality is robust to σ , NARTV ,
ε, τ , and they are set to 2, 5, 0.001, and 0.001 in this work.
Thenwe need to determine η and α (or β), which significantly
affect the reconstructed image quality. For example, in the
case shown in Fig. 1, β is set to 1 and α < 1. Generally
speaking, when the scanning angular range is large, a larger α
is conducive to the reconstruction of high-quality CT images.
In the extreme case, when the scanning angular range is
[0◦, 360◦], α and β are equal. In actual limited-angle CT
reconstruction, a skill may come in handy. We assume that
ARTV method gradually recovers image structures, so the
image structures with weak strength are also gradually clear;
that is to say, image structures are more reliable. At this point,

the regularization intensity in x and y directions should get
closer, that is, α could be getting larger during CT reconstruc-
tion. This skill is optional. In the experiments in this work,
η and α (or β) are determined by trial and error. Although the
regularization parameter in ARTVmethod is small compared
to other methods, the ARTV term still has a substantial impact
on the reconstruction results. We can confirm this conclusion
from the experimental results in this paper.

C. SELECTED SCANNING ANGULAR RANGE
In this work, the selected projections are in the angular
ranges that are symmetrical about the axes; on the basis of
the analysis about the shading artifacts, we know they are
also symmetrical about the axes. This setting is to comply
with the definition of ARTV measure. In the experiments,
the object is placed roughly axisymmetric in coordinates,
so the image edges parallel to the axis can be preserved by
gentle regularization constraints. In practice, the target object
may be placed randomly; and the available projections are
distributed in any angular range. We need to point out that
the artifact distribution is related to the coordinate system we
have established. In practical applications, we can rotate the
coordinate system or the reconstructed images to make the
artifacts distribute symmetrically about the coordinate axis.

V. CONCLUSION
In this work, we define AWTV and ARTV, and propose the
ARTV method for limited-angle CT image reconstruction,
and then we clarify the relationship and differences between
the measure of ARTV and TV, ATV, and RwATV. Then we
describe the solution process of ARTV method. In order to
verify the performance of ARTV in suppressing the shading
artifacts and preserving image structures, we perform digital
phantom experiments and real CT data experiments. In order
to comply with the definition of ARTV, the selected scan-
ning angular ranges are symmetrical about the coordinate
axes. The graphic comparison and quantitative evaluation
indexes in the digital phantom experiments show that ARTV
method performs better among all the competing methods.
Real CT data experimental results show that the limited-angle
CT reconstruction methods based on sparsity constraint has
certain limitations, and the ARTV method based on structure
extraction can more effectively suppress the shading artifacts
and preserve image structures. However, the performance
of ARTV method is still limited by incomplete projections.
As far as we know, dictionary learning and deep learning are
widely used in CT image reconstruction as effective tools.
However, they cannot effectively use the prior knowledge
widely used in limited-angle CT for image reconstruction,
such as the scanning angular range or anisotropy. Neverthe-
less, we will study limited-angle CT reconstruction methods
with stronger ability of suppressing the shading artifacts on
the basis of dictionary learning or deep learning in our future
research.
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