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ABSTRACT When the wireless communication network is optimized for the high-speed railway scenario
(HSRS), GPS connections are prone to frequent interruptions. The causes of this phenomenon are analyzed
after collecting a large quantity of measured data. A positioning algorithm based on the fingerprint database
by twice-fuzzy clustering is proposed to obtain the locations of the terminal inside the carriage of high-speed
train (HST) in real time. After collecting more than 300,000 sampled data of both network characteristics
and location information, the database of original fingerprints has been constructed. The identification and
elimination of abnormal fingerprints are helpful to improve the quality of the fingerprint database. The
longitude and latitude of the terminal, which is losing the signals of GPS, can be calculated by setting the
fingerprint integral counter, threshold value and weighted measurement eigenvalues and by constructing a
matrix of dissimilarity. The experimental results show that the proportion of similar fingerprints between
15 and 200 by once-fuzzy clustering is as high as 90.81%; Additionally, the number of over 95.57% of the
similar fingerprints is between 1-20 by twice-fuzzy clustering. The proportion of samples with positioning
accuracy less than 10 m is 63.33%, and those less than 5 m account for 41.67%. The average positioning
accuracy of the proposed algorithm is 9.02 m, which is suitable for acquiring location information when the
signals of GPS are losing in HSRS.

INDEX TERMS Clustering algorithms, dissimilarity matrix, fingerprint database, fuzzy set theory, location
information.

I. INTRODUCTION
With the continuous increase of railway operating mileage,
high-speed train (HST) has become the main form of
passenger transport because of the high speed, low energy
consumption, large transportation capacity, safety and punc-
tuality [1], [2]. In the networks of the long term evolution
(LTE), how to improve the performance of a mobile commu-
nication system in the high-speed railway scenario (HSRS)
has become an important research topic [3]. Due to both the
large number of passengers and the high average revenue per
user (ARPU), telecom operators regard high-speed railway
as one of the most important scenarios to improve the quality
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of coverage for the wireless communication network [4]. The
optimization of the wireless network can effectively eliminate
network interference along the railway, avoid the existence
of no-signal areas and improve the user’s perception [5], [6].
Generally, the network performance data tested to optimize
the wireless network of telecom operators in HSRS include
the power and quality of the reference signal and other param-
eters. By matching these data with the loc0 ation information
collected by GPS, the network performance can be analyzed,
and the problems of weak coverage are about to be solved.
However, the signals of GPS satellites have become very
weak through the free-space loss [7], [8], the Doppler fre-
quency shift [9], [10], and the penetration loss due to closed
metal structure of HST [11]–[13], resulting in the frequent
interruptions of GPS connections.
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FIGURE 1. Principle of collecting massive original fingerprints.

In this case, how to obtain the locations of the terminal is a
new challenge for telecom operators in wireless communica-
tion research, such as the analysis of measured data and the
planning of the network optimization project in HSRS [14].
It is difficult to analyze the relationship between the network
index and the geographic coordinates in real time because
the terminal inside the carriage of HST cannot effectively
obtain location information. Even if we know that the ter-
minal has gone offline at some point, we cannot determine
where it happened. Furthermore, both the project planning of
the evolved universal terrestrial radio access network NodeBs
(E-UTRAN NodeBs or eNBs) and the wireless optimization
of 4G networks cannot obtain reliable support data for tele-
com operators.

Considering that multipath fading [15] of wireless signal
has characteristic attributes at the same location, the method
of constructing a fingerprint database with massive mea-
sured data can achieve terminal positioning. After two
stages of offline collection and online positioning, a finger-
print database of received signal strength (RSS) is built to
accomplish indoor terminal positioning [16]. In the wireless
local area network (LAN) environment, the coordinates of
indoor terminal are calculated based on a multidimensional
fingerprint database of received signal strength indication
(RSSI) [17]. Using indoor both receiver and transmitter to
obtain a large quantity of original location data, a new mech-
anism of fingerprint identification is created [18]. A posi-
tioning algorithm of semi-supervised learning is proposed
to form fingerprints by using RSSI spatial correlations of
adjacent nodes for terminal locations [19]. A radio map
is constructed by collecting signal strength samples in the
location area, and the indoor terminal locations are deter-
mined by using the fingerprint identification technology [20].
A positioning algorithm utilizing a noise sensor based on a
multi-objective evolutionary model is proposed. The noise

covariance estimator is used to sense the noise covariance
of RSSI and to find the optimal weight of the calibration
point [21]. In [22], an acquisition and location system of
double databases of fingerprints based on wireless sensor
networks is designed according to the goal of low input and
high efficiency. An improved fingerprint-based localization
approach that adopts a path lossmodel for fingerprint creation
and positioning is proposed [23]. In [24], the authors present
an adaptive weighted positioning method of k-nearest neigh-
bor (KNN) based on an omnidirectional fingerprint database
(ODFD) and twice-affinity propagation clustering. To solve
the challenges of low sampling efficiency and particle impov-
erishment, a time sequence Monte Carlo localization algo-
rithm based on particle swarm optimization is proposed [25].
At present, however, the positioning algorithms of fingerprint
database upon the loss of the signals of GPS are mainly for
the scenarios of indoor, or low-speedmobile terminal, or non-
railway. There is little research on terminal positioning inside
the carriage of HST.

In HSRS, a great deal of experimental experience illus-
trates that terminal can also collect a large number of finger-
prints with characteristic values, such as receiving power and
signal quality. The relationship between these characteristic
values and the location information creates the condition for
positioning algorithm [26], [27]. As is known to all, there are
a lot of positioning algorithms. However, the main research
directions of these localization algorithms include two direc-
tions. On the one hand, some localization algorithms are
mainly used for accurate and safe operation of trains. In order
to achieve the positioning function, some of them add a relay
device in the train to avoid the penetration loss of carriage,
and some of them deploy navigation equipment and a large
number of positioning sensors as prominent technologies to
get the location information of the running train. On the other
hand, some localization algorithms are mainly used in the
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FIGURE 2. Network performance with different colors according to
different grades in HSRS. (a) RSRP. (b) RSRQ.

static indoor environment. In other words, the terminal to be
located is either stationary or moving at a very slow walking
speed. Up to now, no researchers have been found to report a
positioning algorithm for user terminals when the GPS signal
is losing on HST without additional equipment. Considering
this situation, this paper takes the positioning problem of a
high-speed mobile terminal losing the signals of GPS as the
research object to find an efficient and low-cost solution in
HSRS.

In this paper, the positioning algorithm of terminal on
HST is realized without modifying the test software and
adding additional devices. The collection of original finger-
prints with location information can be acquired through
the Internet by remote control unit (RCU). It is picked up
by the engineer on a train and composed of five mod-
ules, as shown in Fig. 1. Each module has a port, such
as 1, 2, . . . , 5, to connect to other devices. Alternating current

TABLE 1. Train penetration loss.

(220 V) can be obtained from the train or from a portable
power source. The terminals (HTC M8t), which have been
installed with developed software to measure the networks of
mobile communication, are connected to port 3 and port 4.
The information, including control interactions and measure-
ment interactions, is transferred between the antenna of the
modem module and web server. Large quantity of measured
data is stored on an FTP server. Logging into a specific
website via a laptop can display some of the test results
remotely, such as the path loss, the reference signal receiv-
ing power (RSRP), the reference signal receiving quality
(RSRQ), the signal to interference plus noise ratio (SINR),
RSSI, and other measured data.

Based on the analysis of the reasons for losing the signals
of GPS, a novel model of positioning algorithm is proposed
based on the fingerprint database by twice-fuzzy clustering.
The locations of the high-speed mobile terminal are deter-
mined by removing abnormal fingerprints, calculating similar
fuzzy clustering fingerprints and constructing a dissimilarity
matrix. The research results provide robust technical support
for the analysis of measured data and the optimization of
wireless network. The rest of this paper is organized as fol-
lows. In Section II, the phenomenon of the loss of GPS signals
in HSRS is presented through the measured data, and the
causes are also analyzed. Section III elaborates the model of
the positioning algorithm. Section IV presents the proposed
algorithm for the fingerprint database by twice-fuzzy cluster-
ing in detail. The experimental results are presented to verify
the effectiveness of the proposed algorithm in Section V.
Finally, Section VI summarizes the whole article.

II. LOSS OF GPS SIGNALS IN HSRS
The frequent loss of GPS signals in HSRS causes the net-
work performance indexes, such as the physical cell identifier
(PCI), RSRP and RSRQ, to not be completely visualized
on a map. Taking the section of a high-speed railway from
Lanzhou station to Jiayuguan station in China as an example,
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the values of RSRP and RSRQ are colored by randomly
measured data, and over half of the mileage had no location
information, as shown in Fig. 2. In the legend of Fig. 2 (a),
the unit of RSRP value is dBm. There are 2,514 sampling
points, accounting for 6.68% of the sampling points, and their
RSRP values range from−141 dBm to−110 dBm. They are
marked red. In the legend of Fig. 2 (b), the unit of RSRQ
value is dB. There are 166 sampling points, accounting for
0.3% of the sampling points, and their RSRQ values range
from−30 dB to−20 dB. They are marked red. Similarly, the
network performance values for the other grades are marked
purple, green, and blue, respectively.

The phenomenon of the loss of GPS signals is closely
related to the transmission loss of satellite signals, the speed
of HST, thematerial used to construct the carriage of HST and
the sealing characteristics. Through the analysis after collect-
ing a large quantity of measured data, the average penetration
losses under different train levels of running, different train
materials and other factors are obtained, as listed in Table 1.
The average penetration loss of an ordinary train is the lowest,
and is approximately 6 dB. The average penetration loss
of China railway high-speed (CRH) trains ranges from 16-
28 dB, while the average penetration loss of the Fuxing bullet
train is the greatest, as high as to 28 dB.

When HST runs within the coverage area of a cell, changes
in the angle (called the incidence angle) between the eNB
signal and the carriage cause different penetration losses,
as illustrated in Fig. 3 (a) and (b): α and β correspond to
the different angles of incidence. The smaller values of the
incidence angle mean greater penetration losses. According
to the wireless link budget theory, train penetration losses
reduce the effective coverage of eNBs.

From the perspective of LTE network coverage optimiza-
tion of telecom operators, in order to obtain better network
coverage, the incidence angle must be increased through
reducing the eNBs’ spacing. Because when the materials of
HST are the same, the larger angles of incidence are designed,
the smaller the penetration loss is. From the above analysis,
it can be observed that the loss of GPS signals in HSRS is
quite serious and inevitable.

III. MODEL OF A POSITIONING ALGORITHM
In HSRS, eNBs are sparsely distributed in the plains and
open sections, while relatively dense in special sections such
as tunnels, ditches, viaducts and mountains. Normally, eNBs
are built alternately on either side of the track. However, for
non-linear track section, the eNB is usually placed on the
insides of curved track to ensure the balance of the network
coverage. As the train moves at high speed, the measured data
of terminal changes continuously.

According to the positioning algorithm, the sampled data
of one serving cell (SCell) and three optimal neighboring
cells (NCell) are taken as original fingerprints. The finger-
print database consists of a large number of original fin-
gerprints. The model of positioning algorithm based on the
fingerprint database by twice-fuzzy clustering is established

FIGURE 3. Incidence angle of the wireless signal and penetration loss of
the train carriage. (a) Sketch of wireless signal the incidence angle.
(b) Relationship between the incidence angle and penetration loss.

as shown in Fig. 4. According to the engineering parameters,
the sampling data of attached location information for the
SCell and NCell are assigned to the corresponding eNB in
the ith sampling period (i = 1, 2, . . . , n). Some sample
points may exceed the theoretical threshold in the prelim-
inarily original fingerprint database, which can be viewed
as abnormal fingerprints and eliminated. The high-precision
map of the high-speed railway is divided into grids with
areas of 1 × 1.435 m2 (1.435 m is the international stan-
dard gauge), and each grid contains measured data in the
fingerprint database. When the signals of GPS are losing
in HSRS, the integral value (C) is calculated according to
the similarity of characteristics between measured data to be
located and fingerprints. Then the fingerprints of the same
type are filtered when the C of them are greater than the
integral threshold value (λ). The process of calculating the
location coordinates can be divided into two fundamental
steps: the weightedmeasurement eigenvalue and construction
of a dissimilarity matrix.

The C values of all fingerprints in the database are calcu-
lated according to the PCImatching degree. One of the design
principles of the positioning algorithm is that the higher the
PCI matching degree, the larger the C value. In addition,
SCell and NCells are given different weights when calcu-
lating the C value. The essence of the integral threshold λ
is to select the similar fingerprints after once-fuzzy cluster.
The reasonable value of λ makes it easier for the similar
fingerprints to be the result of once-fuzzy clustering.
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FIGURE 4. Model of positioning algorithm based on the fingerprint database by twice-fuzzy clustering.

In twice-fuzzy clustering, the measurement eigenvalues of
fingerprints include the RSRP and RSRQ values of SCell
and NCells. The differences of weighted eigenvalues are cal-
culated between measurement sampling points to be located
and similar fingerprints. First, the measured data of SCell and
NCells are weighted in the process of calculating theC value.
Then, the difference of between measured data to be located
and fingerprints is calculated according to different weights.

The similarity of fingerprints can be quantified by
constructing the dissimilarity matrix. On the one hand,
dissimilarity matrix is the premise of positioning terminal
coordinates by twice-fuzzy clustering. On the other hand,
matrix computing improves the ability of data processing.

As shown in Fig. 5, a database for fingerprint positioning
can be formed by the collection of measured data from the
RCU. When the terminal loses the signals of GPS in tunnels,
ditches or other special terrain, the characteristic values of
the real-time measured data. We take eNB5 as an example.
(RSRPi5, RSRQi5) is a pair of measurement results of eNB 5
at data sequence i, i = 1, 2, . . . ,N . The final positioning
is determined by the positioning algorithm based on the
fingerprint database of twice-fuzzy clustering.

IV. POSITIONING ALGORITHM FOR THE TWICE-FUZZY
CLUSTERING FINGERPRINT DATABASE
A. BUILDING A VALID FINGERPRINT DATABASE
Because the radio signal is affected by distance, terrain and
obstacles, the signal characteristics caused by multipath fad-
ing have strong correlations with their location information
[28], [29]. In each grid, the SCell and the 3 optimal mea-
sured data of NCells are selected to obtain 4 groups of PCI,
RSRP andRSRQ sampling values, namely, (PCIi,m, RSRPi,m,
RSRQi,m), which constitute a fingerprint, m = 1, 2, 3, 4.
Each grid contains at least one fingerprint, which has the
location information.

FIGURE 5. Sketch map of fingerprint-based positioning.

When some segments in HSRS are covered by less than 3
NCells, there are losing elements in fingerprints. This is
also characteristic information of the fingerprint database.
This situation mainly occurs when HST pass through mul-
tiple eNBs in a short time, which causes frequent cell han-
dover. To solve this problem, several adjacent physical cells
are merged into one logical cell, so that there are no handover
phenomena in one logical cell. Therefore, in HSRS there is
a case where the same PCI represents multiple eNBs in the
original fingerprint database, and its location coordinate set
is recorded as {(Xl , Yl)}, l = 1, 2, . . . ,N . Assuming that the
location coordinate set of the terminal is recorded as (xk , yk ),
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FIGURE 6. Distance between the terminal and eNBs (A, A’, B and B’ are
respectively the locations of eNBs).

k = 1, 2, . . . ,N . The coordinate (Xj, Yj) of the nearest eNB
satisfies the following equation:√(

Xj − xk
)2
+
(
Yj − yk

)2
=

min
{√

(Xl − xk)2 + (Yl − yk)2
}

1 ≤ j ≤ l

(1)

Due to the interference of network, the malfunction of
eNB or the deviation of GPS, abnormal fingerprints, which
affect the accuracy of fuzzy clustering, need to be eliminated
from the original fingerprint database [30]. The validity of
a fingerprint can be judged by the distance d , between the
terminal and the nearest eNB, which can be calculated as
follows:

d =
√(

Xj − xk
)2
+
(
Yj − yk

)2 (2)

In HSRS, the distance between two adjacent eNBs ranges
from 800 m to1,600 m, and the vertical distance between an
eNB and the track ranges from 50 m to 200 m, as shown
in Fig. 6. Suppose that point A and point A’ represent the
locations at the farthest (200 m) and closest (50 m) vertical
distance between the eNB and track respectively. Draw an
arc with point A as the center and 1,600 m as the radius.
According to the layout principle of eNBs in HSRS, the clos-
est point B and the farthest point B’ perpendicular to the track
are marked on the arc. AB and AB’ intersect respectively
the track at point C and point C’. When the distance d
from the terminal to the nearest eNB satisfies equation (3),
the corresponding sample is determined to be an effective
fingerprint:

dmin ≤ d ≤ dmax (3)

where, dmin and dmax are the nearest and farthest distances
between the terminal and the adjacent eNB respectively.
According to the calculation, dmin = OA ’ = 50m, dmax =

AC = 1,280 m.

B. FUZZY CLUSTERING
1) ONCE-FUZZY CLUSTERING OF SIMILAR FINGERPRINTS
Assuming that the location information of the terminal is
absent from measured data, the PCIs of SCell and NCell

are expressed as PCIi1’, PCIi2’, . . . , PCIim’. The calculation
process for once-fuzzy clustering of similar fingerprints is as
follows.

a: MATCHING DEGREE
Match the sampling value PCIi1’, PCIi2’, . . . , PCIim’ with
the sampling value PCIi1, PCIi2, . . . , PCIim in the fingerprint
database. Define the variable g, which starts at 0. If a match
occurs once, g = g+1, and so on; If an inequality occurs, the
process of matching terminates. The larger the g value is, the
higher the matching degree between the measured data and
the fingerprints in the database, and vice versa.

b: INTEGRAL VALUE C
To treat the fingerprint with a higher matching degree in
the previous step as a similar fingerprint by using a fuzzy
clustering, an integral counter is set for sample ωi, whose
value is expressed as C , and the initial value is 0. If g =
1,C = a, a is assigned to C when the PCIi1 value of SCell
matches. If g >1, for each match of PCIi2, PCIi3, . . . , PCIim
value, the value of b is assigned to C . That is:

C = a+ b(g− 1) (4)

where, a and b, respectively, represent the cumulative values
of the integral counter when the SCell and NCell PCI values
match. Assume: a is a natural number, and 1 ≤ a ≤ 10.
By studying the relationships between C and a, considering
the weight influences of the SCell and NCell in the process
of evaluating the quality of network, and training lots of
fingerprints, equation (5) is obtained:

b =
⌈
10− a

3

⌉
(5)

Combining equations (4) and (5), the expression for C can be
obtained as follows:

C = a+ (g− 1)
⌈
10− a

3

⌉
(6)

c: COUNTER THRESHOLD
Set the threshold value λ of the counter, and the samples of
C > λ in the fingerprint database are similar fingerprints after
once fuzzy clustering. In the section of high-speed railway
with insufficient overlapping coverage (fewer than 3 NCells),
the absent part of the elements in PCIi1’, PCIi2’, . . . , PCIim’,
and the number of absent elements is expressed as t , namely,
0 ≤ t ≤ 3. Referring to the expression principle for the C
value in equation (6), the expression for λ is obtained:

λ = a+ (3− t)
⌈
10− a

3

⌉
(7)

2) TWICE-FUZZY CLUSTERING OF POSITIONING
COORDINATES
Assuming that the RSRP of the SCell and NCell of
measured data are RSRPi1’, RSRPi2’, . . . , RSRPim’, they
are called pim’ for brevity, and RSRQ is RSRQi1’,
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RSRQi2’, . . . , RSRQim’, or qim’ for brevity. The distance
between these and the similar fingerprints pim and qim by
once-fuzzy clustering are defined as:

d(pi) = α × |pi1 − pi1′ | + (1− α)
m∑
k=2

|pik − pik ′ | (8)

d(qi) = α × |qi1 − qi1′ | + (1− α)
m∑
k=2

|qik − qik ′ | (9)

Let α ∈ [0, 1] be the weighting coefficients of the measure-
ment results of the SCell and NCell. Let β ∈ [0, 1] be taken
as the weighting coefficient of d(pi) and d(qi) for equation (6)
and equation (7), that is, the weighting coefficients of the
RSRP and RSRQ distances:

D =


d1
d2
· · ·

dn

 =

βd(p1)+ (1− β)d(q1)
βd(p2)+ (1− β)d(q2)

· · ·

βd(pn)+ (1− β)d(qn)

 (10)

where, n represents the number of similar fingerprints by
once-fuzzy clustering. The difference analysis method is used
to determine the dissimilarity ruv of du and dv in equation (10)
as follows:

ruv = |du − dv| (11)

where, 1≤ u ≤ n, and 1≤ v ≤ n. The smaller the ruv value is,
the smaller the dissimilarity of the two elements. This means
the higher similarity, and vice versa. Thus, the dissimilarity
matrix R is constructed as follows:

M =


r11 r12 · · · r1m
r21 r22 · · · r2m
...

...
. . .

...

rm1 rm2 · · · rmm

 (12)

where, m represents the number of similar fingerprints by
twice-fuzzy clustering. M is a symmetric matrix, that is,
ruv = rvu, and ruu = 0. The threshold value γ can be set
according to the specific terrain of the high-speed railway.
After twice-fuzzy clustering, fingerprints of the same type
meet the following conditions:

ruv ≤ γ (13)

There are Nf fingerprints that satisfy the requirements of
equation (13). According to equation (14), the average value
ofNf fingerprints after twice-fuzzy clustering is calculated as
the positioning result for the terminal as follows:

(x, y) =
1
Nf

Nf∑
k=1

(xk , yk ) (14)

V. POSITIONING RESULTS
A. QUANTITATIVE ANALYSIS OF FUZZY CLUSTERING
FINGERPRINTS
In once-fuzzy clustering of similar fingerprints, the value of
t reflects the fingerprint feature dimension. This term shows

FIGURE 7. Once-fuzzy clustering of similar fingerprints.

FIGURE 8. Twice-fuzzy clustering of fingerprints for locating coordinates.

the number of absent elements. If the C value is greater than
the λ value, then the same type of fingerprint identification
condition is experienced. When a = 5, the relationship
between the fingerprint characteristics and the fingerprint
identification listed in Table 2 indicates PCI numericalmatch-
ing: ‘‘0’’ indicates no matching, ‘‘-’’ indicates elements los-
ing, ‘‘

√
’’ indicates similar fingerprints, and ‘‘×’’ indicates

non-similar fingerprints.
Through the correlation of multi-feature of fingerprints,

the range of similar fingerprint can be optimized, and fin-
gerprints with greater similarities can be selected for fuzzy
clustering. The measured data without the signals of GPS
over one hour are randomly selected for positioning, and
the number of similar fingerprints in once-fuzzy clustering
is shown in Fig. 7. The number of fingerprints to be located
in the fingerprint database is between 11-606. According to
the second-order polynomial trend line, the average number
of similar fingerprints is approximately 94. The proportion
of similar fingerprints between 15 and 200 in once fuzzy
clustering is as high as 90.81%.
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TABLE 2. Relationship between fingerprint characteristics and fingerprint identification.

TABLE 3. Statistics of the loss of GPS signals.

The number of similar fingerprints by twice-fuzzy cluster-
ing is shown in Fig. 8. The number of cluster fingerprints for
the data to be located ranges from 1 to 37. According to the
second-order polynomial trend line, the average number of
similar fingerprints in database remains approximately 6. The
number of over 95.57% of the similar fingerprints is between
1-20 by twice-fuzzy clustering.

B. MEASUREMENT VERIFICATION
To verify the positioning algorithm based on the twice-fuzzy
clustering fingerprint database proposed in this paper, a field
test is carried out between the Linze South station and the
Qingshui North station of the Lanzhou-Xinjiang high-speed
railway. The effective test range is 95 km, and the disconnec-
tion of GPS data covered a distance of 48 km. The statistics
of the losing network sampling points are listed in Table 3.

Simulation of the positioning algorithm is conducted by
MATLAB. In Fig. 9, there are eleven segments (because the
area of the image has been scaled, there are three segments
joined together) of track with different lengths that lose the
signals of GPS. Fortunately, the position of the terminal is cal-
culated by the proposed positioning algorithm. Each section
of the positioning curve can be smoothly connected with the
GPS curve. Overall, the effect of position information can
meet the requirement that the average positioning accuracy
is less than 10 m).

The results of location information at different GPS miss
rates are shown in Fig. 10. The red mark is the GPS test track,

FIGURE 9. Compensation results of location information by the
positioning algorithm.

and the blue mark is the compensation track of the proposed
positioning algorithm. In Fig. 10(a), the GPS miss rate is
26.00%, and the terrain of most test sections without GPS
location information is mainly plains. In Fig. 10(b), the loss
rate of the signals of GPS is 23.69%. Because the speed of
HST in the blue section is higher than that of the red section,
the test track is longer when the number of sampling points
is relatively small.

The positioning algorithm based on the twice-fuzzy clus-
tering fingerprint database is compared with GPS for RSRP
network coverage, as shown in Fig. 11. There are 5 colors
that correspond to the RSRP ranges: blue-purple, grass-green,
water-blue, yellow and red, which represent the network
coverage qualities of the corresponding positions as excellent
(−90dBm ∼63dBm), good (−95dBm ∼ −90dBm), general
(−105dBm∼−95dBm), medium (−110dBm∼−105dBm)
and poor (−121.12dBm ∼ −110dBm) respectively.
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FIGURE 10. Compensation results of location information under different
GPS miss rates. (a) Linze South station - Gaotai South station. (b) Gaotai
South station - Qingshui North station.

C. ACCURACY OF THE POSITIONING ALGORITHM
To evaluate the accuracy of the positioning algorithm, 300
consecutive data sequences are randomly selected for posi-
tioning. The positioning accuracy can be measured by using
the mean value of DIST in equation (15), which is defined
as the difference between the longitude and latitude (θc, φc)
calculated by the proposed positioning algorithm and the lon-
gitude and latitude (θz, φz) collected by GPS. Its expression

FIGURE 11. Comparison of the positioning algorithm and GPS for RSRP
network coverage. (a) GPS of application. (b) positioning algorithm based
on the twice-fuzzy clustering fingerprint database of the application.

FIGURE 12. Accuracy of the positioning algorithm.

is as follows:

DIST = R× arccos (sinϕc sinϕz +
cosϕc cosϕz cos(θc − θz))× π/180

(15)
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FIGURE 13. Accumulation probabilities of the positioning algorithm’ s
accuracy.

where, c = 1, 2, . . . ,N , and z = 1, 2, . . . ,N . R is the
radius of the earth and the longitude and latitude are expressed
in radians. As shown in Fig. 12, the average positioning
accuracy of the positioning algorithm is 9.02 m. After com-
paring and analyzing the number of similar fingerprints with
large error and small error respectively after clustering, it is
concluded that the greater the positioning error, the fewer the
number of similar fingerprints.

Both the distribution of positioning accuracy and the accu-
mulation probabilities of the positioning algorithm are shown
in Fig. 13. The proportion of samples with a positioning
accuracy of less than 5 m is the highest, as high as 41.67%.
The proportion of samples with a positioning accuracy of less
than 10 m is 63.33%.

VI. CONCLUSION
Based on the fingerprint database constructed from over
300,000 samples, the measured data and localization results
are analyzed. The signals of GPS are affected by the pen-
etration loss and the incidence angle, and the degree of
intensity attenuation is directly related to the train grade
and train running direction. On the basis of a high-precision
map, eNB engineering parameters and massive quantities of
measured data, the proposed positioning algorithm model
can clearly describe the positioning algorithm by the twice-
fuzzy clustering fingerprint database. For the case of different
loss rates of the signals of GPS, the longitude and latitude
coordinates of the terminal can be supplied through the posi-
tioning algorithm based on the fingerprint database by twice-
fuzzy clustering along the high-speed railway. The terminal
location information with high accuracy by the positioning
algorithm proposed can be applied to the association analysis
of network quality. When the signals of GPS are losing in the
measured data, positioning results can provide a reference for
network coverage evaluation, base station planning and the
network optimization for HSRS.
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