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ABSTRACT Classical Artificial Neural Networks (ANNs) though well exploited in solving classification
problems, do not model perfectly the information encoding process in the human brain because ANNs
encode information using rate-based coding. However, biological neurons in the brain are known to encode
information using temporal coding. In order tomimic the biological method of encoding information, various
Spiking Neural Network (SNN) models have been developed. However, some of these models are limited
in the number of spikes and do not leverage well on some classification problems. In order to address some
of the inherent challenges associated with SNN, a multi-layer learning model for a multi-spiking network
is proposed in this paper. The model exploits the temporal coding of spikes and the least-squares method
to derive a weight update scheme. It also employs a spike locality concept in order to determine how the
synaptic weights are to be adjusted at a particular spike time so as to minimize the learning interference,
and thereby, increasing the number of spikes for learning. The performance of the model is evaluated on
benchmarked classification datasets. A correlation-based metric is combined with a threshold concept to
measure the classification accuracy of the model. The experimental results showed that the proposed model
achieved better classification accuracy than some state-of-the-art multi-layer SNN learning models.

INDEX TERMS Multi-spiking neural network, supervised learning, temporal coding.

I. INTRODUCTION
Artificial Neural Network (ANN) is one of the main
learning algorithms in machine learning, particularly in
supervised learning with its variants such as Spiking Neu-
ral Networks (SNN) [1], Deep Neural Network (DNN) [2]
with its various sub-divisions, Growing and Pruning Learn-
ing algorithm for Deep Neural Networks (GP-DLNN) [3] et
cetera have been used to obtain state-of-the-art results in
various fields of application. The architecture and learning
philosophy and mathematical formulation used in this class
of algorithm are modeled after biological learning processes
that occur in the mammalian brain and has evolved over the
years towards biological plausibility following discoveries
on information presentation and learning mechanisms in the
brain [4]. It is established via experimentation that neurons
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in the cortical area of the brain encode information using
temporal coding (precise timing of spikes), which is said to
allow efficient information processing and learning [4]–[8].

ANN learning techniques formulated using temporal cod-
ing of information are referred to as Spiking Neural Net-
works (SNN) and classified as the third generation of
ANN [1]. Unlike rate-based learning methods that largely
use sigmoid and Radial Based functions, neural activities
in this generation of ANN are modelled using more bio-
logically plausible neural models such as the Hodgkin-
Huxley (HH) model [9], Integrate-and-Fire (IF) models
[4], [10], Izhikerich’s model [4], [11], and Spike Response
Model (SRM) [4], [10]. Supervised learning in the sec-
ond generation of ANN using rate-based encoding is well
established, however, data presentation in SNN using the
temporal coding scheme makes it impossible to directly
apply supervised rate-based learning methods to train SNN.
As a result and also, taking into consideration the prospects
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SNN presents to the machine learning domain, there have
been series of studies geared towards formulating supervised
learning algorithms specific to SNN using varying synaptic
weight optimisation techniques such as Spike Timing Depen-
dent Plasticity (STDP) [12]–[14], Error Backpropagation
[15], [16], evolutionary optimisation techniques [17], [18],
among others, which have been successfully evaluated on
some benchmark classification problems. However, a major
challenge with these learning techniques is the uncertainty of
convergence when the number of spikes emitted by neurons
in a network particularly, in the output neurons are more than
one (1). It has been demonstrated that multi-layered networks
with multi-spiking neurons are required to adequately learn
and classify non-linearly separable data [19]. The challenges
associated with using the above SNN learning models to effi-
ciently train multi-layer multi-spiking networks are attributed
to the difficulty in defining appropriate cost functions for
multiple output spikes in the case of Error Backpropagation
and evolutionary based models, and the increase in learning
interference on synaptic weights due to changes imposed by
synapses with multiple input spikes that contribute to differ-
ent output spikes [12], [19]. In an attempt to minimize the
challenges associated with existing supervised SNN learning
models and improve the performance of SNN reported in lit-
erature particularly, on data classification tasks, a supervised
learning model for multi-layer networks with multi-spiking
neurons is presented in this paper. The aim of supervised
learning in SNN is to train the network to emit output spikes at
some defined spike times in response to input spikes arriving
at the synapses of the output neuron before a respective output
spike time. To achieve this, techniques are formulated mostly,
using the difference between the output and input spike times
to adjust the synaptic weights with respect to input spike
times to enable the output neuron to emit a spike at a given
output spike time [4]. The proposed model is derived based
on a concept that exploits the relationship between input and
output spikes times and synaptic weights that exist in a neural
model [20]. In a supervised SNN setup, the input and desired
output spike times are mostly known, but the exact values of
synaptic weights required by the network to emit spikes at the
desired output spike times are normally not known, hence,
are often initialized using random processes and trained to
obtain the required values. Knowing the input and desired
output spike times together with the initial synaptic weights,
their relationship defined by a synaptic model as illustrated
in [20], is exploited to establish a system of equations from
which the change in synaptic weights required by an output
neuron to emit a spike at a given time in response to a
set of input spikes preceding it is approximated using the
least-squares method. Our motivation is in deriving a direct
approach for approximating change in synaptic weights in
the course of learning without the need to define and mini-
mize cost functions using output spike times which increases
the computational complexity and degrades networks per-
formance as in the case of error back propagation methods
when the number of desired spikes increases [15], [16].

Training a multi-layer SNN using the proposed model require
a simultaneous update of hidden and output synaptic weights.
To achieve this a biofeedback signal [14], is sent back to
the hidden neurons at every output spike time to guide the
weight update processes in the hidden layers. To minimize
the learning interference that is introduced by the continuous
update of same synaptic weights at different spike times, a
spike locality concept is introduced in the proposed learning
model, in that, only the weights of synapses that have spikes
directly contributing to an output spike at a given time are
updated. In all our proposed multi-spiking learning model for
multi-layer SNN produced better classification performance
than most existing SNN learning models. The contributions
of this paper are as follows:

• A novel weight update scheme for training a multi-layer
SNN is derived and applied in solving data classification
problem.

• A multi-spiking learning model for training multi-layer
SNN that employs a spike time locality concept thereby
minimizing learning interference is presented.

• The performance of our proposed model on data classi-
fication is assessed on seven (7) benchmarked datasets
and the model showed a significant and better classifi-
cation accuracy than some state-of-the-art SNN learning
models.

The remaining sections of the paper are arranged as
follows: A review of related works is presented in section II,
followed by the research methodology in Section III,
results and discussion in Section IV, and conclusion
in Section V.

The various notations used in the paper are shown
in Table1.

TABLE 1. Notations used in the paper.
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II. RELATED WORK
A review of some related supervised learningmodels for SNN
is presented in this section.

A. SINGLE LAYER LEARNING MODELS
The Remote SupervisedMethod (ReSuMe) [21], is one of the
first biologically plausible learning rules derived for single-
layer networks in which neurons in the network can emit
multiple spikes. The learning rule is derived using STDP
(Hebbian) and anti-STDP (anti-Hebbian) processes [22].

This rule was derived to overcome some key functional
limitation of the first supervised learning rule, the Spike-
Prop [15]. These include the minimization of the error
between the target and actual spikes without the need for gra-
dient calculations, which eliminated the difficulty in defining
appropriate cost functions and the computational require-
ments of gradient descent-based methods. Unlike the Spike-
Prop, the ReSuMe is neural model-independent and neurons
in the network could fire multiple spikes, thus, making it suit-
able for spike sequence learning. However, with the ReSuMe,
convergence is not guaranteed when the number of spikes
in the output spike train are more than one (1). Following
the uncertainty regarding convergence of the ReSuMe with
respect to multiple spikes in an output spike train, [13], [23],
modified it to include delay learning, which they called
Delay Learning-ReSuMe (DL-ReSuMe) and Extended Delay
Learning-ReSuMe (EDL-ReSuMe) respectively. Their meth-
ods led to a significant improvement in both the accuracy
and time requirements of ReSuMe. DL and EDL-ReSuMe,
like the tradition ReSuMe, are single-layer learning rules
and also suffered a significant loss in performance when the
learning period, T is extended beyond 500ms with increased
spike firing rates. This implies that there is still the need for
more robust learning rules for tasks with extended learning
periods and firing rates. Several other algorithms have also
been developed to simulate, basically spiking neural networks
with the same architecture used in the ReSuMe. An example
of which is Spike Pattern Association Neuron [24]. Though
these rules are proposed to solve similar problems as the
ReSuMe, they are either deficient in biological plausibility
or had a sub-optimal overall performance as compared to
the ReSuMe. Though the ReSuMe and its variants have
been successfully applied to a variety of tasks, their efficient
application to classification tasks is hindered by the number
of network layers they are defined for, particularly on non-
linearly separable datasets. It has been asserted that single-
layer networks are unable to efficiently handle complex clas-
sification tasks [16], [19].

B. MULTI-LAYER SINGLE SPIKING LEARNING MODELS
The first successful supervised learning rule for spiking neu-
ral network called the SpikeProp was introduced less than
two (2) decades ago by [15]. It was derived for multi-layer
networks with single spiking neurons mainly for data classi-
fication tasks using Error Back Propagation similar to what
is used in second-generation ANN. Following the successful

introduction of the SpikeProp algorithm, several variants of it
such as; BP with momentum [25], QuickProp [26], Resilient
Propagation [26] and other methods were proposed as mod-
ifications of the original SpikeProp algorithm with the core
aim of improving the convergence rate and classification
accuracy. More recently, [20] proposed a multi-layer single
spike learning model in which they mapped the neuron model
parameters into the z−domainwith respect to the relationship
between input spike times and the time of the first output
spike. They defined and minimized a cost function based on
this relationship. Another set of multi-layer single spiking
neural network learning models are those that employed evo-
lutionary methods. These studies come in two folds: Those
that used evolutionary algorithms for feature and parameter
optimization in evolving Spiking Neural Network (eSNN)
[24], [27]–[29] and those that used evolutionary methods to
derive Spiking Neural Network learning rules [17], [30]. The
learning principles of eSNN is derived from the classical
Evolving Connectionist Systems used with sigmoidal neural
networks. In eSNN, spiking neural model (the earliest works
used Thorpes model [31]) is used instead of the sigmoid
model. Evolutionary algorithms were later introduced into
the eSNN learning paradigm for feature selection and net-
work parameter optimisation [24], [28], [32], [33], in that,
in each evolution a sub-feature space is selected and used
to train an eSNN and the feature space, network parameters
and performance are adapted by the evolutionary algorithm.
This process is repeated in each evolution and the appro-
priate search operators applied according to the principles
of the chosen evolutionary algorithm. Contrary to the above
approach of learning using evolutionary models, the meth-
ods introduced by [17], [30], used evolutionary methods to
optimize network synaptic weights and delays by minimiz-
ing the error between desired and actual network output
spikes. Reference [17], made use of Differential Evolution,
which is a novel minimization technique that can solve non-
differentiable, nonlinear, and multi-modal objective func-
tions. They tested their approach on three (3) benchmarked
classification problems; The XOR problem, Diabetes and
IRIS datasets. The method proposed by [30], on the other
hand optimized both synaptic weights and delays by mini-
mizing an error function using an evolutionary method. They
asserted that their choice of an evolutionary method is due
to their ability to process real numbers without the need to
convert them into binary form. They successfully tested their
proposed scheme using the benchmarked XOR problem and
IRIS dataset and reported impressive classification perfor-
mance. Though these single-spike multi-layer learning mod-
els presented in previous studies produced competitive results
as compared to sigmoidal networks in classification tasks,
those that are based on Error Back Propagation and evolu-
tionary methods are computationally expensive and also, are
considered non-biologically plausible. The fact that neurons
in the networks could fire only single spikes is a limitation
due to the limited amount of information single spikes can
convey [21].
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C. MULTI-LAYER MULTI-SPIKING LEARNING MODELS
Due to the limitations of single spike networks, there has been
extensive research into extending some of these learning rules
into multi-spiking rules as well as the proposition of new
multi-spiking learning rules mainly for data classification.
This is necessary because multi-spiking neurons are capable
of learning any non-linearly separable data [19], which is a
characteristic desired in all learning algorithms.

As an extension into a multi-layer multi-spiking learning
rule, [34] and [35] respectively, modified the SpikeProp rule
to allow neurons in the input and hidden layers to firemultiple
spikes. However, neurons in the output layer could only fire
single spikes due to the difficulty associated with defining
appropriate error functions for multiple spikes at the output
neuron.

The authors in [16] proposed the first learning rule that
allowed neurons in all layers of a multi-layer network to fire
multiple spikes. The learning rule was derived using the error
backpropagationmethod. This rule, like other error backprop-
agation based methods, is difficult to train particularly when
the number of spikes in the desired spike train increases.

The authors in [19] proposed the first biologically plausible
multi-layer network learning rule in which all neurons could
fire multiple spikes. They combined the error function defi-
nition used in gradient descent to the learning process used in
ReSuMe to form the new learning rule. Though this learning
rule is more biologically plausible than the rule presented
in [16]. It also recorded a drop in performance when the
number of spikes in the desired spike train increases.

More recently, [14], presented another biologically plau-
sible multi-layer multi-spiking learning rule. They adopted
and modified the ReSuMe learning method to enable all
neurons in all layers of the network to fire multiple spikes.
Unlike the rule represented in [19], they considered spikes
fired by neurons in the hidden layer when training hidden
layer weights. Similar to the multi-spiking rules proposed
earlier, they assessed the classification performance of the
rule on some benchmark datasets and the results recorded
were comparable to some sigmoidal methods.

III. METHODOLOGY
This section presents a description of the proposed learning
scheme and the tools and datasets used for simulation.

A. PROPOSED LEARNING SCHEME
The multi-layer learning model presented in this paper is
built-on the weight update scheme for single-layer networks
derived using the least-squares approach presented in [36].
While the single-layer learning model was ideal for spike
sequence learning, the proposed multi-layer learning model
is suitable for data classification.

For completeness, an overview of the weight update
scheme is presented below. The main aim of the proposed
weight update scheme is to establish a system of equations
in terms of an output spike time, td ; given a set of input

spike times ti={1,2,3,...,I }, where I is the number of input
neurons with spikes within the time locality of td ; and the
corresponding synaptic weights, wji connecting to a given
output neuron, j, (j = {1, 2, . . . J} where J is the number of
output neurons in the network). For j to fire a spike at desired
time, td , 1wji in (1), which is the expected weight change
required to induce the postsynaptic potential of j to reach the
threshold value, ϑ , at td , have to be determined.

zd =

∑
i=1:I (wji +1wji)zi∑

i=1:I (wji +1wji)− 1
(1)

where zd = exp(td ) and zi = exp(ti); thus td = ln (zd ) and
ti = ln(zi)
Differentiating (1) with respect to zi yields (2). The differ-

ential of zd with respect to any zi=1...I are obtained in the same
form as (2).

dzd
dzi
=

(wji +1wji)∑
i=1:I (wji +1wji)− 1

(2)

In order to transform (2) into a form fromwhich the system
of equations can be obtained with respect to each input spike
time zi, (2) is integrated to obtain (3).

zd =
(wji +1wji)zi∑

iεI (wji +1wji)− 1
+ K (3)

where K is the integral constant and is assumed to be zero
(K = 0) for the purpose of simulation. Zero (0) is one of the
possible values in the real number space (R) K can assume.

For simplicity, let’s assume the network has only one out-
put neuron (j = 1) in which case, wi and 1wi are used in
place of wji and1wji respectively, in subsequence sections of
the paper. Thus (3) can be expressed as (4)

zd
zi
=

(wi +1wi)∑
iεI (wi +1wi)− 1

(4)

Denoting the left hand side of (4) as 1zi (i.e.
zd
zi
= 1zi)

and expression (4) in terms of 1wi yields (5).

1zi1w1 +1zi1w2

+ · · · +1zi1wI −1wi = wi −1zi

(∑
iεI

wi − 1

)
(5)

Obtaining in the form of (5) for all input spikes,
ti={1,2,3,...,I }, arriving at the synapse of the output neuron
before td , yields the system of equations presented in (6),
which can be expressed in a matrix form as (7) and solved
using the least-squares method as shown in (8).

(1z1 − 1)1w1 +1z11w2 + · · · +1z11wI

= w1 −1z1

(∑
i=1:I

wi − 1

)
1z21w1 + (1z2 − 1)1w2 + · · · +1z21wI

= w2 −1z2

(∑
i=1:I

wi − 1

)
...

. . .
...
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1zI1w1 +1zI1w2 + · · · + (1zI − 1)1wI

= wI −1zI

(∑
i=1:I

wi − 1

)
(6)

(1z1 − 1) 1z1 . . . 1z1
1z2 (1z2 − 1) . . . 1z2
...

...
. . .

...

1zI 1zI . . . (1zI − 1)



1w1
1w2
...

1wI

=

c1
c2
...

cI


(7)

where ci = wi −1zi
(∑

i=1:I wi − 1
)
.

1w = 1Z+C (8)

where

1Z+ =


(1z1 − 1) 1z1 . . . 1z1
1z2 (1z2 − 1) . . . 1z2
...

...
. . .

...

1zI 1zI . . . (1zI − 1)


+

,

is the Moore-Penrose pseudoinverse of the matrix

1Z , 1w =


1w1
1w2
...

1wI

 and C =


c1
c2
...

cI

 .
Thus, weights of input neurons that have spikes contribut-

ing to an output spike time will be adjusted according to (9).

wi = wi ± η1wi (9)

where η is a learning rate that controls the magnitude of
adjustment made to the weights at a given spike time in the
course of learning. That is, the weights are increased at a
desired output spike time, td or decreased when the output
neuron fires a spike at an undesired spike time. The reduction
of weights at an undesired spike times decreases the PSP of
the neuron which leads a cancellation of the undesired spike.

Equation (9) can be expressed in a general form as (10),
taken into consideration other values of j.

wji = wji ± η1wji (10)

To adopt this weight modification scheme to train a multi-
layer network, two key training activities are performed
simultaneously at every event time; training of the output
neuron(s) and hidden neurons. The training process of multi-
layer networks using the proposed weight update scheme is
presented in the proceeding sections.

1) WEIGHT UPDATE IN OUTPUT NEURONS
Output neurons in a multi-layer network receive their input
spikes from neurons in a preceding hidden layer. The timing
of spikes fired by these hidden neurons at the beginning of
training is often dynamic and becomes relatively stable as
their synaptic weights converge near their optimal values.
Since the output neurons receive input from hidden layer

neurons, (10) can be redefined as (11) to cater for spikes from
hidden neurons.

wjh = wjh ± η1wjh (11)

where wjh are synaptic weights of hidden neurons h =
{1, 2, 3, . . . ,H} to output neuron j and 1wjh is a vector of
the computed weight change required to enable output neuron
j fire a spike in response to the hidden spikes or cancel an
undesired spike at event time tj.
In response to input spikes, an output neuron may fire one

(1) or several spikes at time(s) tj, within a time course, T .
These output spikes may occur at two distinct event times;
at desired time(s), td , and undesired time(s), tu, thus, tj =
{td ∪ tu}. However, it is desired that for a given set of input
spikes, tj ≈ td . To achieve this, at a desired output spike
time, td where there is no output spike, the quantum of weight
change required by all hidden synapses that have spikes
within the locality of td is approximated using (8) and added
to the respective weights using (11). The parameters in (8) are
redefined as follows:

1w =


1w1
1w2
...

1wH

 ,

1Z =


(1z1 − 1) 1z1 . . . 1z1
1z2 (1z2 − 1) . . . 1z2
...

...
. . .

...

1zH 1zH . . . (1zH − 1)

 , and

C =


c1
c2
...

cH

 .
where1wh, h={1,2,...,H} are the expected weight change asso-
ciatedwith hidden neurons that have spikeswithin the locality
of td , 1zh, h={1,2,...,H} denotes

zd
zh
. zd and zh are z − domain

transforms of output spike time td and hidden spike time,
th, respectively, and is computed as: zdzh = exp(td − th), this
implies that, 1zh = exp(td − th).
The locality of an output spike time mentioned above is

defined as the inter-spike time between the current output
spike time, t fj (desired or undesired) and a preceding spike

time, t f−1j (desired or undesired). To update synaptic weights
at the current spike time, only hidden neurons that have spikes
within this local time frame (t f−1j → t fj ), will have their
weights updated. At desired spike times where there are
spikes, t f−1j is set to t fj . This ensures that the weights are not
modified once there is already a spike at td .

2) WEIGHT UPDATE IN HIDDEN NEURONS
Hidden neurons are trained for two (2) main purposes; first to
firemultiple spikes within the time locality of a desired output
spike, and secondly to cancel hidden spikes that contribute
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to the occurrence of undesired spikes in output neurons.
To achieve this, (10) is modified into (12) in which the target
spikes are hidden spikes, th in the respective hidden layer and
spikes from neurons in the preceding (in this work the first)
layer serve as input spikes.

whi = whi ± η1whi (12)

wherewhi is the synaptic weight of input neuron, i connecting
to hidden neuron, h, and1whi is computed using (13) similar
to (8).

1whi = 1Z
+

hiChi (13)

Also, similar to (6), 1zi is computed as zh
zi
= exp(th − ti)

and every ci in the column vector C is computed as ci = whi
−1zhi

(∑
i=1:I whi − 1

)
.

In the course of training, when an output spike time, t fj ,
is encountered, a biofeedback signal [14], is sent to the hid-
den neurons with the time locality of t fj . If t

f
j = td and there

is no spike at td , then, for a given h ∈ {1, 2, 3, . . . ,H},
if there is any thi ∈ {t

f−1
j , td } and h is excitatory, the

weights whi for thi ∈ {t
f−1
j , td } are increased using (12). This

increment in synaptic weights will enhance the Postsynaptic
Potential (PSP) of h, causing it to emit spikes within the
respective spike time locality, which in effect will induce
an output spike at td . However, if h is inhibitory and has
spikes within {t f−1j , td }, its spikes are canceled by reducing
the weights of input neurons that contribute to the spikes.
The cancellation of hidden spikes from inhibitory neurons is
meant to minimize the retarding effect they place on the PSP
of output neurons [14].

On the other hand, if an undesired spike occurs at an
output spike time, t fj , all excitatory hidden neurons that have
spikes within the undesired spike locality, have the weights
of the respective input neurons reduced using (12). Whilst
inhibitory hidden neurons that receive input spikes within
the locality of the given output spike time are trained to fire
multiple spikes within the time-space. The cancellation of
excitatory hidden spikes and increase in inhibitory hidden
spikes cumulatively ensure a faster reduction in the total
PSP of the output neuron which leads to the cancellation of
undesired spikes. Also, all hidden neurons are trained to emit
at most one(1) spike within a 5ms interval.

B. EXPERIMENTAL SETUP
1) DATASETS
The performance of the proposed model is assessed
using seven (7) benchmarked classification datasets, which
include: The Wisconsin Diagnostic Breast Cancer (WDBC)
dataset [37], BUPA liver disorders (BUPA) dataset, Johns
Hopkins University Ionosphere dataset; all available at the
UCI machine learning repository [38], and the Pima Indian
Diabetes (Pima) Dataset [39]. Which are all binary class data
sets. The rest are multi-class datasets, which include, the
Fisher IRIS (3 class), Vehicle (4 class), and the Page-Blocks
(5 class) datasets, also available at the UCI repository [38].

These datasets are considered because they present different
dynamics to learning and have been used to test some existing
SNN learning models.

2) NETWORK SETUP AND LEARNING PARAMETERS
The performance of the proposed model is tested using a two
(2) layer network comprising of M × A + b input neurons,
120 hidden neurons, and cnl output neurons. M is the popu-
lation of neurons that each attribute in a dataset is encoded
with, A is the number of attributes in a dataset, and b is the
number of bias input neurons. In this paper, two bias neurons
with spikes at t fd − dt are used. The significance of adding
bias neurons is explained in [15]. cnl is the number of class
labels in a dataset.

The Gaussian Receptive Fields (GRF) based population
temporal coding scheme proposed by [15] and used by [14],
[34], [40], is used in this paper. Each attribute, a, with a range,
{anmin, . . . , a

n
max} is encoded withM = 10 identical GRFs and

the adjustment factor, γ is set to 1.5 similar to what is used in
previous studies [14]–[16]. The corresponding input values
are multiplied by 100 to produce spike times between 0ms
and 100ms, and neurons with spike times of 90ms or above
are coded not to fire.

Output neuron(s) are coded to fire at defined spike times
within the interval of 5ms − 100ms. The number of spikes
generated between this interval depends on the number of
desired output spikes per class and the number of class labels
in a dataset. Equal sets of the generated output spike times
are randomly assigned to each output neuron (class label).
The minimum inter-spike interval in output spike times is set
to 5ms, mainly to minimize learning interference.
Performance Metrics and Training Procedure: The

correlation-based metric, C , proposed by [12], and discussed
in an earlier study [36], is used to measure the correlation
between a neuron’s actual output spikes and desired output
spike train. In a training epoch the values of C at each output
neuron, for an input instance, n, after using it to train the
network is calculated and the class to which it is classified
under is determined as follows:

A threshold value, Cth is set and the average pairwise
interclass correlation, Cc between the desired output spike
trains of the various classes is calculated using (14)

Cc =

∑
l=l:L

∑
C(l,l−r)

Np
(14)

where L is the number of class labels, r ∈ {1, 2, . . . , l − 1},
and Np is the number of possible pairs.
The highest C amongst all output neurons for an instance,

n is denoted as Ch
n . The second highest C is compared to

Cc and the greatest amongst them is added to Cth to form
a determinant, Cd . For instance, n is classified as belonging
to class label, cl that produced Ch

n if and only if Ch
n ≥ Cd ,

else, n is rejected and considered not to be well learned by the
network. After each training epoch, e, the training accuracy,
Aet , is computed and training is continued until Aet = 100%
or e = 100 is attained.
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In the testing phase, the network’s weight update function
is switched-off and each instance is presented to the net-
work. The process used to classify training instances outlined
above is followed to determine the predicted class of test
instances.

For each dataset, 40 trails of training and testing are per-
formed, each time with a random selection of training and
testing instances, synaptic weight initialization, and output
spike trains. The average training and testing accuracies over
the 40 trails are computed and used as the final performance
of the network.

50% of the dataset is randomly selected as the training set
and the remaining 50% used as the testing set in conformity
with most previous studies for comparison purposes, except
in the page-blocks dataset, where 50% of classes with less
than 150 instances were randomly selected as the training set
and 70 instances were also randomly selected from classes
with more than 150 instances with the remaining instances
belonging to the testing set. This selection criteria in the Page-
Blocks dataset is due to its imbalance nature.

IV. RESULTS AND DISCUSSION
This section presents the findings obtained from the exper-
iment using both graphical and tabular methods. It further
explains the meaning and implications of the findings.

A. EFFECTS OF NUMBER OF DESIRED SPIKES AND CLASS
LABELS ON PROPOSED METHOD
To assess the influence the number of desired output spikes
and class labels have on the classification performance of the
proposed model, the mean training and testing accuracies on
seven benchmarked datasets trained with desired output spike
train size, tnd of 1, 2, 3, 4, and 5 per class label are presented in
this section. The number of output neurons used to train each
network is equal to the number of class labels in a respective
dataset.

The mean classification accuracy of the proposed model
on the 7 datasets are shown in Fig. 1 and Fig. 2. On the
WDBC dataset, as shown in Fig. 1(a), a mean training and
testing accuracy of 97.43% and 95.10%, respectively, are
recorded when tnd=1. When tnd is increased from 1 to 2, 3,
4, and 5, the mean training accuracy increased to 100% for
all four spike train sizes with a corresponding increase in the
testing accuracy from 95.10% to 98.55%, 99.59%, 99.91%,
and 99.98% respectively.

The mean training and testing accuracies for the Pima and
BUPA datasets shown in Fig. 1 (b) and (c) respectively, follow
a similar trend as that of theWDBC dataset. In which, a 100%
mean training accuracy is obtained when tnd is set between 2
and 5 for both datasets, and 99.39% and 99.04% respectively
when set to 1. Similarly, the testing accuracies increased from

FIGURE 1. The Training and Testing Mean Accuracies for the IRIS, Vehicle and Page-Blocks Datasets (All are 2 Class Datasets).
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FIGURE 2. The Training and Testing Mean Accuracies for the WDBC, Pima, BUPA and Ionosphere Datasets.

98.64% to 100% for the Pima dataset and 97.61% to 100% for
the BUPA dataset when tnd is increased from 1 to 5.
However, the dynamics of the classification performance

on the Ionosphere dataset shown in Fig. 1(d) is relatively
different as both themean training and testing accuracies fluc-
tuate as tnd increases from 1 to 5. The highest mean training
and testing accuracy of 98.86% and 99.05% respectively, are
obtained when tnd of 4 is used for training. Unlike the other
binary datasets, the least training and testing mean accuracies
of 96.40% and 95.24% are obtained at tnd = 5.

Themean classification accuracy of the proposedmodel on
the multi-class datasets is shown in Fig. 2. The highest mean
testing accuracy on the IRIS dataset is obtained when the
number of spikes in tnd is set to 4. It, however, dropped sharply
to the lowest, 94.53% when tnd is increased to 5 contrary to
results obtained for the binary datasets.

On the Vehicle and Page-Blocks datasets, the highest mean
testing accuracies of 97.98% and 99.50%, respectively, are
obtained when tnd is set to 2 as shown in Fig. 2 (b) and (c),
respectively. The accuracy, however, dropped steadily to the
lowest, 77.88% and 83.20%, when tnd is set to 5 and 4 respec-
tively, for the Vehicle and Page-Blocks datasets. This drop-
in mean accuracy is attributable to the increase in learning
interference resulting from the combined increase in the size
of tnd . With the binary datasets, at tnd = 5, the cumulative size

of the output spike train is 10 which increased to 15 in the
case of the IRIS dataset and 20 in that of the vehicle dataset
resulting from the increase in the number of class labels.

The results presented above points out that the optimal
number of output spikes per class label required to achieve
maximum classification accuracy depends largely on the
number of class labels in a dataset. It is also evident that
datasets with a larger number of class labels require a fewer
number of spikes for optimal learning. Thus, there is no
predefined number of desired spike size for all datasets using
the proposed model, though, for a learning period of 100ms,
3 or more spikes are recommended for binary datasets and 2
to 4 for multi-class datasets.

A trend worth noting is the mean training and testing
accuracies at tnd = 1 for all datasets. It is observed that
both training and testing accuracies at tnd = 1 are relatively
lower as compared to higher values of tnd . Though, in some
cases, it is worse when the optimal value of tnd is exceeded.
These lower accuracies at tnd = 1 confirms an assertion made
in previous studies that maximum classification can not be
achieved with single spiking neurons particularly, on non-
linearly separable data.

To illustrate howwell the proposed model learned to repro-
duce desired output spikes, the values of the Correlation met-
ric, C for all instances in each class of a dataset highlighting
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FIGURE 3. WDBC Dataset (2 classes).

FIGURE 4. IRIS Dataset (3 classes).

FIGURE 5. Vehicle Dataset (4 classes).

the median, as well as minimum and maximum values, are
shown in Fig. 3 to 9. These values are the trainingC measures
recorded at the point where the training of each network
converged. It can be observed from the box plots that for

FIGURE 6. Page-Blocks (5 classes).

FIGURE 7. BUPA Dataset (2 classes).

FIGURE 8. Ionosphere Dataset (2 classes).

almost all the datasets, a median of 1 is recorded at lower
values of tnd and drops for some class labels as tnd increases.
This indicates that the network can learn to emit spikes at
the exact desired output spike times for more than 50% of
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FIGURE 9. Pima Dataset(2 classes).

instances in each class label in the respective datasets. In all
the test cases a minimum median of 0.5139 is recorded in the
Vehicle dataset when tnd = 5.
Drawing inference from the median C values and mean

testing accuracies at various tnd , it is evident that, though
the network can learn to emit spikes at the exact desired
spike times for lower values of tnd , the trained networks are
not complex enough to adequately classify instances in the
various classes of the testing set as compared to networks
trained with relatively higher values of tnd .

B. COMPARISON WITH EXISTING LEARNING METHODS
The classification accuracy of the proposed learning model
is compared to some existing SNN learning models for data
classification. The existing models that we compared our
model to include; SpikeProp [15], Multi-Spike(GMES) [16],
STDPM [40], MultiSp [14], MuSpiNN [34], SRESN [18].
Similar to the proposed model, all the existing models encode
the continuous values in the datasets to spike times using
population coding. To ensure a fair comparison, the testing
accuracy of the proposed model when tnd = 3 is used for
all comparisons since three (3) output spikes yielded the best
results in [14]. Though, the best performance of the proposed
model on some datasets are obtained at different values of tnd .
The classification performance of the proposed model vis-

à-vis some existing SNN learning models on the IRIS dataset
is shown in Table 2. The testing accuracy of the proposed
model is 98.47% which is comparatively higher than all the
other models. Following closely to the proposed model is
the performance of SRESN, a single-layer evolving spiking
neural network learning model with an accuracy of 97.03%.
Of particular interest is the performance of MultiSp, which
used a similar network architecture with 3 output spikes per

TABLE 2. Classification accuracy on IRIS dataset.

neuron as compared to the proposed model. The accuracy
of MultiSp is 95.70%, which is about 2.77% lower than the
proposed model. STDPM, an STDP based learning model,
however, obtained the lowest accuracy of 83.00% represent-
ing about 15.47% lower than the proposed model.

TABLE 3. Classification accuracy on WDBC dataset.

The classification accuracy of the learning models on
the WDBC dataset is shown in Table 3. The results in
this table follow a similar pattern as the IRIS dataset with
the proposed model obtaining the highest testing accu-
racy of 99.59%, followed by SRESN with 97.20% and the
SpikeProp with 97.00%. The MultiSp, a relatively more bio-
logically plausible learning model recorded the least accu-
racy of 94.40%. The classification accuracy of the proposed
model, MultiSp, and SRESN on the Ionosphere, BUPA Liver
Disorders, and Pima Diabetes datasets are shown in Table 4.
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TABLE 4. Classification acuracy on other dataset.

The least accuracy recorded by the proposed model is on the
Ionosphere dataset, 97.45%, which is better than the 90.50
and 88.60 recorded for MultiSp and SRESN, respectively.
A more intriguing performance of the proposed model is on
the BUPA Liver Disorders and Pima Diabetes datasets where
it recorded performance increase of 36.97% and 39.07%
against MultiSp and 28.33% and 29.03% against SRESN
respectively.

V. CONCLUSION
A multi-layer learning model based on the least-squares
synaptic weight update scheme is proposed and assessed in
this paper. The performance of the proposed model on clas-
sification tasks is determined using seven (7) benchmarked
datasets with different numbers of class labels. The effects of
the number of spikes in the output spike train on the proposed
model are also presented. The classification accuracy of the
model is compared to six exiting spiking neural network
learning models and the results showed a significant increase
in performance in favor of our proposed model. It is also
established that each dataset requires a different number of
output spikes to achieve optimal training and testing classifi-
cation accuracy, and the higher the number of class labels in
a dataset the lower the number of output spikes required.

As part of future work, the proposedmodel will be assessed
on different learning periods and datasets withmore complex-
ity and compared to rate-based ANN.

REFERENCES
[1] W. Maass, ‘‘Networks of spiking neurons: The third generation of neural

network models,’’ Neural Netw., vol. 10, no. 9, pp. 1659–1671, Dec. 1997.
[2] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

no. 7553, p. 436, May 2015.
[3] R. Zemouri, N. Omri, F. Fnaiech, N. Zerhouni, and N. Fnaiech, ‘‘A new

growing pruning deep learning neural network algorithm (GP-DLNN),’’
Neural Comput. Appl., vol. 31, pp. 1–17, May 2019.

[4] W. Gerstner and M. W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge, U.K.: Cambridge Univ. Press, 2002.

[5] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, ‘‘Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs,’’ Science,
vol. 275, no. 5297, pp. 213–215, Jan. 1997.

[6] R. V. Rullen and S. J. Thorpe, ‘‘Rate coding versus temporal order coding:
What the retinal ganglion cells tell the visual cortex,’’ Neural Comput.,
vol. 13, no. 6, pp. 1255–1283, Jun. 2001.

[7] R. VanRullen, R. Guyonneau, and S. J. Thorpe, ‘‘Spike times make sense,’’
Trends Neurosci., vol. 28, no. 1, pp. 1–4, Jan. 2005.

[8] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso, and
G. B. Stanley, ‘‘Temporal precision in the neural code and the timescales
of natural vision,’’ Nature, vol. 449, no. 7158, pp. 92–95, Sep. 2007.

[9] R. FitzHugh, ‘‘Impulses and physiological states in theoretical models of
nerve membrane,’’ Biophys. J., vol. 1, no. 6, pp. 445–466, Jul. 1961.

[10] F. Ponulak and A. Kasiński, ‘‘Introduction to spiking neural networks:
Information processing, learning and applications,’’ Acta Neurobiol.
Experim., vol. 71, no. 4, pp. 409–433, 2011.

[11] E. M. Izhikevich, ‘‘Simple model of spiking neurons,’’ IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[12] F. Ponulak and A. Kasiński, ‘‘Supervised learning in spiking neural net-
works with ReSuMe: Sequence learning, classification, and spike shift-
ing,’’ Neural Comput., vol. 22, no. 2, pp. 467–510, Feb. 2010.

[13] A. Taherkhani, A. Belatreche, Y. Li, and L. Maguire, ‘‘Edl: An extended
delay learning based remote supervised method for spiking neurons,’’
in Neural Information Processing (Lecture Notes in Computer Science),
vol. 9490. 2015, pp. 190–197.

[14] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, ‘‘A supervised
learning algorithm for learning precise timing of multiple spikes in mul-
tilayer spiking neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 11, pp. 5394–5407, Nov. 2018.

[15] S. M. Bohte and J. N. Kok, ‘‘Multilayer RBF Networks,’’ IEEE Trans.
Neural Netw., vol. 13, no. 2, pp. 426–435, Mar. 2002.

[16] Y. Xu, X. Zeng, L. Han, and J. Yang, ‘‘A supervised multi-spike learning
algorithm based on gradient descent for spiking neural networks,’’ Neural
Netw., vol. 43, pp. 99–113, Jul. 2013.

[17] N. G. Pavlidis, O. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and
M. N. Vrahatis, ‘‘Spiking neural network training using evolutionary
algorithms,’’ in Proc. IEEE Int. Joint Conf. Neural Netw., Aug. 2005,
pp. 2190–2194.

[18] S. Dora, K. Subramanian, S. Suresh, and N. Sundararajan, ‘‘Development
of a self-regulating evolving spiking neural network for classification
problem,’’ Neurocomputing, vol. 171, pp. 1216–1229, Jan. 2016.

[19] I. Sporea and A. Grüning, ‘‘Supervised learning in multilayer spiking
neural networks,’’ Neural Comput., vol. 25, no. 2, pp. 473–509, Feb. 2013.

[20] H. Mostafa, ‘‘Supervised learning based on temporal coding in spiking
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 3227–3235, Jul. 2018.

[21] F. Ponulak, ‘‘Supervised learning in spiking neural networks with ReSuMe
method,’’ doctoral dissertation, Poznán Univ. Technol., Poznań, Poland,
2006. [Online]. Available: http://d1.cie.put.poznan.pl/˜fp

[22] D. O. Hebb, ‘‘Organization of behavior,’’ J. Clin. Psychol., vol. 6, no. 3,
pp. 307–335, 1949.

[23] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, ‘‘DL-ReSuMe:
A delay learning-based remote supervised method for spiking neurons,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3137–3149,
Dec. 2015.

[24] S. Schliebs and N. Kasabov, ‘‘Evolving spiking neural network—A sur-
vey,’’ Evolving Syst., vol. 4, no. 2, pp. 87–98, Jun. 2013.

[25] J. Xin and M. J. Embrechts, ‘‘Supervised learning with spiking neural
networks,’’ in Proc. Int. Joint Conf. Neural Netw., vol. 3, no. 3, Jul. 2001,
pp. 1772–1777.

[26] S. McKennoch, D. Liu, and L. G. Bushnell, ‘‘Fast modifications of
the SpikeProp algorithm,’’ in Proc. IEEE Int. Joint Conf. Neural Netw.,
Jul. 2006, pp. 3970–3977.

[27] G. W. Simei, B. Lubica, and K. Nikola, ‘‘Adaptive learning procedure for
a network of spiking neurons and visual pattern recognition,’’ in Advanced
Concepts for Intelligent Vision Systems (Lecture Notes in Computer Sci-
ence), vol. 4179. Berlin, Germany: Springer, 2006, pp. 1133–1142.

[28] J. L. Lobo, I. Laña, J. Del Ser, M. N. Bilbao, and N. Kasabov, ‘‘Evolving
spiking neural networks for online learning over drifting data streams,’’
Neural Netw., vol. 108, pp. 1–19, Dec. 2018.

[29] B. Pérez-Sánchez, O. Fontenla-Romero, and B. Guijarro-Berdiñas,
‘‘A review of adaptive online learning for artificial neural networks,’’ Artif.
Intell. Rev., vol. 49, no. 2, pp. 281–299, Feb. 2018.

[30] A. Belatreche, L. P. Maguire, M. Mcginnity, and Q. X. Wu, ‘‘Evolutionary
design of spiking neural networks,’’ New Math. Natural Comput., vol. 2,
no. 3, pp. 237–253, Nov. 2006.

[31] S. Thorpe and J. Gautrais, ‘‘Rank order coding,’’ in Proc. 6th Annu. Conf.
Comput. Neurosci., Trends Res.NewYork, NY, USA: Plenum Press, 1998,
pp. 113–118.

[32] H. N. A. Hamed, N. Kasabov, and S. M. Shamsuddin, ‘‘Probabilistic
evolving spiking neural network optimization using dynamic quantum-
inspired particle swarm optimization,’’ Austral. J. Intell. Inf. Process. Syst.,
vol. 11, no. 1, pp. 23–28, 2010.

[33] M. Silva, M. M. B. R. Vellasco, and E. Cataldo, ‘‘Evolving spiking
neural networks for recognition of aged voices,’’ J. Voice, vol. 31, no. 1,
pp. 24–33, Jan. 2017.

[34] S. Ghosh-Dastidar and H. Adeli, ‘‘A new supervised learning algorithm for
multiple spiking neural networks with application in epilepsy and seizure
detection,’’ Neural Netw., vol. 22, no. 10, pp. 1419–1431, Dec. 2009.

72370 VOLUME 8, 2020



B. E. Yellakuor et al.: Multi-SNN Learning Model for Data Classification

[35] O. Booij and H. tat Nguyen, ‘‘A gradient descent rule for spiking neurons
emitting multiple spikes,’’ Inf. Process. Lett., vol. 95, no. 6, pp. 552–558,
Sep. 2005.

[36] A. M. Apambila, O. O. Elkanah, and B. Y. Edward, ‘‘A multi-spiking
learning method for spike sequence learning,’’ in Proc. IEEE-AFRICON,
Nov. 2019.

[37] W. H. Wolberg and O. L. Mangasarian, ‘‘Multisurface method of pattern
separation for medical diagnosis applied to breast cytology.,’’ Proc. Nat.
Acad. Sci. USA, vol. 87, no. 23, pp. 9193–9196, Dec. 1990.

[38] D. Dua and C. Graff. (2017).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[39] R. A. Rossi and N. K. Ahmed, ‘‘The network data repository with interac-
tive graph analytics and visualization,’’ inProc. AAAI, Mar. 2015. [Online].
Available: http://networkrepository.com

[40] A. Sboev, D. Vlasov, R. Rybka, and A. Serenko, ‘‘Solving a classification
task by spiking neurons with STDP and temporal coding,’’ Procedia
Comput. Sci., vol. 123, pp. 494–500, Jan. 2018.

BAAGYERE EDWARD YELLAKUOR received
the B.Sc. degree (Hons.) in computer science from
the University for Development Studies (UDS),
Tamale, Ghana, in 2006, the M.Phil. degree in
computer engineering from the Kwame Nkrumah
University of Science and Technology, Kumasi,
Ghana, in 2011, and the Ph.D. degree in com-
puter science and technology from the University
of Electronic Science and Technology of China,
in 2016.

He is currently a Senior Lecturer with the Faculty of Mathematical Sci-
ence, UDS, and also teaches with the Department of Computer Science.
He is also a Postdoctoral Researcher with the School of Information and
Software Engineering, University of Electronic Science and Technology of
China. He has published more than 50 articles in peer-review journals. His
current research interests include machine learning, mobile sensor networks,
cryptography, and social networks. He is a member of the International
Association of Engineers.

AGEBURE APAMBILA MOSES (Graduate
Student Member, IEEE) received the B.Sc. degree
in computer science from the University for Devel-
opment Studies, Tamale, Ghana, in 2008, and
the M.Phil. degree in computer engineering from
the University of Ghana, Accra, Ghana, in 2014.
He is currently pursuing the Ph.D. degree in com-
putational mathematics with the University for
Development Studies. After his B.Sc. degree, he
worked as a Senior Research Assistant with the

Department of Computer Science, University for Development Studies,
where he is currently a Lecturer. He has coauthored academic articles
published in reputable journals. His research interests include, data mining,
machine learning, software engineering, and mobile computing systems.

QIN ZHEN (Member, IEEE) received the B.Sc.
degree in communication engineering from the
University of Electronic Science and Technology
of China (UESTC), in 2005, the M.Sc. degree
in electronic engineering from the Queen Mary
University of London, in 2007, and the M.Sc. and
Ph.D. degrees in communication and information
system from UESTC, in 2008 and 2012, respec-
tively. He is currently an Associate Professor with
the School of Information and Software Engineer-

ing. His current research interests include network measurement, wireless
sensor networks, and mobile social networks.

OYETUNJI ELKANAH OLAOSEBIKAN received
the B.Sc. degree (Hons.) in electrical engineering
from the University of Ilorin, Ilorin, Nigeria, and
the M.Sc. and Ph.D. degrees in industrial engi-
neering from the University of Ibadan, Ibadan,
Nigeria. He is currently a Professor of industrial
and production engineering with the Department
of Mechanical Engineering, Faculty of Engineer-
ing, Lagos State University, Epe Campus, Lagos,
Nigeria. He has attended numerous national and

international conferences. His research interest includes production schedul-
ing/operations management (optimization), and algorithm design amongst
others. He has published extensively in prestigious local and international
journals. He is also a Registered Engineer (COREN) and a member of the
following professional bodies, the Nigeria Society of Engineers (NSE), the
Nigeria Institute of Industrial Engineering (NIIE), and the South African
Institute of Industrial Engineering (SAIIE).

ZHIGUANG QIN (Member, IEEE) is currently a
Professor and the Retired Dean of the School of
Information and Software Engineering, University
of Electronic Science and Technology of China,
where he is also the Director of the Key Laboratory
of New Computer Application Technology and
the UESTC-IBM Technology Centre. His research
interests include computer networking, informa-
tion security, cryptography, information manage-
ment, intelligent traffic, electronic commerce,
distribution, and middleware.

VOLUME 8, 2020 72371


	INTRODUCTION
	RELATED WORK
	SINGLE LAYER LEARNING MODELS
	MULTI-LAYER SINGLE SPIKING LEARNING MODELS
	MULTI-LAYER MULTI-SPIKING LEARNING MODELS

	METHODOLOGY
	PROPOSED LEARNING SCHEME
	WEIGHT UPDATE IN OUTPUT NEURONS
	WEIGHT UPDATE IN HIDDEN NEURONS

	EXPERIMENTAL SETUP
	DATASETS
	NETWORK SETUP AND LEARNING PARAMETERS


	RESULTS AND DISCUSSION
	EFFECTS OF NUMBER OF DESIRED SPIKES AND CLASS LABELS ON PROPOSED METHOD
	COMPARISON WITH EXISTING LEARNING METHODS

	CONCLUSION
	REFERENCES
	Biographies
	BAAGYERE EDWARD YELLAKUOR
	AGEBURE APAMBILA MOSES
	QIN ZHEN
	OYETUNJI ELKANAH OLAOSEBIKAN
	ZHIGUANG QIN


