
Received March 11, 2020, accepted March 24, 2020, date of publication April 2, 2020, date of current version April 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985051

Variable Scale Relative Entropy Detection
for Non-Cooperative Underwater
Acoustic Pulse Signals
KUN WEI , SHILIANG FANG, AND JUN TAO (Member, IEEE)
Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China

Corresponding authors: Kun Wei (wkchase@seu.edu.cn) and Shiliang Fang (slfang@seu.edu.cn)

This work was supported in part by the National Natural Science Funds of China under Grant 61871114, Grant 11574048, Grant
11674057, Grant 11604048, Grant 11704069, and Grant 11874109, and in part by the Fundamental Research Funds for the Central
Universities under Grant 2242020k30044.

ABSTRACT This work investigates the detection of non-cooperative underwater acoustic pulse signals at
low signal-to-noise ratio (SNR). A variable scale relative entropy (VSRE) pulse signal detection scheme
is proposed. Different from conventional relative entropy (RE) method where an observation sequence
is processed at a given scale for detection, the proposed scheme performs the processing at multiple
different scales. As a result, the original RE difference vector becomes a RE difference matrix, each column
corresponding to a particular scale. Before a decision is made, the VSRE difference matrix is post-processed
for improved fidelity. The non-zero elements of the resultingVSRE differencematrix are divided into groups,
each corresponding to a pulse signal, based on their occurrence timeswithin the observation sequence.Within
each group, the one with the maximum RE difference is chosen to determine the exact appearance time and
duration of the pulse signal. The performance gain of the VSRE detector over existing RE detector has been
verified by both simulation and at-sea experimental results.

INDEX TERMS Non-cooperative detection, underwater acoustic pulse signals, variable scale relative
entropy.

I. INTRODUCTION
A non-cooperative underwater acoustic pulse signal may
come from a mechanical collision, an underwater explosion,
an active sonar of the other side, and so on. Its time dura-
tion (width) can vary from a few milliseconds to a few sec-
onds. Detection of a non-cooperative underwater acoustic
pulse signal is of great significance in practical applications
such as target recognition, early warning, and so on. Non-
cooperative underwater acoustic pulse signal detection sys-
tems aim to find a target pulse without priori information such
as the time of occurrence, width, center frequency, amplitude,
etc [1], [2]. Due to the lack of prior knowledge, the task of
non-cooperative detection is very challenging.

Conventional non-cooperative detection methods include
the energy-based detection method [3], the entropy-based
detection method [5], and the time-frequency analysis meth-
ods [6]–[9]. In [3], an energy-based detection method is
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proposed. It includes two steps: first, the signal energy and
background noise energy are estimated by the rainbow click
algorithm [4]; second, a non-parametric page test (NPT) is
performed with the energy difference. The performance of
the detection scheme is evaluated via simulations for dif-
ferent types of pulse signals. It showed the performance
degrades rapidly as the signal-to-noise ratio (SNR) decreases.
An entropy-based detection method outperforms an energy-
based method at low SNRs by making use of the difference
in statistical characteristic between a signal and a noise.
In [5], two entropy-based detection methods are proposed
for intercept processing of the sonar signals: the Fourier
transform (FT) based entropy method and the wavelet trans-
form (WT) based entropy method, both having low complex-
ity good for real-time applications. They are tested by three
pulse signals including the frequency-hopped (FH) pulse,
the broadband communication pulse, and the low probability
of intercept (LPI) pulse. It shows the FT-based method works
better for the FH and broadband communication pulses while
the WT-based method excels for the LPI pulse.
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The time-frequency analysis methods make detections
by utilizing both time-domain and frequency-domain char-
acteristics of signals. They are categorized into four
types: the short-time Fourier transform (STFT) method,
the Wavelet Transform (WT) method, the Wigner-Ville dis-
tribution (WVD) method, and the fractional Fourier trans-
form (FrFT) method. In [6], Hlawatsch and Bartels gave a
tutorial review of the STFT method. It is easy to implement
but cannot achieve high resolutions in the time domain and
frequency domain simultaneously. In [7], David and Chapron
proposed a WT method. It achieves a more flexible time-
frequency analysis than the STFT. However, aliasing and
energy leakage happen due to its poor band isolation. In [8],
detection techniques based on the WVD and cross-WVD
(XWVD) are proposed and tested by real data. Good noise
rejection performance are obtained. Even though, they suf-
fer the problem of cross-term interference which affects its
practicability. The FrFT-based detection [9] is advantageous
for detecting LFM signal, but its performance is sensitive to
the multipath. In [10], Zhang proposed to combine the time-
reversal focusing with the FrFT method, leading to improved
performance.

In addition to the aforementioned classical detection algo-
rithms, some emerging methods have also been proposed
recently. Kumar et al. proposed an intercept detection method
for low-SNR targets [11]. It employs a new beamform-
ing scheme and a dynamic threshold to achieve a constant
false alarm rate, irrespective of the intercepted frequency.
Even though, the detection performance under non-stationary
noise environments cannot be guaranteed. In [12], a non-
cooperative method based on the two-sample Kolmogorov-
Smirnov (K-S) test was proposed to achieve blind signal
detection in symmetric alpha-stable noise. Empirical cumu-
lative distribution functions (ECDFs) of the received signal
and the noise are required. Simulation results showed the
K-S detector is effective only in symmetric alpha-stable noise
though. In [13], a detection algorithm based on the stochastic
resonance (SR) was designed for detecting underwater acous-
tic weak signal. It, however, is unstable without prior infor-
mation. Motivated by the success of relative entropy (RE)
method in multi-input multi-output (MIMO) radar [14], [15],
Mignerey studied the feasibility of an RE based distributed
passive detection scheme [16]. It is found the resulting RE
detector is insensitive to statistical dependence among the
sensors and achieves good performance despite of pulse type.
Due to its superiority, the RE has also found wide application
in other fields than the underwater pulse detection [17], [18].

The RE method is robust under non-stationary ocean envi-
ronments. However, it does not achieve satisfactory perfor-
mance for combined pulses with different pulse widths and/or
under low SNR conditions. This motivates the recent inves-
tigation on a variable scale relative entropy (VSRE) based
detection [19]. Preliminary simulation results showed its
superiority over the conventional RE detection while experi-
mental verification is lacking. In the current paper, a postpro-
cessing procedure is introduced to the VSRE detector, leading

to a much improved scheme for adaptive search of pulses.
The resulting improved VSRE detector is able to distinguish
multiple pulses of different types and widths within a given
observation sequence. A candidate set of scales are deter-
mined based on the size of the observation sequence and a
preset minimum pulse width. For a given scale, a RE dif-
ference vector is computed as in a conventional RE detector.
The RE difference vectors of all scales are combined into a
RE difference matrix, which is further processed such that
only entries corresponding to potential signal pulses are kept
untouched and others are set to zeros. Such a postprocessing
procedure leads to extra performance gain over [19]. To make
a detection based on the postprocessed RE difference matrix,
its nonzero elements are divided into groups, according to
their row and column indices. Each group corresponds to a
target pulse, with its exact starting time and width determined
by the row/column information of the largest element within
the group. Extensive simulation and experiment results are
provided to demonstrate the superior performance of the
VSRE detector.

The rest of this paper is organized as follows. Section II
reviews the basic theory of the relative entropy detection,
in particular the kernel density estimation (KDE). The VSRE
detector is discussed in Section III. Simulation and exper-
imental results are presented in Section IV and Section V,
respectively. Finally, Section VI concludes the paper.
Notation: For a random variable X , its probability density

function (PDF) is given as f (x). The (·)T denotes the matrix
transpose, and ‖·‖ is the Euclidean norm.

II. PRELIMINARIES
For a binary hypothesis testing problem, the task is to decide
whether a given observation sequence is pure noise (null
hypothesis H0) or signal plus noise (alternative hypothesis
H1) [20]. It is assumed the observation sequence contains
independent and identically distributed (i.i.d) samples that
follow X ∼ f (x). In the non-cooperative scenario, the goal is
achieved by deciding whether the observation sequence has
a similar statistical characteristic to an i.i.d probe (ambient
noise) sequence, Xp ∼ fp(x). To measure the statistical
difference between X and Xp, the RE has been proposed as a
measurement metric [16]. The definition of RE between two
PDFs, fp(x) and f (x), is [21]–[23]

Dp,f = D
[
fp(x)||f (x)

]
= Ep

[
log

(
fp(x)
f (x)

)]
(1)

which is also called the Kullback-Leibler (KL) divergence
[23, Ch. 1.3]. In (1), the expectation is with respect to fp(x).
When the observed contains mainly ambient noise, we expect
Dp,f to be small or close to zero. Otherwise, the observed can
be a pulse signal plus noise.

To make a decision, one still needs a detection thresh-
old (DT). It can be obtained by measuring the RE between
the probe sequence and another non-overlapping i.i.d ambi-
ent noise sequence with a distribution Xq ∼ fq(x), that is
γ = D

[
fp(x) || fq(x)

]
. It is noted for passive surveillance
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systems, noises are observed most of time and it is not dif-
ficult to get two non-overlapping ambient noise sequences.
The RE detector then makes a decision as follows

Dp,f
H1
≷
H0

γ (2)

or equivalently

Dp,f − γ
H1
≷
H0

0 (3)

In practice, however, the PDFs of the probe and observation
sequences are unknown thus have to be estimated. The kernel
density estimation (KDE) method is classical algorithm to
estimate the PDF of a random variable. Based on the obser-
vation samples [x1 x2 · · · xN ]T , the KDE gives the following
PDF estimation

f̂ (x) =
1
N

N∑
n=1

φ(x, xn; b), x ∈ R (4)

where φ(·) denotes a Gaussian kernel function as

φ(x, xn; b) =
1
√
2πb

e
−(x−xn)2

2b . (5)

The parameter b determines the estimation accuracy of
the PDF and is called bandwidth. The optimal b in (4)
can be found by minimizing the mean integrated squared
error (MISE) defined as

MISE{f̂ }(b)

= Ef
∫
[f̂ (x)− f (x)]2dx

=

∫
(Ef [f̂ (x)]− f (x))2︸ ︷︷ ︸

squared bias

dx +
∫

Varf [f̂ (x)]︸ ︷︷ ︸
variance component

dx (6)

To simplify the solving procedure, the following (first-order)
approximation MISE (AMISE) is instead used

AMISE{f̂ }(b) =
1
4
b2
∥∥f ′′∥∥2 + 1

2N
√
πb

(7)

where f ′′ denotes the second-order derivative of f (x). By
minimizing (7), the optimal b is solved as

b∗ = (
1

2N
√
π ‖f ′′‖2

)2/5 (8)

In (8), the
∥∥f ′′∥∥2 required to compute b∗ can be estimated

using the l-stage direct plug-in bandwidth selector (LsDPBS)
method [24].

Existing RE detectors do not provide satisfactory perfor-
mance when the SNR is low. This motivates us to propose a
VSRE detector detailed in the next section.

III. THE VSRE-BASED NON-PARAMETRIC
DETECTION METHOD
The block diagram of the proposed detector is shown in Fig. 1.
From the figure, the observation sequence is input to a
preprocessing module, which consists of a low-pass fil-
ter (LPF) block, a variable scale grouping (VSG) block, a fast
Fourier transform (FFT) block and a KDE block. The LPF is
applied such that the signal at an interested frequency band is
extracted. The VSG block divides the entire sequence into
multiple subsequences (groups) based on a given scale. In
practical implementation, the number of groups,Gs, is chosen
first then the corresponding scale SGs is determined as

SGs = bN/Gsc (9)

where N is the length of the observation sequence and bxc
denotes the largest integer that is smaller than x. The Gs
goes from 1 to G = bT/Tminc, where the T and Tmin are
the observation duration and the predefined minimum pulse
width, respectively.

For a given scale SGs , the i-th subsequence is

xGs,i =

{ [
x(i−1)SGs+1, · · · , xiSGs

]
, 1 ≤ i ≤ Gs − 1[

x(Gs−1)SGs+1, · · · , xN
]
, i = Gs

(10)

FIGURE 1. Block diagram of the VSRE detector.

VOLUME 8, 2020 66133



K. Wei et al.: VSRE Detection for Non-Cooperative Underwater Acoustic Pulse Signals

It is noted the size of the last subsequence is N −SGs (Gs−1),
which is not less than SGs .
Under low SNR scenarios, the pulse signals and ambient

noise were indistinguishable in the time domain. In the fre-
quency domain, however, a potential pulse tends to be more
discernible [11]. Therefore, we choose to transform an obser-
vation subsequence into the frequency domain. The ampli-
tude zGs,i of FFT

{
xGs,i

}
is then sent to the aforementioned

KDE for obtaining corresponding PDF estimation f̂Gs,i(z).
This completes the preprocessing. A similar procedure can
be applied on xp and xq to obtain the PDF estimations f̂p(z)
and f̂q(z). It is noted the two ambient noise sequences are not
divided into subsequences and each is mapped to a single
PDF. The RE between f̂p(z) and f̂q(z), Dp,q, can then be
evaluated and used to determine the detection threshold.

The RE between f̂p(z) and the PDF estimation f̂Gs,i(z) of the
i-th subsequence is also computed and denoted as Dp,(Gs,i).
Further, the RE difference, EGs,i, for the i-th subsequence is

EGs,i = Dp,(Gs,i) − Dp,q (11)

Based on EGs,i, a decision can be made according to (3).
Such a decision, however, is risky. If the scale is much larger
than the pulse width, the pulse may not be detected. On the
contrary, if the scale is much smaller compared with the pulse
duration, the pulse will occupy several subsequences and it is
difficult to determine its start and end. To improve, we pro-
pose that a subsequence is declared to be a target pulse only
when the following three conditions are also met: basically
match (BM), slightly to the left (SL), and slightly to the right
(SR), as will be shown shortly. To achieve that, we propose
to perform a postprocessing for EGs,i. If EGs,i > 0 and Gs >
3, the frequency-domain subsequence zGs,i and its neigh-
bors zGs,i−1 and zGs,i+1 each will be divided into J blocks
{zGs,i(j)}

J
j=1, {zGs,i−1(j)}

J
j=1 and {zGs,i+1(j)}

J
j=1. The corre-

sponding RE differences are {EGs,i(j)}Jj=1, {EGs,i−1(j)}
J
j=1 and

{EGs,i+1(j)}Jj=1. After that, the postprocessing is performed:
if any condition in the three cases of Table 1 is satisfied,
ẼGs,i = EGs,i. Otherwise ẼGs,i = 0. Last, if EGs,i ≤ 0,
ẼGs,i = 0.

Collecting postprocessed RE differences of all scales into
a matrix leads to

Ẽ =


0 0 · · · ẼG,G
...

... . .
. ...

0 0 · · · ẼG,3
0 Ẽ2,2 · · · ẼG,2

Ẽ1,1 Ẽ2,1 · · · ẼG,1

 (12)

Clearly, each column of Ẽ corresponds to a particular
scale.

With Ẽ , we are in the position to present the proposed
VSRE pulse detection. We first map Ẽ to a two-dimensional
(2D) plane with Gs as abscissa and i as ordinate. The
(1, 1) is set as the origin point. Based on the coordinates
{(Gs, i)} of all nonzero elements in Ẽ , slopes {θGs,i = i−1

Gs−1
}

TABLE 1. The conditions under which EGs,i is left unchanged.

TABLE 2. The procedure to find the pulse location in the
VSRE detection.

are calculated. Next, we divide the slopes, {θGs,i}, into groups,
each containing close values thus corresponding to same
pulse signal. It is easy to verify the larger the slope values,
the later the pulse signal appears in the observation sequence.
The coordinate of the maximum ẼGs,i within a given group
is picked to determine the location of the pulse signal within
the observation sequence. The detection procedure is finally
summarized in Table 2.
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TABLE 3. The parameters of simulated signal pulses.

FIGURE 2. Demonstration of received signal which contains LFM and CW
pulses.

IV. SIMULATION RESULTS
In this section, the proposed VSRE detector is evaluated
by numerical simulations. We simulated the detection of a
combined LFM and CW pulse signals, with the relevant
parameters listed in Table 3. The bimodal noise model [25],
[26] is adopted to simulate the ocean ambient noise.

On the receiver side, an observation sequence with a dura-
tion 8.72 s or equivalently N = T · Fs = 174400 samples
is recorded and shown in Fig. 2, where the locations of the
LFM and CW pulses are marked. Both pulses are visually
undistinguishable due to a low SNR.

In the VSRE detection, Tmin = 0.05 s and the maximum
number of subsequences G = bT/Tminc = 174. For the RE
difference postprocessing, J = 5 is used. The mapping of the
VSRE matrix, Ẽ , to the 2D plane is shown in Fig. 3. From
the figure, there are 7 surviving points, which are divided
into two groups. We can preliminarily determine that there
exist two pulses in the observation sequence. According to
the slope comparison, the first pulse (CWgroup) appears later
than the second pulse in the observation sequence. Based on
the comparison of corresponding scales, the first pulse has a
larger width than the second one.

The coordinate of the point having the maximum RE
difference is then found within each group for determining
the pulse parameters. For the LFM group, the coordinate is
(110, 33) based on which the pulse happens over the period

FIGURE 3. Demonstration of the postprocessed RE difference matrix.

FIGURE 4. ROC comparison between a conventional RE detector and the
proposed VSRE detector.

(2.537 : 2.616)s. For the CW group, the coordinate is
(74, 30) leading to the pulse location of (3.417 : 3.535)s.
The width estimations of the two pulses are then 79.27 ms
and 117.84 ms, respectively. Clearly, the estimations are very
close to actual values, demonstrating the high performance of
the proposed VSRE detector.

Next, performance comparison between the conventional
RE detector [16] and the proposed VSRE detector is made,
in terms of the receiver operating characteristic (ROC). The
comparison results are shown in Fig. 4, where it is obvious
the VSRE detector outperforms the RE detector at different
SNR levels.

V. EXPERIMENTAL RESULTS
The proposed VSRE detector was also tested by experimental
data collected in an at-sea trial. The deployment of the at-sea
trial is illustrated in Fig. 5, where the acoustic source and the
receive hydrophone array are lowered 10 m and 30 m below
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FIGURE 5. Illustration of the deployment of the at-sea trial.

TABLE 4. Parameters of transmitted combined pulse.

the ocean surface, respectively. The horizontal transmission
distance is about 10 km. Combined pulses were transmitted
with their parameters listed in Table 4.

The data recording lasted for two hours on the receiver side
at a sampling frequency of Fs = 12.8 KHz. In the off-line
detection, we divide the data into packets of duration T = 12
seconds and detect the packets one by one individually. The
length of each sequence is then N = T · Fs = 153600,
and the maximum number of groups G = 120 with a
choice of Tmin = 0.1 s. In the preprocessing, an LPF with
a cut-off frequency of 6 KHz was used. No pulse signal
was detected in the first 6 packets until the 7th one. In the
following, the detection results for the 7th and 8th packets are
discussed.

1) DETECTION RESULTS FOR PACKET 7
The postprocessed RE difference matrix is plotted in Fig. 6,
where the surviving points are divided into two groups.
For the group 1, the point with the maximum RE dif-
ference has a coordinate of (18, 10), based on which
the pulse location is determined as (6.000 : 6.667) s.
For the group 2, the point with the maximum RE dif-
ference has a coordinate of (85, 50), leading to a pulse
location of (6.918 : 7.059) s. The widths of above
detected pulse signals are then 666.67 ms and 141.18 ms,
respectively.

In Fig. 7, the time-frequency graph (TFG) of the packet 7 is
shown. It is obtained via the STFTmethodwith its parameters
determined from the detection results of the VSRE detector.
From the figure, the group 1 denotes the CW pulse and group
2 denotes the LFM pulse.

FIGURE 6. Demonstration of the postprocessed RE difference matrix
(packet 7).

FIGURE 7. The STFT of packet 7, where the subgraphs represent the
pulses detected at (18,10) and (85,50) by the VSRE detector.

2) DETECTION RESULTS FOR PACKET 8
The postprocessed RE difference matrix is plotted in Fig. 8,
where the surviving points are divided into two groups. For
the group 1, the point with the maximum RE difference has
a coordinate of (33, 19), based on which the pulse location
is determined as (6.545 : 6.909) s. For the group 2, the point
with themaximumRE difference has a coordinate of (19, 16),
corresponding to the pulse location of (9.474 : 10.105) s. The
widths of above detected pulse signals are then estimated as
363.63 ms and 631.58 ms, respectively.

In Fig. 9, the TFG of the packet 8 is shown. It is again
obtained via the STFTmethodwith its parameters determined
from the detection results by theVSRE detector. From the fig-
ure, the group 1 denotes the LFM pulse and group 2 denotes
the CW pulse.

From above, the target pulses were successfully detected
and their width estimations were very close to true values.
This verifies the advantage of the proposed VSRE detector.

66136 VOLUME 8, 2020



K. Wei et al.: VSRE Detection for Non-Cooperative Underwater Acoustic Pulse Signals

FIGURE 8. Demonstration of the postprocessed RE difference matrix
(packet 8).

FIGURE 9. The STFT of packet 8, where the subgraphs represent the
pulses detected at (33,19) and (19,16) by the VSRE detector.

VI. CONCLUSION
In this paper, an improved variable scale relative entropy
(VSRE) detector was proposed for the detection of non-
cooperative combined underwater acoustic pulse signals
without prior information. It included a postprocessing pro-
cedure to improve the detection performance and also enable
pulse parameters estimation. Simulation and at-sea experi-
mental results were presented to verify the superiority of the
enhanced VSRE detection scheme.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
and the editor Dr. E. Demirors for their careful reviews and
valuable comments.

REFERENCES
[1] J. Marszal and R. Salamon, ‘‘Detection range of intercept sonar for CWFM

signals,’’ Arch. Acoust., vol. 39, no. 2, pp. 215–230, Mar. 2015, doi:
10.2478/aoa-2014-0026.

[2] J. Marszal, ‘‘Experimental study of silent sonar,’’ Arch. Acoust., vol. 39,
no. 1, pp. 103–115, Mar. 2015, doi: 10.2478/aoa-2014-0011.

[3] E. N. Sreedavy, R. Pradeepa, and V. P. Felix, ‘‘A novel algorithm
for intercept sonar signal detector,’’ in Proc. Int. Symp. Ocean Elec-
tron. (SYMPOL), Cochin, India, Nov. 2009, pp. 3–8, doi: 10.1109/SYM-
POL.2009.5664738.

[4] J. Hurka and D. Neumeister, ‘‘Entropy detection for intercept processing of
sonar signals,’’ Undersea Defence Technol., Rotterdam, The Netherlands,
Tech. Rep., 2004.

[5] F. Hlawatsch and G. F. Boudreaux-Bartels, ‘‘Linear and quadratic time-
frequency signal representations,’’ IEEE Signal Process. Mag., vol. 9,
no. 2, pp. 21–67, Apr. 1992, doi: 10.1109/79.127284.

[6] P. M. David and B. Chapron, ‘‘Underwater acoustic signal analysis with
wavelet process,’’ J. Acoust. Soc. Amer., vol. 87, no. 5, pp. 2118–2121,
May 1990, doi: 10.1121/1.399179.

[7] B. Boashash and P. O’Shea, ‘‘A methodology for detection and classifi-
cation of some underwater acoustic signals using time-frequency analysis
techniques,’’ IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 11,
pp. 1829–1841, Nov. 1990, doi: 10.1109/29.103085.

[8] L. Qi, ‘‘Detection and parameter estimation of multicomponent LFM
signal based on the fractional Fourier transform,’’ Sci. China F, Inf. Sci.,
vol. 47, no. 2, p. 184, 2004, doi: 10.1360/02yf0456.

[9] V. Kandia and Y. Stylianou, ‘‘Detection of sperm whale clicks based on
the Teager–Kaiser energy operator,’’ Appl. Acoust., vol. 67, nos. 11–12,
pp. 1144–1163, Nov. 2006, doi: 10.1016/j.apacoust.2006.05.007.

[10] Z. C. Zhang, Z. Jiang, H. Y.Wang, Z. G. Liu, and H. X. Jing, ‘‘Combination
of time-reversal focusing and fractional Fourier transform for detection of
underwater target in multipath environments,’’ in Proc. OCEANS Conf.,
Anchorage, AK, USA, 2017, pp. 1–5.

[11] K. M. Kumar, P. J. Sijomon, K. S. Joseph, D. M. Premod, V. S. Shenoi,
and D. S. Bhai, ‘‘A novel intercept detection method for low-SNR
targets using frequency domain processing,’’ in Proc. Ocean Electron.
(SYMPOL), Kochi, India, Oct. 2013, pp. 23–30, doi: 10.1109/SYM-
POL.2013.6701907.

[12] J. Luo, S. Wang, E. Zhang, and J. Luo, ‘‘Non-cooperative signal detec-
tion in alpha stable noise via Kolmogorov–Smirnov test,’’ in Proc. 8th
Int. Congr. Image Signal Process. (CISP), Shenyang, China, Oct. 2015,
pp. 1464–1468, doi: 10.1109/CISP.2015.7408114.

[13] J. Shu-Yao, Y. Fei, C. Ke-Yu, and C. En, ‘‘Application of stochas-
tic resonance technology in underwater acoustic weak signal detec-
tion,’’ in Proc. OCEANS, Shanghai, China, Apr. 2016, pp. 1–5, doi:
10.1109/OCEANSAP.2016.7485567.

[14] J. Tang, N. Li, Y. Wu, and Y. Peng, ‘‘On detection performance of MIMO
radar: A relative entropy-based study,’’ IEEE Signal Process. Lett., vol. 16,
no. 3, pp. 184–187, Mar. 2009, doi: 10.1109/LSP.2008.2011704.

[15] B. Tang, M. M. Naghsh, and J. Tang, ‘‘Relative entropy-based waveform
design for MIMO radar detection in the presence of clutter and inter-
ference,’’ IEEE Trans. Signal Process., vol. 63, no. 14, pp. 3783–3796,
Jul. 2015, doi: 10.1109/TSP.2015.2423257.

[16] P. C. Mignerey, A. Turgut, J. A. Schindall, and D. J. Goldstein, ‘‘Evalua-
tion of relative entropy for distributed passive detection of weak acous-
tic signals,’’ IEEE J. Ocean. Eng., vol. 42, pp. 219–230, 2017, doi:
10.1109/JOE.2016.2546388.

[17] A. Downey, M. Sadoughi, S. Laflamme, and C. Hu, ‘‘Incipient damage
detection for large area structures monitored with a network of soft elas-
tomeric capacitors using relative entropy,’’ IEEE Sensors J., vol. 18, no. 21,
pp. 8827–8834, Nov. 2018, doi: 10.1109/JSEN.2018.2868135.

[18] K. Ozcan, S. Velipasalar, and P. K. Varshney, ‘‘Autonomous fall detection
with wearable cameras by using relative entropy distance measure,’’ IEEE
Trans. Human-Mach. Syst., vol. 47, no. 1, pp. 31–39, Feb. 2017, doi:
10.1109/THMS.2016.2620904.

[19] K. Wei and S. L. Fang, ‘‘A novel search method of variable scale relative
entropy for non-cooperative transient underwater acoustic pulse signals,’’
in Proc. Int. Cong. Expo. Noise Control Eng., Impact Noise Control Eng.,
Chicago, IL, USA, 2018, pp. 2130–2139.

[20] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-
ory, vol. 2. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[21] I. J. Good, ‘‘Maximum entropy for hypothesis formulation, especially for
multidimensional contingency tables,’’ Ann. Math. Statist., vol. 34, no. 3,
pp. 911–934, Sep. 1963, doi: 10.1214/aoms/1177704014.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken,
NJ, USA: Wiley, 2006.

[23] S. Kullback, Information Theory and Statistics, Mineola, NY, USA: Dover,
1997.

VOLUME 8, 2020 66137

http://dx.doi.org/10.2478/aoa-2014-0026
http://dx.doi.org/10.2478/aoa-2014-0011
http://dx.doi.org/10.1109/SYMPOL.2009.5664738
http://dx.doi.org/10.1109/SYMPOL.2009.5664738
http://dx.doi.org/10.1109/79.127284
http://dx.doi.org/10.1121/1.399179
http://dx.doi.org/10.1109/29.103085
http://dx.doi.org/10.1360/02yf0456
http://dx.doi.org/10.1016/j.apacoust.2006.05.007
http://dx.doi.org/10.1109/SYMPOL.2013.6701907
http://dx.doi.org/10.1109/SYMPOL.2013.6701907
http://dx.doi.org/10.1109/CISP.2015.7408114
http://dx.doi.org/10.1109/OCEANSAP.2016.7485567
http://dx.doi.org/10.1109/LSP.2008.2011704
http://dx.doi.org/10.1109/TSP.2015.2423257
http://dx.doi.org/10.1109/JOE.2016.2546388
http://dx.doi.org/10.1109/JSEN.2018.2868135
http://dx.doi.org/10.1109/THMS.2016.2620904
http://dx.doi.org/10.1214/aoms/1177704014


K. Wei et al.: VSRE Detection for Non-Cooperative Underwater Acoustic Pulse Signals

[24] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, ‘‘Kernel density estimation
via diffusion,’’ Ann. Statist., vol. 38, no. 5, pp. 2916–2957, Oct. 2010, doi:
10.1214/10-AOS799.

[25] H. Amiri, H. Amindavar, and M. Kamarei, ‘‘Underwater noise modeling
and direction-finding based on heteroscedastic time series,’’ EURASIP
J. Adv. Signal Process., vol. 2007, no. 1, pp. 1–11, Dec. 2006, doi:
10.1155/2007/71528.

[26] F. Traverso, G. Vernazza, and A. Trucco, ‘‘Simulation of non-white and
non-Gaussian underwater ambient noise,’’ in Proc. MTS/IEEE Oceans,
Yeosu, South Korea, May 2012, pp. 1–10, doi: 10.1109/OCEANS-
Yeosu.2012.6263385.

KUN WEI received the B.S. degree in electronic
science and technology from the Changshu Insti-
tute of Technology, Changshu, China, in 2012,
and the M.S. degree in signal and information
processing from the Kunming University of Sci-
ence and Technology, Kunming, China, in 2015.
He is currently pursuing the Ph.D. degree with
theKey Laboratory of Underwater Acoustic Signal
Processing of Ministry of Education, Southeast
University.

His research interests include underwater acoustic signal processing,
detection, and parameter estimation.

SHILIANG FANG received the M.S. and Ph.D.
degrees from Southeast University, Nanjing,
China, in 1986 and 2009, respectively.

He is currently a Professor with the Key Labo-
ratory of Underwater Acoustic Signal Processing
of Ministry of Education, Southeast University.
His research interests include signal processing,
target detection and parameter estimation, and
underwater target classification.

JUN TAO (Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from
the Department of Radio Engineering, Southeast
University, Nanjing, China, in 2001 and 2004,
respectively, and the Ph.D. degree in electrical
engineering from the University of Missouri,
Columbia, MO, USA, in 2010.

From 2004 to 2006, he was a System Design
Engineer with Realsil Microelectronics, Inc.
(a subsidiary of Realtek), Suzhou, China. From

2011 to 2015, he was a Senior System Engineer with Qualcomm, Inc.,
Boulder, CO, USA, working on the baseband algorithm and architecture
design for the UMTS/LTE modem. Since April 2016, he has been with
the School of Information Science and Engineering, Southeast University,
as a Full Professor. His research interests include the general areas of
wireless cellular communications, underwater acoustic communications, and
localization and tracking, including channel modeling and estimation, turbo
equalization, adaptive filtering, Bayesian inference, and machine learning.

66138 VOLUME 8, 2020

http://dx.doi.org/10.1214/10-AOS799
http://dx.doi.org/10.1155/2007/71528
http://dx.doi.org/10.1109/OCEANS-Yeosu.2012.6263385
http://dx.doi.org/10.1109/OCEANS-Yeosu.2012.6263385

	INTRODUCTION
	PRELIMINARIES
	THE VSRE-BASED NON-PARAMETRIC DETECTION METHOD
	SIMULATION RESULTS
	EXPERIMENTAL RESULTS
	DETECTION RESULTS FOR PACKET 7
	DETECTION RESULTS FOR PACKET 8


	CONCLUSION
	REFERENCES
	Biographies
	KUN WEI
	SHILIANG FANG
	JUN TAO


