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ABSTRACT Non-uniform blind deblurring of dynamic scenes has always been a challenging problem
in image processing because of the diverse of blurring sources. Traditional methods based on energy
minimization cannot make accurate kernel estimation. It leads to that some high frequency details cannot be
fully recovered. Recently, many methods based on convolution neural networks (CNNs) have been proposed
to improve the overall performance. Followed by this trend, we first propose a two-stage deblurring module
to recover the blur images of dynamic scenes based on high frequency residual image learning. The first stage
performs initial deburring with the blur kernel estimated by the salient structure. The second stage calculates
the difference of input image and initially deblurred image, referred to as residual image, and adopt an
encoder-decoder network to refine the residual image. Finally, we can combine the refined residual image
with the input blurred image to obtain the latent image. To increase deblurring performance, we further
propose a coarse-to-fine framework based on the deblurring module. It performs the deblurring module
many times in a multi-scale manner which can gradually restore the sharp edge details of different scales.
Experiments conducted on three benchmark datasets demonstrate the proposed method achieves competitive
performance of state-of-art methods.

INDEX TERMS Image deblurring, dynamic blur, non-uniform blind deblurring, deep learning.

I. INTRODUCTION
Blind image deblurring (BID) has been received much
attention and made a significant progress in the recent
years [1]–[38]. The goal of image deblurring is to remove
the blurring artifacts caused by object motions or cam-
era shakes. More specifically, given an input blurry image,
it aims to estimate unknown latent image when blur ker-
nel is unknown. It implies that it is an ill-posed problem.
The blur kernel k must be estimated in advance some con-
straints or prior knowledge before running deconvolution
process. Many deblurring methods have been proposed in
the past. In the early stage, people devoted to estimate the
blur kernel accurately with different types of priors [1]–[5].
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Later, some people utilized salient structure to estimate the
blur kernel [4]–[9].

Among the topics in BID, motion deblur is the one received
wide attention. Motion deblur is an important topic in the
problems of low-light and texture images. It is an image
degradation phenomenon caused by various sources, such
as camera shake and the movement of objects under a
longer exposure. The blur kernel is usually spatially non-
uniform, and difficult to be estimated. Ideally, to remove the
motion blur, we must consider the all the blurring sources
simultaneously. However, estimating an individual blur ker-
nel for each pixel or region is infeasible because it would
result in excessive computational burden. Therefore, many
past researches only focused on single cases [10]–[13]. For
instance, methods in [10], [13] assumed that the motion blur
is caused by pure camera shake. They belong to global deblur-
ring methods, and are not applicable for the image scenes

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 66025

https://orcid.org/0000-0001-9358-6511
https://orcid.org/0000-0002-2837-6662
https://orcid.org/0000-0001-9476-8130
https://orcid.org/0000-0003-0542-2280


K.-H. Liu et al.: Motion Deblur Method Based on Multi-Scale High Frequency Residual Image Learning

containing non-uniform blurring components. Kim et al. [14]
combined segmentation and removal of non-uniform blurred
images to restore a sharp image for dynamic scene. The same
author [15] assumed that the blur kernel is roughly locally
linear, and proposed a method that can estimate latent image
and blur kernel at the same time. However, the performance
of those methods depends on the quality of kernel estimation.
In the cases of discontinuous motions and occlusions of
objects, the blur kernel cannot be estimated correctly, so that
the recovered image contains ringing artifacts.

Recently, as the rise of deep learning, convolutional neu-
ral networks (CNNs) were applied to resolve many tough
problems in many areas such as image restoration [16],
speech recognition [17], and fault diagnosis [18], [19].
The CNN methods were also applied to blur kernel
estimation [20]–[23]. Those methods achieve satisfactory
results but still have some drawbacks. For example, due to
the lack of real-life blurred images and ground truths, they
used synthetic data generated by self-defined blur kernels
for training CNNs. It results in that the learned models can
only handle the problems of spatially uniform or certain spe-
cific cases. The simple assumption they adopted also limits
the capability of restoring the real-world blurred images.
Later, [23]–[28] proposed other CNN-based methods which
restore sharp images directly without estimating the blur
kernel in advance. They integrate encoder and decoder net-
works into a single framework, and adopt end-to-end training
strategy to make deblurring task simpler. Other deep neural
structures, such as recurrent neural network (RNN) or gener-
ative adversarial network (GAN), were applied to deal with
deblurring problem [29]–[31].

Those methods have become the most representative meth-
ods nowadays because of topnotch performance. However,
most end-to-end methods require large amount of training
samples to learn the relationship between shape and blurred
images. In most cases, we cannot collect adequate training
materials to well learn the model. Under such circumstances,
introducing human-defined rules under a certain assumption
into the deblurring framework can narrow down the depth of
learning and reduce regression complexity so as to increase
the accuracies of deblurring. For instance, it is known that the
low-frequency components of a sharp image and the blurred
one are similar. The main difference is the ‘‘edge’’ of object.
It suggests that we only need to build a CNN to learn the rules
of edge components instead of full image contents. There are
several advantages about this way: 1. It can reduce the learn-
ing complexity of CNN, because the spatial contents involved
in the training are limited to the edge components. 2. It can
eliminate the artifacts caused by wrong edge estimation more
effectively, such as ringing effects. 3. It is allowed to use
relatively smaller amount of training samples.

Inspired by this idea, this paper proposes a multi-
scale deblurring method based on residual image learning.
This method adopts a two-stage deblurring module as the
basic unit. The objective of the first stage is to recover
low-frequency components while preserving high-frequency

FIGURE 1. A deblurring example of the proposed method. (a) Input blurry
image. (b) The initial deblurring result. (c) Residual image. (d) The
modified residual image learned by a multi-scale refinement process.
(e) The restored image obtained by combining (a) with (d). (f) Ground
truth.

information and the second stage aims to refine high-
frequency edge information. More specifically, the first stage
performs initial deblurring with the blur kernel estimated by
the salient structure of the input image. The salient structure is
predicted by using a context aggregation network with dilated
convolution units that can preserve contextual information of
image. In the second stage, we define the difference of input
image and the initially deblurred image as ‘‘residual image’’.
Next, a residual image refinement process is performed by
a pre-trained encoder-decoder network with residual image
and high frequency image as inputs. Finally, the latent image
can be reconstructed by combining the refined residual image
with the input blur image. Since the residual image may
contain edge details of different scales, it is impossible to
recover all the details by using the deblurring module one
time. To overcome this problem, we further design a multi-
scale procedure to recover the details in coarse-to-fine man-
ner by performing deblurringmodulemultiple times from low
to high resolution. Theoretically, this procedure can perform
deblur for individual region/object so as to improve the ability
of removing non-uniform blur.

The experiments conducted on three benchmark datasets
show that the proposed method is applicable for the var-
ious kinds of dynamic scene. Both quantitative and qual-
itative analysis shows that our method can achieve the
state-of-art performance. Our contributions can be summa-
rized as follows:

• We propose a novel concept for deblurring, which sep-
arates deblurring into low-frequency content recovery
and high frequency information refinement.
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• To fulfill the concept, we design a deblurring module
based on deep learning. It consists of an initial deblur-
ring method and a residual image refinement process.

• A multi-scale strategy is proposed to refine the edge
details of different scales, and enhance the capability
of non-uniform deblurring.

The remainder of this paper is organized as follows. The
related work is introduced in Section II. Section III describes
the proposed methodology. The dataset and experimental
settings as well as the experimental results are demonstrated
in Section IV. Finally, the conclusion is drawn in Section V.

II. RELATED WORK
The statistical or image priors were first applied to blind
deblurring. Fergus et al. [1] modeled the deblurring prob-
lem by assuming that a natural clear image has heavy-
tailed distribution. They make a prior assumption that the
gradient distributions of natural images are heavy-tailed,
and estimate the blur kernel under a Bayesian framework.
Xu et al. [2] used the L0 constraint on image gradients to esti-
mate the blur kernel. Krishnan et al. [3] proposed the normal-
ized sparse prior to reduce the cost in image regularization,
where the hyper-laplacian priors are used for image recovery.
Pan et al. [4] utilized low rank prior to obtain the prior condi-
tions of real data and estimate the blur kernel via Gaussian
regularization. However, the design of those methods may
cause the noise issue inside the blur kernel. To resolve it,
the hysteresis threshold is used to remove the noise, but the
details of blur kernel are also lost.

To suppress noise without losing the details,
Xu and Jia [5] proposed an iteration-based approaches based
on iterative support detection (ISD) and spatial priors to refine
the kernel. Cho and Lee [6] proposed a nonparametric patch
prior to the simulation of edges and angles. These work
confirmed that the restoration quality will be poor if the blurry
images lack of rich texture.

Cai et al. [32] removed complex motion blur by intro-
ducing a sparse regularization into original image and blur
kernel. Machaeli and Irani [34] utilized the internal patch to
deblur the images containing repetitive pattern. This method
works well with repeated patches in the image, but fails in
the case of lacking patterns in the image. Pan et al. [35] used
dark channel priors for image deblurring, but the performance
would degrade when the blur images contain noise.

On the other hands, some works used the edge distribution
for blur kernel estimation [6], [7], [33], [36], [37]. For exam-
ple, Cho and Lee [6] used bilateral and shock filters to find the
sharp edges and used them to estimate blur kernel in a coarse-
to-fine manner. However, the edge recovered from the blurry
image is not necessarily effective to estimate the kernel.
Xu and Jia [5] developed a method of selecting the amount
of information for deblurring. Sun et al. [33] modeled image
edge primitives using patch priors for blur kernel estimation.
Themain drawback of this category of approaches is that they
heavily rely on the image filtering techniques and the ways to
restore sharp edges.

Recently, the convolutional neural networks (CNNs) were
applied to image deblurring [28]–[32], [38], [39]. For
instance, Schulder et al. [40] proposed an integrated convo-
lutional neural network for kernel estimation. However, this
method needs to train different sizes of neural networks for
the blur kernels with different sizes. Xu et al. [37] proposed a
method for learning edge aware filters using a convolutional
neural network. But this method cannot directly be applied
to recover salient edges from blurred images to estimate the
kernel.

There were some studies about motion blur removal. The
studies [10]–[13] were designed to deal with the motion blur
images caused by camera shake. Nah et al. [25] proposed an
end-to-end convolutional neural network for real motion blur
which combined with coarse-to-fine strategy, and [26], [27]
also proposed an end-to-end architecture constructed by gen-
erative adversarial network. Those methods do not require
kernel estimation but directly restore sharp image. In general,
CNN-based methods achieved better results than traditional
ones. However, the restored images still are not good enough
in detail presentation. To further improve the performance,
Kupyn et al. [47] and Miao et al. [48] proposed an end-
to-end approach based on conditional generative adversarial
network (cGAN).

III. PROPOSED METHOD
In this study, we assume that the low-frequency components
of blurred imageB and the latent image I are similar. If we can
accurately estimate their difference (called residual image,
R), the latent image I can be estimated by

I = R+ B. (1)

Based on this, we propose a two-stage deblurring module, as
shown in Fig.2. It consists of two stages: Stage I performs ini-
tial deblurring, which roughly recovers low-frequency con-
tents and obtain a temporary restored image Ĩ ; Stage II
performs residual image refinement, which refines the high-
frequency details of residual image R̃with the high-frequency
imageH . Finally, the latent image I is obtained by combining
refined residual image Rwith B. In order to recover the image
details of different scales, we further design a multi-scale
strategy that performs the deblurring module in a successive
way with different image scales.

The details of the deblurring module as well as multi-scale
technique are introduced as follows.

A. STAGE I: INITIAL DEBLURRING
We refer to [39] to develop our initial deblurring method.
It consists of three steps: Salient structure prediction, blur
kernel estimation, and image restoration. Fig.3 shows the
flowchart of initial deblurring method.

1) SALIENT STRUCTURE PREDICTION
We build a 9-layer CNN network to predict the salient
structure S. The network architecture is shown in Table 1.
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FIGURE 2. The architecture of the proposed two-stage deblurring module.

Differ from [39], we adopt multi-scale context aggregation
network (CAN) [41] for better salient structure prediction.

The CAN aggregates multi-scale contextual information
without losing resolution, so it can preserve more fine details
of salient edges than general FCNs. Assume {L0, L1, L2,..,
L l} present each layer in the network. The dimensions of
input layer L0 and output layer L l are h x w x 3, the inter-
mediate layers Li (0< i < l) are h x w x d, where d denotes
the number of feature maps. The response of each layer is
given by:

L in = σ
(
9

(∑d

m=1

(
L i−1m ∗df K i

m,n

)
+ bin

))
(2)

where L in and L i−1m present the feature maps of i-th and
(i-1)-th layers, K i

m,n is a 3 × 3 convolution kernel, bin is the
bias, and ∗df is dilated convolution operator. σ and 9 are
leaky rectified linear unit (LReLU) and adaptive normaliza-
tion, respectively.

Given the paired training data (Bi,Ii) (i=1,2,. . . ,N ), the
network is trained by minimizing the reconstruction error of
the gradient of salient structure

Loss (∇Si) =
1
N

∑N

i

∥∥∇Si −∇S∗i ∥∥22 (3)

where Si is the salient output of Bi, S∗i is the target salient map
simulated by applying L0 smoothing filter on ground truth
image Ii., and ∇ is gradient operator.

2) BLUR KERNEL ESTIMATION
Given the salient structure ∇S, we can use the minimization
energy function to estimate blur kernel k

min
k
‖∇S ∗ k −∇B‖22 + γ ‖k‖

2
2, (4)

where γ is regularization parameter. Then the latent image I
can be estimated by

min
I
‖I ∗ k − B‖22 + λ1 ‖∇I‖0 + λ2 ‖∇I −∇S‖

2
2, (5)

where λ1, λ2 are regularization parameters. Based on [39], (5)
can be reformulated by using half-quadratic regulation and

FIGURE 3. Overview of the initial deblurring method.

TABLE 1. The CNN network for salient structure prediction.

introducing an auxiliary variable w to replace k

min
I ,w
‖I ∗ k − B‖22 + λ1 ‖w‖0

+ λ2 ‖∇L −∇S‖22 + λ3 ‖w−∇I‖
2
2 , (6)

where λ3 is a scalar weight. The solution of (6) can be solved
by minimizing I and w in turn. Once w is fixed, I can be
obtained in the frequency domain

I = F−1(
F (L) ¯F (k)+ λ3F (w) ¯F (∇)+ λ2Fs
F (k) ¯F (k)+ (λ2 + λ3) ¯F (∇)F(∇)

). (7)

where F(·) and F−1(·) denote the Discrete Fourier Transform
(DFT) and Inverse DFT (IDFT), Fs = ¯F (∂x)F (∂x)F (Sx)+
¯F
(
∂y
)
F
(
∂y
)
F
(
Sy
)
, ∂x , ∂y are the vertical and horizontal

derivative operators, and ¯(·) is complex conjugate opera-
tor. Similarly, when I is fixed, the optimized w can be
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obtained by

w =

{
∇L, |∇L|2 ≥ λ1

λ3
,

0, otherwise.
(8)

3) SHARP IMAGE RESTORATION
Once the blur kernel k is estimated, we can utilize a common
non-blind deblurring method to restore I, such as hyper-
Laplacian prior method [3]. Although using hyper-Laplacian
prior can recover a sharp latent image with main structure and
fewer artifacts, but it would lose fine details. Another method,
called isotropic total variation (TV) norm [4], can preserve
fine details, but may preserve noise and ringing effect at
the same time. To balance main structure and fine details,
we adopt both hyper-Laplacian prior and isotropic TV norm
to recover I . Firstly, the sharp image I1 is acquired by solving

min
I1
‖I1 ∗ k − B‖22 + ρ ‖∇I1‖

α , (9)

where α is a smooth parameter set from 0.5 to 0.8, and ρ is a
weighting parameter. The smaller α is, the smoother I1 will be
obtained. Secondly, the latent image I2 is obtained by TV-L2
minimization

min
I2
‖I2 ∗ k − B‖22+µ ‖I2‖TV ,

‖I2‖TV =
√
(∂xI2)2 + (∂yI2)2, (10)

where µ is a regularization parameter and ‖I‖TV is isotropic
TV norm. Finally, the Ĩ is obtained by averaging I1 and I2.

Ĩ = (I1 + I2)/2. (11)

B. STATG II: RESIDUAL IMAGE REFINEMENT
The resulted image Ĩ obtained by initial deblurring method
may contain fake edges or ringing artifacts, particularly when
the blurring was caused by spatially non-uniform factors. In
order to remove them, we propose a residual image refine-
ment process. The details are introduced as follows.

1) INPUT FOR REFINMENT
Based on Fig.2, after the temporal residual image R̃ = Ĩ − B
is obtained, the next step is to refine R̃ ro R. However, R̃ may
lack the high-frequency details necessary for refinement task.
Thus, we further include the high-frequency imageH into the
refinement process. The H is generated by taking the high-
frequency layer of the results of applying guided filter [43]
to Ĩ . Finally, we concatenate R̃ with H as the high-frequency
materials for the input of an encoder-decoder network for
refinement process.

2) DESIGN OF ENCODER-DECODER NETWORK
We adopt U-Net [44] to build our encoder-decoder net-
work. The U-Net’s structure includes down-sampling (con-
traction) and up-sampling (expansion) processes. To increase
the learning ability, we adopt modified ResBlock [25] as the
basic unit to enhance the depth of network. The network
architecture is shown in Fig.4.

FIGURE 4. The encoder-decoder network for residual image refinement.
(a) Network architecture. (b) The ResBlock.

FIGURE 5. Flowchart of the proposed multi-scale refinement procedure.
The red dotted frame presents the deblurring module.

C. MULTI-SCALE DEBLURRING PROCESS AND TRAINING
1) MULTI-SCALE DEBLURRING PROCESS
In order to restore the edge components of different scales,
we design a coarse-to-fine deblurring procedure that uses the
deblurring module multiple times. The concept is illustrated
in Fig.5, where m denotes the number of scales. According
to the figure, there are m blurred images of different scales
used as input, and m deblurring modules are operated. Each
module performs deblurring in a specified resolution. From
top to down, the resolution become twice successively, until
original resolution is reached. Therefore, the top module
performs deblurring in resolution of 1

2m−1
, while the bottom

one performs deblurring in original resolution. Through this
design, the image details of different scales can be recovered
progressively.

Take m = 3 for example, 1st module processes deblur-
ring on quarter resolution, where B 1

4
presents the original

blurred image with 1
4 size and Ĩ 14

is the corresponding initially
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deblurred image. After refinement, the deblurring output I 1
4

is then performed 2x upsampling to be the input of the second
module, referred to as Ĩ 1

2
. Similarly, the 2nd module operates

deblurring task on 1/2 resolution, and the resulting deblurred
image I 1

2
is up-converted for the input of 3rd module. It is

noted that the initial deblurring only needs to be performed
one time under this architecture.

2) TRAINING
We train the encoder-decoder network used in refinement
process in a coarse-to-fine manner with multi-scale loss. The
training is performed by using the prepared pair data of
different scales.

Take m = 3 for example. Let G, G 1
2
, and G 1

4
be the

ground truth images of different scaled blurred image B, B 1
2
,

and B 1
4
. For each training image, we run the multi-scale

refinement with the same parameters of encoder-decoder, and
obtain deblurred results I , I 1

2
, and I 1

4
,, and I . The we calculate

the multi-scale loss defined by the average of loss values
of (I , G), (I 1

2
,G 1

2
) and (I 1

4
,G 1

4
). To preserve the details of

edges, the edge-preserving loss function is adopted

Losstotal = Lossssim + LossE,g, (12)

where Lossssim is SSIM loss, and LossE,g is two-directional
gradient loss.

SSIM loss It adopts structural similarity to measure the
difference of resulted image and ground truth. Assume x and y
present the processed patch and the ground truth respectively.
SSIM for pixel p is defined as

SSIM (p) =
2µxµy + C1

µ2
x + µ

2
y + C1

·
2σxy + C2

σ 2
x + σ

2
y + C2

, (13)

where µx and µy are the mean of x and y, σx and σy are
the standard deviations, σxy is the covariance, C1 and C2 are
constants. The SSIM loss is then defined as

LossSSIM (P) =
1
N

∑
pεP

1− SSIM(p), (14)

where P is the input patch, p is the pixel index, and N is the
number of pixels in P.
Two-directional gradient loss We also consider the loss

of the gradients in horizontal and vertical directions

LossE,g =
∑

w,h

∥∥(Hx(GT )w,h − (Hx (I ))w,h∥∥2
+

∥∥∥(Hy(GT )w,h − (Hy(I ))w,h

∥∥∥
2

(15)

where Hx(·) and Hy(·) are gradient operators in vertical and
horizontal directions, w and h are spatial coordinates.
Finally, we summarize the proposed multi-scale deblurring

method in Algorithm 1.

IV. EXPERIMENTAL RESULTS
We conduct a comprehensive and comparative study as well
as the performance evaluation for the proposedmethod. Three
types of deblurring datasets are used in the experiments:

Algorithm 1 Multi-scale Residual Image Learning-Based
Deblurring
Input: Blur image B, Scale parameter m.
Find blur images B 1

2
, B 1

4
,. . . ,B 1

2m−1

Find Ĩ 1
2m−1

using initial deblurring method in Sec.III.A.

for j = m-1→ 0 do
Calculate R̃ 1

2j
= B 1

2j
− Ĩ 1

2j
.

Calculate H 1
2j
by using guide filter [43].

Refine R̃ 1
2j
to R 1

2j
by using the encoder-decoder in Fig.4

Calculate I 1
2j
= R 1

2j
+ B 1

2j
.

if j>0
Up-sample I 1

2j
, then Ĩ 1

2(j−1)
← I 1

2j
.

else
Set I = I 1

2j
.

end if
end for

TABLE 2. Quantitative comparison of four different settings performed
on GoPro dataset.

GoPro dataset [25], Köhler et al. Dataset [45], and Lai et al.
Dataset [46]. Several state-of-art methods, Xu et al. [2],
Sun et al. [22], Whyte et al. [13], Gong et al. [38],
Nah et al. [25], Ramakrishnan et al. [26], Kupyn et al. [47],
and Miao et al. [48] are chosen for comparison. Three quan-
titative indices, PSNR, SSIM, and MS-SSIM are used for
quantitative analysis. Our experiments are implemented on a
PC with hardware setting: Intel i7-7700k CPU and NVIDIA
1080Ti GPU. The deblurring model is constructed and imple-
mented on Tensorflow.

Training Data Many related work utilize synthetic train-
ing data for training, that is, the blurred images are produced
by using sharp image with self-defined blur kernels. Whether
the blur kernel is defined as uniform or non-uniform, there is
still a gap between the synthetic blur images and real-world
ones. In this paper, we adopt GOPROdataset [25] for training.
Those training images were acquired by GoPro Hero4 oper-
ated in high speed 240fps mode at resolution 1280×720. For
each sample, the blurred image is generated by the average of
continuous frames in a specific video segment, and the center
image of the segment is selected as sharp image (i.e., ground
truth). The images produced in this way are closer to the
real situation. GOPRO dataset provides 3214 pairs images,
where 2103 pairs are used for training and 1111 pairs are used
for test.
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FIGURE 6. The deblurring results of using different settings.

The training of salient structure prediction network
(Sec.III.A-1) is performed by end-to-end with the blur images
in GOPRO dataset as the input and the corresponding
L0-smoothing versions as the output (ground truth).

Parameter setting For the initial deblurring, the parame-
ters λ1, λ2 and γ are set to be 0.002, 0.002, and 1. For the
residual image refinement, we adopt ADAM optimizer with
the parameter β1 = 0.9, β2 = 0.999, and ε = 10−8. The
size of guided filter is set to be 15× 15. For the training rate,
we use polynomial decay rate to increase the stability of the
model training, where the power is set to be 3, and training
rate is set from 10−4 decreasing to 0. The size of guided filter
is set to be 15 × 15. For training rate, we use polynomial
decay to increase the stability of the model training, in which
the power is set to be 3, and training rate is set from 10−4

decreasing to 0. The number of epochs is set at 4000. In each
epoch, we set batch size= 15, and randomly select 256×256
residual and high-frequency patches as the inputs.

A. ABLATION STUDY
In order to determine the parameter m of the proposed
method, we refer the [49], [50] to organize an extensive
ablation study that compares the deblurring performance of
the following four settings:

• Initial deblurring only
• Algorithm I with m = 1
• Algorithm I with m = 2
• Algorithm I with m = 3

TABLE 3. The quantitative performance of state-of-art methods and the
proposed method in GoPro dataset experiment. (∗ denote the values
declared in the corresponding paper).

TABLE 4. The quantitative performance of state-of-arts methods and the
proposed method in Köhler dataset experiment. (∗ denote the values
declared in the corresponding paper).

Weconduct a quantitative comparison performed onGoPro
dataset. The model of each setting is trained and tested indi-
vidually. The testing results of PSNR, SSIM, and MS-SSIM
are listed in Table 2. Based on the table, three indices increase
as m increase, and m = 3 setting produces the best per-
formance. To illustrate the improvement provided by multi-
scale technique in visual assessment, Fig. 6 demonstrates the
deblurred results of four methods on a test image. In Fig. 6(b),
the resulted image of initial deblurring contains ghosts in the
surrounding area because the input blurred image has a non-
uniform blur property. According to Fig. 6(c-e), those ghosts
were gradually removed by the settings of m = 1, m = 2,
and m = 3. It verifies that the multi-scale refinement process
can remove the ghost phenomena and gradually restore the
texture details.

In the following subsections, we choose m = 3 as the
representative for the comparison with state-of-art methods.

B. GOPRO DATASET
Table 3 tabulates the quantitative results of all the methods
implemented on GOPRO dataset. It can be seen that our
method almost outperforms all the state-of-art methods in
PSNR, SSIM, andMS-SSIM. For the qualitative comparison,
we choose five state-of-arts methods [13], [22], [25], [26],
and [48] for comparison. Fig. 7 demonstrates the deblurring
results of one test example. The method [13] is designed
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FIGURE 7. Test sample 1 of GoPro dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method. (h) Ground truth image.

FIGURE 8. Test sample 2 of GoPro dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method. (h) Ground truth image.

for the scenario of simple camera shake. It can be seen
in Fig. 7(b) that it produced small amount of ringing artifacts,
and could not recover sharp content because it does not
consider the relative motion and depth of different objects.
Fig. 7(c) and Fig. 7(d) show the results of CNN-based
end-to-end approaches [25] and [26]. We can find that
method [25] which adopts multi-scale strategy, and method
[26] which adopts GAN framework, significantly improved
the image degradation caused by ringing effect and noise.

However, it is obvious that the end-to-end architecture
seems to fail for the recovery of fine details. For example,
the stitch in the bricks and the text on the license plate
still lost some details. The method [44] is designed by
conditional GANs. Their deblurring performance is shown
in Fig. 7(e) and Fig. 7(f), respectively. Compared to [25]
and [26], the issues of ringing effect and missing details

are partially resolved. However, they could not restore the
sharpness of object boundaries. Finally, the results of our
proposed method are shown in Fig. 7(g). It not only pro-
vided almost zero ringing artifacts while retaining satisfac-
tory sharp details. Fig. 8 shows another test image. We can
simply rank the deblurring results by: Ours > Miao [48] >
Ramakrishnan [26] > Nah [25] > Sun [22] >Whyte [13].

C. KÖHLER DATASET
Köhler dataset [45] consists of 4 sharp images and 12 non-
uniform blurry ones for each of them. So this dataset provides
48 pairs images. Table 4 tabulates the quantitative results of
all the methods in PSNR, SSIM, and MS-SSIM. Similarly,
our methods significantly outperformed all the compared
methods. For visual quality assessment, Fig. 9 demonstrates
the results of one selected examples. Compared to GOPRO
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FIGURE 9. A test sample of Köhler of dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method.
(h) Ground truth image.

FIGURE 10. Test sample 1 of Lai dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method. (h) Ground truth
image.

dataset, the image content of Köhler dataset are more static.
The overall deblurring performance of all selected methods
is significantly better than that being applied on GOPRO
dataset. However, we can still see the discrepancy between
the different methods. In Fig. 9(b-e), it can be found that
the results obtained by all methods contain certain degrees
of sharpness and ghosting. For instance, the result of [48]
provides sharp image while suffering from the most serious
ringing effect, while the result of [26] has less ringing effect
but loses sharpness. As shown in Fig. 9(g), our method not
only eliminates the ringing artifacts but retains reasonable
level of sharpness. It again confirms the superior restoration
capability of our method.

D. LAI DATASET
Lai dataset [46] is generated by convolving non-uniform
blur kernels with several common degradations. It consists
of 25 shape images and 100 non-uniformly blurred ones.

Since it was reported that the blurred images and the
ground truth images are not aligned [25], we ignore the quan-
titative analysis in this section and only the visual qualitative
comparison is presented. The main feature of Lai dataset
is its diversity of subject. It includes many classes of static
images, such as portrait, text, landscape, and building images.
Therefore, using this dataset can reflect the pros and cons
between our method and state-of-arts in different aspects.
Figs. 10-12 shows the deblurring results of all the methods
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FIGURE 11. Test sample 2 of Lai dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method. (h) Ground truth image.

FIGURE 12. Test sample 3 of Lai dataset. (a) Input blur image. (b-f) State-of-art methods. (g) Our method. (h) Ground truth
image.

implemented on three selected test images including land-
scape, portrait, and text, respectively.

Fig. 10 shows the superior deblurring ability of ourmethod.
We can simply rank the result by: Ours > Nah [25] >
Ramakrishnan [26] > Miao [48] > Whyte [13] > Sun [22].
In addition, Fig. 11 show a qualitative comparison conducted
on a portrait photo. It can be seen that the restored images
of [13] contain significant ringing artifacts around the fore-
ground region (i.e., the human face). This is probably due to
the inaccurate kernel estimation caused by the interference
of background. On the other hand, methods [25], [26], and
[48] did not suffer this issue. Although end-to-end methods
have the advantages of suppressing the artifacts and noise,
the clarity of the restored images is still limited, particularly

for the restoration of the edges of individual objects. Method
[48] provided a non-ghost image, but it still loses the overall
sharpness. In contrast to the state-of-arts, our method focuses
on the restoration of high-frequency components. According
to Fig. 11(g), our method successfully recovered the details
of foreground in acceptable sharpness level while suppressing
artifacts.

Finally, Fig. 12 shows a qualitative comparison of all
the methods on a non-uniformly blurry text image. Obvi-
ously, our method produced the best results. All the text
lines recovered by our method are readable, while the
central lines recovered by most state-of-arts methods are
not distinguishable. According to Fig. 12(a), the blurry degree
of the texts in left side is higher than that in the right side.
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It leads to some interesting results, for instance, the results
of all state-of-arts have a characteristic that right-side texts
were better recovered than left-side texts. Although Fig. 12(f)
seems to provide sharp texts in the top half of the image, the
texts below the image are not clear. Surprisingly, our method
achieves consistency in the degree of deblurring on all the
texts in different spatial locations. It again confirms the ability
of non-uniform deblurring of our method.

V. CONCLUSION
In this paper, a motion deblurring method based on
high-frequency residual image learning is presented. We first
propose a two-stage deblurring module. The first stage
performs initial blurring which roughly recovers the low-
frequency components of the latent image, while the sec-
ond stage eliminates the ringing artifacts and retains shape
details under a refinement framework. In order to recover
the details of different scales, as well as enhance the capa-
bility of removing non-uniform blurring contents, we further
design a coarse-to-fine framework in terms of the proposed
deblurring module. It can perform the deblurring module in
a multi-scale manner so that the details can be recovered
gradually. The experiments conducted on three benchmark
datasets demonstrate that the proposed method outperforms
the state-of-arts in both qualitative and quantitative ways.
The future work would be designing an end-to-end approach
that combines initial deblurring and refinement process into
a single framework, reducing the model complexity to save
the computing time, and extending the design concept of our
method to other topics of image restoration.
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