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ABSTRACT Given two object sets P and Q, a k-closest pairs (k-CP) query finds k closest object pairs from
P×Q. This operation is common in many real-life applications such as GIS, data mining and recommender
systems. However, the k-CP problem has not been well studied in Dynamic Cyber-Physical-Social Systems
(D-CPSS), where temporal information and multiple attributes are associated with each edge. In D-CPSS,
people would like to specify multiple constraints on these attributes within a time interval to illustrate
their requirements. In this paper, we study the temporal multiple constraints k closest pairs (TMC-k-CP)
in D-CPSS, which is NP-Complete. We propose a divide-and-conquer cloud-based algorithm (DC) to find
TMC-k-CP efficiently and effectively. To the best of our knowledge, DC is the first algorithm supporting the
TMC-k-CP query in D-CPSS. The experimental results on eight real D-CPSS datasets demonstrate that our
algorithm outperforms the state-of-the-art methods in terms of both efficiency and effectiveness.

INDEX TERMS CPSS, cloud-based, divide and conquer, k-closest pairs.

I. INTRODUCTION
k-Closest Pairs Query (k-CPQ) has attracted the attention of
billions of people and been widely used in many applications,
such as urban planning [19], [29], resource management and
recommender systems [2], [6], [26]–[28]. Traditionally, given
two spatial object sets P and Q, a k-CPQ returns k clos-
est object pairs from P×Q according to a certain similarity
metric, such as the minimum distance between two points
of interest on a road network. The following Example 1
illustrates a typical application of k-CPQ.
Example 1: As shown in Fig.1, G1 is a road network.

Each element in the set P = {a, c, d, k} shown as a blue
vertex represents a tourist attraction, each element in the set
Q = {i, j, h} shown as a grey vertex represents a hotel, and
white vertices represent other buildings. The weight on each
edge represents the length of the corresponding road seg-
ment. Then, the 2-CPQ should return two vertex pairs (vi, vj),
vi ∈ P, vj ∈ Q with two minimum distances in all possible
pairs. Therefore, the answers are (c, j) with distance 5 and (d,
h) with distance 7.

However, some graphs have attributes on the vertices
and edges, such as the Contextual Social Graph (CSG) in
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FIGURE 1. Road networks.

D-CPSS [11]–[14], [24], in which social role information
in a specific domain (e.g., an expert in the field of knowl-
edge graph) is associated on a vertex, and each edge has
social relationships (e.g., Lucy teaches Tom) and social trust
information (e.g., Andy trust Bill in cooking). In a road
network, each vertex has position information, and there
may be many attributes associated with the edges, includ-
ing travel time, travel cost and travel distance. In various
applications of road networks, e.g., trip arrangement [1] and
urban planning [17]–[19], [32], [36], [37], people are glad to
consider plenty of contexts related to the road segment, which
has a major impact on people’s arrangement and decision
making. For example, on a trip, a tour group wants to book

70664 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8980-4950


J. Lu et al.: Cloud-Based k-CP Discovery in D-CPSS

FIGURE 2. Bus routes.

tickets for two attractions and order hotels for two nights
in advance. The daily travel budget is 10 dollars, and the
estimated travel time is 45 minutes. Then, this problem can
boil down to finding two closest pairs under the constraints
of time and money.
Example 2: As shown in Fig.1, G2 is also a road network.

The difference between G1 and G2 is that there are two other
attributes on each road segment besides the length, namely,
travel time and travel cost. Then the 2-CPQ returns two pairs
with two minimum distances among all possible pairs which
satisfy the two constraints — travel cost less than $10 and
travel time less than 45mins. One is (c, j) with distance 5,
travel time 42mins, travel cost $9, and the other one is (d, i)
with distance 9, travel time 38mins, travel cost $8.
In addition to multiple attributes on edges, many real appli-

cations are modeled as D-CPSS, where a vertex is associ-
ated with another vertex at particular time instances [31].
For example, buses between stations depart according to the
schedules [25], and connections between two people via tele-
phone occur at certain moments [21]. Besides, the attributes
associated with edges change over time. Example 3 below
discusses the scenario of a D-CPSS structure with multiple
attributes on edges.
Example 3: Fig.2 is a temporal road network with two

attributes on each edge. The associated table shows the depar-
ture time, the corresponding travel time, the cost of the ticket,
and the distance between stations. We use (u, v, t, r, c, d)
to denote a bus from u to v with departure time t, travel
time r, and the cost is c, the distance between u and v is d.
A tour group is interested in looking for two closest pairs
from P to Q, which satisfy the below constraints: 1) the
departure/arrival time is within [8:30 AM, 10:30 AM]; 2) the
travel time needed does not exceed 45mins; 3) the total budget
is no more than $10. Based on the data shown in the table,
we can get two result pairs.

• One pair is (c, j) with distance 5km. The trip group
members can take bus b2 at site c at 9:00 AM, and arrive
at f at 9:24 AM. Then take bus b2 at 9:45 AM at f, and
reach j at 10:03 AM. Thus the total travel time is 42mins
and the total cost is $9.

• The other pair is (d, i) with distance 9km. The trip group
members can take bus b1 at site d at 9:00 AM, and arrive
at e at 9:20 AM. Then take bus b3 at 9:30 AM at e, and

reach i at 9:55 AM. Thus the total travel time is 45mins
and the total cost is $9.

The example illustrates that Temporal Multi-Constraint
k-CPQ (TMC-k-CPQ) is an important issue in D-CPSS,
which incorporates temporal information into traditional
static graphs, and considers multiple constraints on networks.
When the number of the constraints is greater than one,
TMC-k-CPQ becomes an NP-Complete problem because it
subsumes the classical NP-Complete multi-constrained path
selection problem [7], [9]. Thus, the challenge of our work
is to propose techniques to effectively and efficiently support
TMC-k-CPQ. Our contributions are summarized as follows.
• We propose a temporal objective function consisting of
multiple constraints and value-changing attributes that
indicates whether a temporal path is feasible to satisfy
multiple constraints within a given time interval;

• We propose an approximation algorithm, called Two-
Pass, which bidirectionally searches the temporal graph
to find a temporal shortest path that satisfies the corre-
sponding constraints.

• We propose a grid decomposition technique based on
the divide-and-conquer method. It uses the k th short-
est distance in the currently obtained vertex pairs as
the side length to construct a grid. The grid can fil-
ter the unpromising vertices, which speeds up the
TMC-k-CPQ.

• The experiences conducted on 8 real graphs illustrate
that our algorithm can save 56.63% execution time, and
the average length of multi-constraints k closest pairs is
61.35% shorter compared with the results found by the
state-of-art k closest pairs finding algorithm.

The rest of the paper is organized as follows. In Section II,
we introduce the preliminaries and the definition of
TMC-k-CPQ. The temporal objective function and the Two-
Pass algorithm for Temporal Shortest Path with Multi-
Constraints (TSP-MC) query are presented in Section III,
followed by the grid decomposition technique based on
divide-and-conquer for TMC-k-CPQ. Section IV reports the
experimental results and Section V discusses the related
works. Section VI concludes this paper.

II. PRELIMINARIES
A. MODELLING
1) D-CPSS
A Dynamic Cyber-Physical-Social-System (D-CPSS) can be
modelled as a labelled directed temporal graph GA =

(V ,E,L,F), where
• V is a set of vertices, and each vertex v has spatial
coordinate information;

• E is a set of edges, e = (u, v, t, r), where e ∈ E denotes
an edge from vertex u to vertex v with departure time
point t , running time r ;

• L is a function defined on V. For each vertex v in V ,
L(v) is a label for v. For example, the vertex label may
represent a tourist attraction in road networks;
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• F = {f 1, f 2, . . . , f j} (1≤ j≤W) is a function set defined
on E. For each link (u, v, t, r) in E, f j(u, v, t, r) is an
attribute for (u, v, t, r), like travel cost in a road network.

2) TEMPORAL PATH WITH MULTIPLE CONSTRAINTS
Given an ATG GA, a source vs and a destination vd in GA,W
constraints on attributes as λ1, λ2, . . . , λW , and a time inter-
val [tα, tβ ], a feasible temporal path with multiple constraints
(TPMC) in the given time interval is denoted as pMvs,vd (t) =
(e1, e2, . . . , en), which is a time-ordered sequence of edges,
and satisfies the given W constraints, where:

• ei = (vi, vi+1, ti, ri) ∈ E is a temporal edge with the
departure time ti, running time ri for 1 ≤ i ≤ n, and the
departure time of vi and arrival time of vi+1 are both in
the time interval [tα, tβ ];

• 5j(pMvs,vd (t)) =
n∑
i=1

f j(ei), 5j(pMv1,vn+1 (t)) ≤ λj;

where 5j(pMvs,vd (t)) denotes the j
th aggregated attribute value

of the path pMvs,vd (t), 1 ≤ j ≤ W .
Then, in a TPMC finding problem, multiple constraints

on attributes can be given. For example, Total Travel Time
2 hours, Total Travel Cost $500, and Total Travel Distance
100km for a temporal path finding in a travel route planning.

3) TEMPORAL MULTIPLE CONSTRAINT K CLOSEST PAIRS
(TMC-k-CP)
Given an ATG GA, W constraints on attributes (λ1, λ2, . . . ,
λW ), point sets P and Q, and a time interval [tα, tβ ], then
TMC-k-CPQ returns a set R = {〈p, q〉} of k temporal short-
est paths with multiple constraints that satisfy the following
conditions:

• 〈p, q〉 ∈ P× Q;
• ∀〈p, q〉, d(pMp,q) ≤ d(pMr,s), ∀〈r, s〉 ∈ (P× Q)\R, where
d(p) is the length of TPMC p;

• |R| = k;

B. TMC-k-CPQ PROBLEM
The main work of our study is to find the temporal
multi-constraint k closest pairs, we define the TMC-k-CPQ
problem in an ATG as follows.

Input: An ATG GA, W constraints on attributes
(λ1, λ2, . . . , λW ), point sets P and Q, and a time interval
[tα, tβ ].

Output: a set R= {〈p, q〉} of k pairs, where 〈p, q〉 ∈ P×Q,
and 〈p, q〉 ∈ R have the k th shortest distance, and the temporal
path from p to q satisfies the W constraints within the time
interval [tα, tβ ].

III. DIVIDE AND CONQUER CLOUD-BASED ALGORITHM
A. TEMPORAL OBJECTIVE FUNCTION
In this section, we propose a temporal objective function to
investigate whether the aggregated attribute value of a tempo-
ral path satisfies the corresponding constraints. The temporal

objective function of path pMvs,vd (t) is defined as below Eq.(1):

δ(pMvs,vd (t)) = max{
51(pMvs,vd (t))

λ1
,
52(pMvs,vd (t))

λ2
,

. . . ,
5W (pMvs,vd (t))

λW
} (1)

where 5w(pMvs,vd (t)) =
∑

e(vi,vj)∈pMvs,vd (t)
f w(e(vi, vj)), 1 ≤

w ≤ W , f 1(e(vi, vj)), . . . , f W (e(vi, vj)) are the values of the
attributes on edge e(vi, vj). If the temporal path is feasible,
then δ(pMvs,vd (t)) ≤ 1, otherwise, δ(pMvs,vd (t)) > 1.

B. TWO-PASS ALGORITHM FOR TSP-MC
In this section, we propose a Two-Pass algorithm that adopts
two linear scans to conduct a bidirectional search of the
D-CPSS from vd to vs to obtain the result of TSP-MC. In the
algorithm, the first backward process calculates (1) the latest
departure time (expressed as tL) of all possible backward
temporal paths (BTP) from vi to vd , expressed as pBackvi,vd (t).
The value is used to investigate whether the arrival time
(expressed as ta) of the next forward temporal path (FTP)
from vs to vi (expressed as pForvs,vi (t)) is earlier than the latest
departure time of the backward path from vi to vd . If ta ≤ tL ,
it means there may be a temporal path from vs to vd . (2) The
minimum temporal objective function value of the BTP from
each vertex vi to vd at any time points (expressed as δmin,
and the corresponding departure time is tmin). It is used to
investigate whether BTP can satisfy corresponding multiple
constraints. In this process, the aggregate attribute value of
BTP is stored in vi and combined with the temporal path
pForvs,vi (t) to study the feasibility of the temporal combination
path. If pBackvs,vd (t) ≤ 1, it means that there is a feasible temporal
path from vs to vd in the ATG. The next forward pass process
from vs to vd is then performed to find the shortest temporal
path that satisfies multiple constraints.
The Backward Pass: the above temporal objective function

shows that the lower the δ value of the current search path,
the greater the probability that the path is feasible. So the
backward pass algorithm can be constructed based on the
Dijkstra algorithm. And in a D-CPSS, if the BTP from vi to
vd has a late departure time, then the FTP from vs to vi is
more likely to form a path from vs to vd combined with it.
Thus if there are two paths pBackvi,vd (t1) and p

Back
vi,vd (t2) from vi to

vd with departure time t1 and t2 respectively, δ(pBackvi,vd (t1)) ≤
δ(pBackvi,vd (t2)) and t1 ≥ t2, then p

Back
vi,vd (t2) can be pruned without

affecting the computation of δ, and we call path pBackvi,vd (t2)
dominated path.

The steps of the backward pass procedure of TSP-MC are
discussed as follows, and the corresponding pseudo-code is
shown in Algorithm 1.

Step 1: Scan the edges in the ATG and check whether the
incoming edge is within the given time interval [tα, tβ ]. If so,
go to Step 2, otherwise terminate the algorithm (Lines 1-3,
18-21 in Algorithm 1).
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Algorithm 1 The Backward Pass
Input: GA, vs, vd , W, λ1, λ2, . . . , λW , [tα, tβ ].
Output: δmin, tmin, tL .

1 // edges in GA are sorted in descending order of
departure time. Elements in Lv are in the form of
(dv, δ(pMv,vd ),5

1(pMv,vd ), . . . ,5
W (pMv,vd )) where dv,

δ(pMv,vd ), 5
j(pMv,vd ) is the departure time, the value of

δ, the jth aggregated attributed value of the temporal
path from v to vd ;

2 for each e = (vi, vi+1, ti, ri) do
3 if tα ≤ ti and ti + ri ≤ tβ then
4 if vi+1 = vd then
5 update Lvd ;
6 end
7 select the element in Lvi+1 with δ(p

M
vi+1,vd ) is

minimum and dvi+1 ≥ ti + ri;
8 5j(pMvi,vd ) = 5

j(pMvi+1,vd )+ f
j(e), for all

1 ≤ j ≤ W ; δ(pMvi,vd ) = max{
5j(pMvi,vd )

λj
},

1 ≤ j ≤ W ;
9 dvi = ti;

10 prune elements in Lv;
11 if dvi > tL(vi) then
12 update tL(vi);
13 end
14 if δ(pMvi,vd ) < δmin then
15 update δmin(vi) and tmin(vi);
16 end
17 end
18 else if ti < tα then
19 break;
20 end
21 end
22 return δmin, tmin and tL ;

Step 2: Update the departure time, δ value, and the aggre-
gated attribute value of the temporal path from vi to vd by
using the related information of the path from vi+1 to vd .
Then, prune the dominated paths (Lines 4-10 in Algorithm 1).
Step 3:Update the latest departure time, theminimum tem-

poral objective function and the corresponding departure time
of temporal path from vi to vd (Lines 11-17 in Algorithm 1).
Step 4: Return δmin, tmin and tL (Lines 22 in Algorithm 1).
The Forward Pass: the backward pass has calculated the

latest departure time, and the minimum temporal objective
function value and the corresponding departure time of all
possible BTP from vi to vd . Then, the next forward pass is
performed to find the TSP-MC. In the process, we prune
the unpromising paths whose δ values are more than 1 with
the help of the information calculated by backward pass and
combine the current FTP with the BTP to find whether there
exists a feasible temporal path from vs to vd . If the δ value of
the combination path is greater than 1, then we can skip the
current edge. And we select the shortest temporal path from

vs to vd at last. Besides, if there are two paths pForvs,vi (t1) and
pForvs,vi (t2) from vs to vi with arrival time a1 and a2 respectively,
δ(pForvs,vi (t1)) ≤ δ(p

For
vs,vi (t2)) and a1 ≤ a2, then pForvs,vi (t2) can be

pruned without affecting the calculation of TSP-MC, and we
call path pForvs,vi (t2) dominated path.

Algorithm 2 The Forward Pass
Input: GA, vs, vd , W, λ1, λ2, . . . , λW , [tα, tβ ].
Output: lenmin.

1 // edges in GA are sorted in ascending order of
departure time. Elements in Fv are in the form of
(av, δ(pMvs,v),5

1(pMvs,v), . . . ,5
W (pMvs,v), len(p

M
vs,v))

where av, δ(pMvs,v), 5
j(pMvs,v), len(p

M
vs,v) is the arrival

time, the value of δ, the jth aggregated attributed
value and the length of the temporal path from vs to
v;

2 for each e = (vi, vi+1, ti, ri) do
3 if tα ≤ ti and ti + ri ≤ tβ then
4 if δmin(pMvi+1,vd ) > 1 then
5 continue;
6 end
7 if tL(pMvi+1,vd ) < ti + ri then
8 continue;
9 end

10 if vi+1 = vs then
11 update Fvs ;
12 end
13 combine path pMvs,vi with p

M
vi,vd as path p

M
com;

14 if δ(pMcom) > 1 then
15 continue;
16 end
17 select the element in Fvi with δ(p

M
vs,vi ) is

minimum and avi ≤ ti;
18 update 5j(pMvs,vi+1 ), for all 1 ≤ j ≤ W ;
19 update δ(pMvs,vi+1 ), and avi+1 , and len(pvs,vi+1 );
20 prune elements in Fvi+1 ;
21 end
22 else
23 break;
24 end
25 end
26 for each element in Fvd do
27 choose the shortest temporal path from vs to vd

with lenmin;
28 end
29 return lenmin;

The steps of the forward pass of TSP-MC is shown as
follows, and the pseudo-code is shown in Algorithm 2.

Step 1: Scan the edges in the ATG and check whether the
incoming edge is within the given time interval [tα, tβ ]. If so,
go to Step 2, otherwise terminate the algorithm (Lines 1-3,
22-25 in Algorithm 2).
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FIGURE 3. Grid.

Step 2: If the δ value of the BTP from vi+1 to vd is greater
than 1, or the arrival time of current FTP is later than the latest
departure time of the BTP from vi+1 to vd , skip the current
edge (Lines 4-9 in Algorithm 2).
Step 3: Combine FTP and BTP, if the combination path

satisfies multiple constraints, then update the minimum tem-
poral objective function and the corresponding arrival time,
the aggregated attribute value, and the length of temporal
path from vs to vi+1. If the combination path cannot satisfy
multiple constraints, skip the current edge. (Lines 10-21 in
Algorithm 2).

Step 4: Find the shortest temporal path from vs to vd (Lines
26-28 in Algorithm 2).

Step 5: Return lenmin (Lines 29 in Algorithm 2).
Time Complexity: In Algorithm 1 (2), the initialization

of variables takes O(n) time, where n is the number of ver-
tices. And the algorithm takes O(m log dmax) time to process
each edge, where searching and updating elements in priority
queues takes O(log dmax) time, and m is the number of tem-
poral edges, and dmax = max{din, dout }, where din (dout ) is
the maximum in-degree (out-degree) of vertices in the ATG.
Thus the time complexity of the forward pass (backward pass)
procedure is O(n+m log dmax). Then the time complexity of
the Two-Pass algorithm is O(n+ m log dmax).

C. DC ALGORITHM
In this section, we introduce the divide-and-conquer cloud-
based algorithm for TMC-k-CPQ. First of all, the set of ver-
tices V is evenly divided by a vertical line l in the coordinate
space according to the x value of each vertex, so that there are
n/2 vertices on each side. Let P1 (or P2) be the set of vertices
on the left (or right) side of l. Afterwards, we recursively find
the temporal multiple constraints k closest pairs in P1 and
P2, respectively. Finally, we need to merge the two halves to
find the global temporal multiple constraints k closest pairs.
The pairs (p1, p2) should satisfy p1 ∈ P1 and p2 ∈ P2,
namely, p1 and p2 are from different sides. By the way, if a
cell covers at least one point, it is called a non-empty cell. Let
c1 and c2 be two non-empty cells, if their minimum distance
is less than r , then c1 is an r-neighbor of c2, and vice versa.
In Figure 3(a), the minimum distance between c1 and c2 is

denoted as mindist . If mindist ≤ r , then c1 is an r-neighbor
of c2, and vice versa.

We use recursion to implement the divide-and-conquer
cloud-based algorithm (see Algorithm 3). The core of the
algorithm is the recursive algorithm (see Algorithm 4).

Algorithm 3 Answering TMC-k-CPQ
Input: GA, W, λ1, λ2, . . . , λW , P, Q, [tα, tβ ].
Output: O.

1 // the spatial information of vertex v in the coordinate is
(x, y), then vertices are sorted in ascending order of x. A
is an sorted array (e.g., A[i].x ≤ A[j].x, for i < j) to store
vertices. O is a priority queue, which stores the
TMC-k-CP results;

2 L = 0;
3 R = A.length;
4 O = Recursive(L, R);
5 return O;

Step 1: For all vertices in the space, call the recursive algo-
rithm to calculate the k closest neighbor pairs (Lines 1-4 in
Algorithm 3).

Step 2: If there is only one vertex left, return null. If there
are two vertices left, one vertex in P and the other in Q,
denoted as u ∈ P and v ∈ Q, call Algorithm 1 and Algorithm 2
to calculate TSP-MC from u to v, then return the current result
(Lines 2-16 in Algorithm 4).
Step 3: Construct a line perpendicular to the x-axis so

that the number of target vertices on both sides of l is
the same (see Figure 3(b), blue vertices and grey vertices
are the target vertices, the number of target vertices is
the same on both sides of the line l). Then recursively
call Algorithm 4 to find the TMC-k-CPQ result on the
left/right of l, and update the TMC-k-CPQ result (Lines 17-21
in Algorithm 4).

Step 4: Build a grid in the data space, where each cell is
an axis-parallel square with side length r/

√
2, r is the k th

shortest distance of the TMC-k-CPQ result, and l is a line
in the grid (Lines 22-25 in Algorithm 4).
Step 5: For each cell c1 on the left of l and each non-empty

r-neighbor cell c2 on the right of l, calculate the TSP-MC
from p1 to p2 where p1 ∈ c1, p1 ∈ P, p2 ∈ c2, p2 ∈ Q and
the TSP-MC from p2 to p1 where p2 ∈ c2, p2 ∈ P, p1 ∈ c1,
p1 ∈ Q (Lines 26-32 in Algorithm 4).
Step 6: Return the TMC-k-CPQ result (Lines 33 in

Algorithm 4, Lines 5 in Algorithm 3).
Time Complexity: The time complexity of Algorithm 3

is O(n2 + nm log n log dmax). Assuming that the total time
complexity is T (n), then in detail, (1) the time complexity of
line 2-16 in Algorithm 4 isO(n+m log dmax) due to the call of
Two-Pass Algorithm; (2) the data set is divided into two equal
parts in line 17-20 inAlgorithm 4, which results in 2T ( n2 ) time
complexity; (3) the time complexity of the merge operation in
line 26-32 in Algorithm 4 is O(n(n+m log dmax)). Therefore,
the total time complexity is O(n2 + nm log n log dmax).
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Algorithm 4 Recursive
Input: L, R.
Output: O.

1 // defaultlen is the default length of the grid diagonal,
usually set as +∞;

2 if L = R then
3 return null;
4 end
5 if R−L = 1 then
6 if A[L] ∈ P and A[R] ∈ Q then
7 call Algorithm 1 and Algorithm 2 to calculate

the TSP-MC with length len1 from vertex
A[L] to vertex A[R]

8 update O1;
9 return O1;

10 end
11 if A[L] ∈ Q and A[R] ∈ P then
12 call Algorithm 1 and Algorithm 2 to calculate

the TSP-MC with length len2 from vertex
A[R] to vertex A[L];

13 update O1;
14 return O1;
15 end
16 end
17 mid = L + (R - L) / 2;
18 construct a vertical line l: x = mid ;
19 LPair = Recursive(L, mid);
20 RPair = Recursive(mid+1, R);
21 update O;
22 if O.size() ≥ k then
23 r = min{O.peek().len, defaultlen};
24 end
25 impose a grid, where each cell is an axis-parallel

square with side length r/
√
2 and l is a line in the

grid;
26 for each cell c1 on the left of l do
27 for each r-neighbor cell c2 on the right of l do
28 calculate the TSP-MC of each pair of

vertices < p1, p2 >∈ c1(P)× c2(Q);
29 calculate the TSP-MC of each pair of

vertices < p2, p1 >∈ c2(P)× c1(Q);
30 update O;
31 end
32 end
33 return O;

IV. EXPERIMENT
We conduct experiments on 8 real-world D-CPSS datasets
to evaluate the effectiveness and efficiency of the proposed
divide-and-conquer cloud-based algorithm in answering
TMC-k-CPQ. We first list the details of the experiment set-
ting and implementation. Then, we analyze the experimental
results.

TABLE 1. Datasets.

A. EXPERIMENT SETTING AND IMPLEMENTATION
• Datasets: We collect an airport dataset1 that contains
12,000 airports and 67,000 routes. Then we collect
7 D-CPSS datasets from konect.uni-koblenz.de, includ-
ing the email based temporal graphs (e.g., Enron),
the co-authorship based temporal graphs (e.g., Arxiv)
and the internet based temporal graphs (e.g., Topology).
These temporal graphs have been widely used in the lit-
erature to study the temporal path discovery in temporal
graphs [31]. The details of these datasets are shown in
Table 1, where we can see the number of vertices (|V |),
the temporal edges (|E|), the average degree (davg),
the maximum degree (denoted as dmax), the maximum
number of the temporal edges between two vertices (π )
and the number of time points (|TGA |) contained in each
temporal graph.

• Parameter Setting: (1) For each temporal graph, we ran-
domly select one-fifth of the vertices as P and one-fifth
of the vertices as Q, where P and Q are independent;
(2) The number of the returned closest pairs (i.e., k)
can affect the execution time of the algorithm, thus
k is set to 2, 4, 6, 8, 10 respectively to investigate
the running time of the algorithm; (3) The number of
constraints (i.e., W ) is set to 2, 4, 6, 8, 10 in each
dataset to investigate the performance of the algorithm;
(4) We randomly set the value of each attribute on an
edge to the scope of [0-100] at each time point. The
corresponding constraint for each attribute is set to 60,
120, 180, 240 and 300 respectively; (5) The time interval
[tα, tβ ] can affect the overall execution time. In this
experiment, we set five time intervals, I5 = [0, |TG|],
I4 = [0, 45 |TG|], I3 = [0, 35 |TG|], I2 = [0, 25 |TG|], I1 =
[0, 15 |TG|], to investigate the effect of different [tα, tβ ] on
the performance of our algorithm. These settings ensure
a high possibility of returning the k-TSP-MC discovery
results in an ATG.

• Implementation: (1) Since the algorithms proposed
in [31] are the most promising ones to find the shortest
temporal path, and the plane sweep [19], [22], [23] is
the common algorithm to find k closest pairs, so we
combine the algorithms in [31] with the plane sweep
technique as the baseline to investigate the performance
of the k closest pairs with multiple constraints discov-
ery. The baseline algorithm is simply denoted as BL;

1openflights.org/data
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FIGURE 4. The average execution time based on different number of closest pairs.

FIGURE 5. The average execution time based on different number of constraints.

(2) We implement our proposed divide-and-conquer
cloud-based algorithm (which is simply denoted as DC)
and compare the execution time and the quality of the
results of the temporal k closest pairs under multiple
constraints.

All the algorithms are implemented using Java and run on a
server with Intel 2.6GHz CPU, 256GB RAM under the Linux
operating system. All the experimental results are averaged
based on five independent runs.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In the experiments, we compare our DC with the state-of-
the-art algorithm in solving the k closest pairs problem with
constraints. The performance is measured by the execution
time and the average distance of k closest pairs for TPC-k-
CPQ.
Exp-1 (Efficiency): This set of experiments is to investigate

the efficiency of our DC by comparing the query processing
time of DC and BL based on different datasets and different
parameters.

Result: From Fig.4 to Fig.7, we can see that (1) when
k increases, the query processing time of both algorithms
increases; (2) with the increase of the number of constraints,
the execution time of both DC and BL increases in all
datasets; (3) with the increase of the values of the con-
straints, the execution time of BL and DC both increases
in all datasets; (4) with the increase of the time interval,
the execution time of both DC and BL increases; (5) in all
the cases, DC consumes less execution time than BL. The
detailed experimental results are listed in Table 2. Statisti-
cally, the average execution time of DC is 56.63% less than
that of BL.
Analysis: The result illustrates that (1) For DC, with the

increase of k, more vertices will be contained in each cell
of the grid, due to the increase of the side length of the grid
which is equal to the k th shortest distance of the current k clos-
est pairs result. Therefore, we need to spend time calculating
the distances of more vertex pairs; For BL, with the increase
of k, the pruning strength of the plane sweep technology
will be smaller, so the running time of the algorithm will
increase; (2) For DC, as the number of constraints increases,
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FIGURE 6. The average execution time based on different values of constraints.

FIGURE 7. The average execution time based on different time intervals.

TABLE 2. Comparison.

the previously found vertex pairs satisfying the constraints do
not necessarily satisfy the current W constraints. Therefore,
the distance between the k th shortest vertex pairs that satisfy
the current W constraints may be longer, which makes the
grid side length larger, leading to more vertex pairs cal-
culation. In addition, the time consumption caused by the
aggregation of the path in the forward pass of the Two-
Pass algorithm increases; For BL, firstly the pruning strength
will be smaller; Secondly, when we find a feasible path
between two vertices, BL needs to search the temporal edges
between two vertices W times to find the shortest path that

satisfies W constraints. Thus the execution time increases
with the increase of W ; (3) For DC, as the values of the
constraints increase, more temporal paths will satisfy the
requirements in the temporal graph. Then, more time will be
needed to calculate the TSP-MC by Two-Pass and find the k
closest pairs with multiple constraints; For BL, the reason is
similar to DC; (4) With the increase of the time interval, more
temporal edges are included in the search. Thus both DC and
BL consume more execution time to search these temporal
edges; (5) The execution time of DC is always less than that
of BL, there are two reasons. First, the Two-Pass algorithm
in DC to find TSP-MC only need to scan the attributed
temporal graph twice, while the path finding algorithm in BL
needs to scan the temporal graph W times; Second, the grid
technology enables a lot of pruning to speed up the query
process.
Exp-2 (Effectiveness): In order to investigate the effec-

tiveness of our DC, we compare the average length of the
obtained k closest pairs of DC and BL based on different
datasets and different parameters.

VOLUME 8, 2020 70671



J. Lu et al.: Cloud-Based k-CP Discovery in D-CPSS

FIGURE 8. The average k closest pairs length based on different number of closest pairs.

FIGURE 9. The average k closest pairs length based on different number of constraints.

FIGURE 10. The average k closest pairs length based on different values of constraints.

Result: Fig.8, Fig.9, Fig.10 and Fig.11 depict the aver-
age path length of the obtained k closest pairs by DC and

BL under different parameters. We can see that (1) when k
increases, the average length of the results obtained by two
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FIGURE 11. The average k closest pairs length based on different time intervals.

algorithms both increases; (2) with the increase of the number
of constraints, the average length of the results increases first.
Then, in some cases (e.g., situation 1), the average length
of the obtained k closest pairs remains the same; in other
cases (e.g., situation 2), the average length of the results still
increases with the increase of W ; (3) with the increase of
the values of the constraints, the average length of results
obtained by BL and DC decreases first, and then in some
cases (e.g., situation 3), the average length of the results
keeps the same; in other cases (e.g., situation 4), the average
length of the results still decreases; (4) with the increase of
the time interval, the average length of results of DC and
BL decreases in some cases (e.g., situation 5), and in other
cases the average length of the results remains the same (e.g.,
situation 6); (5) in all the cases, the average path length of the
k closest pairs obtained by DC is shorter than that obtained
by BL. The detailed experimental results are listed in Table 2.
Statistically, the average length of results obtained by DC is
61.35% less than that obtained by BL.
Analysis: The result illustrates that (1) As k increases,

k closest pairs are needed to be found, so the average
length of the results increases; (2) As the number of con-
straints increases, the previously found vertex pairs that sat-
isfy the requirements do not necessarily satisfy the current
W constraints. Therefore, some pairs of vertices with longer
distances that satisfy the current multiple constraints will
generate, resulting in the increase of the average distance.
In some cases, this trend has been maintained. In other cases,
previously found pairs of vertices that satisfy the constraints
always satisfy the existing W constraints, so the average
distance of the results keeps the same; (3) As the values of
the constraints increase, it means that the constraints on the
attributes between vertex pairs are relaxed. Therefore, some
vertex pairs that did not meet the high requirements will now
meet the requirements after relaxation. Thus, in some cases,
the average path length in the result set will reduce. And in
other cases, the previously found result set still satisfies the

current constraints, so the average length of the result set is
unchanged; (4) With the increase of the time interval, more
temporal edges are included in the search. In some cases,
some pairs of vertices with shorter distances that satisfy the
constraints will appear, so that the average distance decrease.
In other cases, not appear, so the average distance keeps the
same; (5) BL investigates each constraint separately when
determining whether a vertex pair meets the requirements,
which cannot find a path even if there is a feasible temporal
path between two vertices. Nevertheless, the proposed Two-
Pass can always find a feasible temporal path if one exists.
Therefore, the results obtained by DC are always better than
those obtained by BL.

V. RELATED WORK
The existing k-closest pairs queries are mainly based on static
graphs, and the similarity join is very similar to the k-closest
pairs query, so we will briefly introduce the related research
methods from these two aspects.

A. SIMILARITY JOIN
Given two datasets, similarity join refers to the problem of
finding pairs of objects between two datasets within a certain
distance ε, which involves a large number of applications,
such as data cleaning, multimedia databases and geographical
information systems. Jacox and Samet [8] propose a method
called Quickjoin, which uses a modified ball partition to
recursively divide and conquer an object set into subsets
based on the distance to the pivot, and prunes unpromising
vertex pairs. Fredriksson and Braithwaite [5] improve the
Quickjoin algorithm in three ways. Paredes and Reyes [15]
solve metric similarity join and k-CP retrieval based on a
new metric index, coined List of Twin Clusters (LTC), which
maintains two lists of overlapping clusters to index both
object sets jointly instead of the natural approach of index-
ing one or both sets independently. Pearson and Silva [16]
present an algorithm that significantly extends eD-Index [4]
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to support generic similarity join queries over two relations
using only the individual indices. Sarma et al., [20] propose a
general framework to compute similarity joins inMapReduce
based on metric distance functions, and the framework parti-
tions data space based on the distribution of underlying data.
Wang et al., [30] propose a parallel framework to solve simi-
larity join in metric space. The core of the proposed approach
is to intelligently route the data into independent worksets
processed by independent MapReduce workers, so that no
pair will be evaluated twice.

B. K-CLOSEST PAIRS FINDING
The nested loop method can be used to answer k-CP
queries, but this naive approach requires plenty of dis-
tance calculations. Such high search cost results in poor
scalability. Kurasawa et al., [10] present a new divide-
and-conquer cloud-based k-CP search method in metric
space, called Adaptive Multi-Partitioning (AMP) which uses
a sparse-region-first strategy to iteratively divide a region.
Corral et al., [3] propose five different algorithms to solve
the problem of k-CP, four of which are recursive and one
is iterative. Yang et al., [35] propose an index structure
called bRdnn, which uses information about the nearest
neighbors to help prune the search paths more effectively.
Shin et al., [22], [23] present an efficient algorithm based
on a spatial index, which uses bidirectional vertex expan-
sion and plane-sweeping techniques to quickly prune dis-
tant pairs, and further optimizes the plane-sweeping by
novel strategies for selecting a sweeping axis and direc-
tion. Roumelis et al., [19] utilize two improvements that
can be applied to the plane-sweep algorithm and propose
a new algorithm that can minimize distance computation.
Ahmadi and Nascimento et al., [1] propose two different
approaches for processing k-CPQs. The first approach applies
a top-down traversal paradigm using a best-first search strat-
egy, and the second approach looks for the k-closest pairs
by traversing the G*-tree in a bottom-up manner. Xue and
Li et al., [33] first study the stochastic closest pair prob-
lem under uncertainty. Then, they [34] revisit the Range
Closest Pair problem, which aims to preprocess the dataset
into a data structure so that when a query range X is spec-
ified, the closest-pair in the dataset cap X can be reported
efficiently. Besides, they put forward some new data struc-
tures for various query types, including quadrants, strips,
rectangles and halfplanes. Zhou et al., [38] propose a simple
and efficient algorithm to solve the closest pair problem in
k-dimensional space. It sorts these points according to the
one-dimension value and only calculates the distances of
pairs which may be closer than the current closest pair.

However, the traditional methods of k closest pairs dis-
covery in graphs do not consider temporal information, nor
the attributes on edges and the corresponding constraints
on the attributes. In many D-CPSS based applications, it is
popular and significant to explore k closest pairs in temporal
graphs, but there is no effective and efficient way to solve this
problem.

VI. CONCLUDING REMARKS
In this paper, we have proposed a new exploration model of
Temporal Multiple Constraints k Closest Pairs (TMC-k-CP),
which is the basis of many D-CPSS based applications.
Then, we have proposed a new temporal objective function to
dynamically study whether the temporal path satisfies mul-
tiple constraints, and we have proposed a two-pass approx-
imation algorithm that uses two steps to find the Temporal
Shortest Path with Multiple Constraints (TSP-MC). Finally,
we have proposed an algorithm based on divide-and-conquer
to quickly find k temporal closest pairs with multiple con-
straints. The time complexity of our proposed algorithm is
O(n2 + nm log n log dmax). In addition, experiments on eight
real-world D-CPSS datasets demonstrate the superiority of
our proposed method in terms of effectiveness and efficiency.
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