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ABSTRACT The indoor location technique plays a essential role during the application of quadrotor
unmanned aerial vehicle (UAV). However, the control design problem for the quadrotor UAV is quite
difficult in the indoor environment due to the weak GPS signal. Based on Ultra Wide Band (UWB),
the related positioning issues can be solved of UAV through base station with known coordinate position
and equipment with location tag, but it is difficult to meet the high-precision operation requirements. In this
paper, an indoor positioning design method combined with the Inertial Measurement Unit (IMU) and UWB
positioning technology is proposed, which can effectively suppress the error accumulation of the IMU
and further improve the positioning accuracy. Moreover, the system architecture for a class of quadrotor
UAV is designed. The multisensor fusion technology based on unscented Kalman filter (UKF) is used to
avoid neglecting the high-order terms of the nonlinear observation equations of UWB and IMU, which
can effectively improve the accuracy of solving the nonlinear equations. Finally, a hardware-in-the-loop
simulation platform is designed to verify the effectiveness of the indoor positioning method and improve the
positioning accuracy.

INDEX TERMS Ultra wide band (UWB), inertial measurement unit (IMU), data fusion, indoor localization,

quadrotor UAV.

I. INTRODUCTION

The quadrotor UAV, base on the outdoor positioning tech-
nology, has been widely used in military, industrial, agricul-
tural, entertainment and other aspects [1], for instance, air
reconnaissance UAV [2], electric patrol UAV [3], [4], plant
protection UAV [5], and aerial photography UAV [6]-[8],
etc. However, due to the weak indoor GPS signal or no GPS
signal, the positioning accuracy is directly affected, which
brings limitations to the application of four rotor UAV Based
on indoor positioning technology. In recent years, the industry
has a great demand for UAV inspection based on indoor posi-
tioning technology, and the related control optimization, path
tracking and other issues have received increasing attention.
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It is well know that common indoor positioning schemes
include vision, lidar, UWB and IMU. The motion capture
system (MCS), as a kind of vision system arranged in a spe-
cific space, captures the target in the space through multiple
high-speed cameras, thereby obtain the relative position of
the target in the space. The positioning accuracy of the MCS
can reach millimeter level, such as VICON and OptiTrack.
However, it is difficult to use the MCS in some large
scene areas due to the complex layout and difficult calibra-
tion. Therefore, some simultaneous localization and mapping
(SLAM) schemes have emerged, such as Oriented FAST and
Rotated BRIEF SLAM (ORB-SLAM) [9], semi-direct visual
odometry (SVO) [10], direct sparse odometry (DSO) [11],
which use a single monocular camera or a binocular cam-
era placed on the UAV body to get the relative position of
the UAV in the environment. SLAM relies on the richness
of lighting and environment texture, however, most indoor
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environments are not rich in texture, which will affect the
accuracy and reliability of the positioning scheme. In addi-
tion, there are some positioning schemes based on lidar,
such as Gmapping [12], Hector [13], Cartographer [14]. The
lidar applied to the quadrotor UAV is generally a single-
line lidar due to its large weight, which can only obtain the
two-dimensional position of the UAYV, so its altitude informa-
tion cannot be obtained. UWB [15], [16] positioning scheme
is light in weight, simple in layout, stable in positioning and
the accuracy can reach to less than ten centimeter. It should be
pointed that the positioning accuracy of UWB separate cannot
meet the requirements of indoor high-precision operation.
IMU is a common sensor for robot pose estimation, which
has the advantages of high accuracy, fast update frequency
and small size. However, IMU estimates its position by inte-
gration, and there will be accumulated errors. In addition,
the position estimation will drift after a long time operation.
The advantages of UWB and IMU can be obtained by inte-
grating them. On the one hand, IMU improves the positioning
accuracy. On the other hand, UWB can suppress the inte-
gral divergence of IMU and make the position estimation
continue. Although the 3D position estimation is obtained in
reference [17], there is still an accuracy greater than 20cm,
because it has not been fused with IMU. In reference [18],
UWB and IMU are fused to get 2D position estimation of
the car with higher accuracy. In reference [19], the fusion of
UWB and IMU is used to get a more accurate pedestrian pose
estimation.

Common multisensor fusion algorithms include extended
Kalman filter (EKF) [20], [21], unscented Kalman filter
(UKF) [22], [23] and particle filter (PF) [24], etc. UWB
positioning system model and IMU model are both nonlin-
ear Gaussian models. Although extended Kalman filter and
unscented Kalman filter can deal with the nonlinear Gaussian
model, but they have different estimation accuracy. It has
been reported in [25]-[28] that the accuracy of fusion based
on Unscented Kalman filter is higher than that based on
extended Kalman filter. This is because they have different
ways of dealing with nonlinear models. The extended Kalman
filter is a Taylor expansion of the nonlinear function around
the filter value and the elimination of the second order and
above term.s are eliminated. When the nonlinear degree of
the system model is very high, the extended Kalman filter
will have errors that cannot be ignored, and it will difficult
to accurately estimate the state of the target. Unlike the
extended Kalman filter, the unscented Kalman filter [29] is
used to determine the sampling point near the estimation
point instead of making linear approximation to the nonlinear
equation at the estimation point [30], [31]. Therefore, when
estimating the state of a nonlinear model, the accuracy of the
unscented Kalman filter is higher than that of the extended
Kalman filter. In addition, the algorithm is easy to imple-
ment, and the calculation amount is equivalent to that of the
extended Kalman filter.

In view of the above discussion, there are still a series of
difficult problems to be solved in the application of vision
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and lidar positioning scheme in quadrotor UAYV, such as the
strong dependence of vision positioning on the environment,
the large weight of lidar, and the single line lidar can only
get two-dimensional position information. Therefore, this
paper considers the information fusion conceptual design of
UWB and IMU. The target is predicted by IMU, and the
accumulated error caused by IMU integration is suppressed
by UWB positioning system with aim to get high-precision
position estimation. Moreover, the design method of UWB
data and IMU data fusion based on unscented Kalman filter is
proposed to obtain the position information of indoor quadro-
tor. The simulation results show that the location accuracy of
fusion design method presented in this paper is higher during
the quadrotor UAV path planning.

Il. SYSTEM MODELING

In this paper, the unscented Kalman filter is during the infor-
mation fusion. Aiming at the motion model, the IMU is used
to predict and get more accurate positioning information.
For the observation model, the UWB positioning system is
updated to get the final positioning information.

In order to facilitate interpretation, UWB positioning sys-
tem is described first. Then, the motion model is introduced.
Finally, the observation model is introduced.

The UWB positioning system used in this paper is com-
posed of four base stations and a label. The hardware com-
position of the base station module and the label module is
the same, but the software configuration is different. Each
module mainly consists of dwm1000 chip of decawave com-
pany and STM32 single chip of ST company. The function
of dwm1000 is to obtain the distance between label and base
station based on the time of fly. Refer to [32], [33] for specific
ranging principle.

Single chip microcomputer is used for data processing. The
positioning principle of the system is to obtain the distance
information from the tag to the four base stations and the
distance between the base stations, then calculate the location
of the tag relative to the positioning system through the
geometric relationship.

Establish the UWB positioning system as shown in
Figure 1 in the laboratory environment.

In Figure 1, Ao, A1, Az and A3 represent the base station, T
represents the tag, and the tag is placed on the UAV. L 1, Lo 2,
Ly 3 respectively represent the distance between base station
Ay and the other three base stations. Dt o, Dr.1, Dr2, D13
represent the distance from the label to the four base stations
respectively.

In particular, the other straight lines AgA1, AgAz, AgA3 are
perpendicular to each other, and Ag, Aj, Ay are in the same
horizontal plane, Ag and A3 are in the same vertical straight
line.

Therefore, the coordinate system can be defined. The
straight line AgA1, AgAz, AgAs can be defined as the x, y
and z coordinate axes of the positioning system respectively,
and is the origin of the coordinate system. According to the
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FIGURE 1. UWB positioning system. The unit of coordinate axis in the
figure is meter.

right-hand rule, we arrange the coordinate system in the form
of ENU (East, north, and Upward).

The direction of Ag to A; is East, and it is the positive
direction of x axis. The direction that Ay points to Ay is
the north direction, which is the positive direction of the
y axis. The direction Ag points to Az is the upward (sky)
direction, that is, the positive direction of z axis.In this paper,
the UWB coordinate system arranged as above is called the
world coordinate system.The intersection of the three lines is
the origin of the world coordinate system, which is Ag.

In order to obtain the relationship between the coordinates
of the four rotor UAV and the distance from the tag to the
base station, a vertical line is made from the point T to
the straight line AgA1, AgAz, AgA3 and the corresponding
intersection point is the coordinate value of the UAV in the
world coordinate system (py, py, p;).

So far, we have finished the introduction of the UWB posi-
tioning system. Next, we will introduce the motion model.

Due to the unscented Kalman filter has Markov property,
the state prediction part is only related to the updated states
and current input at the last moment, and the current input is
the measurement data of acceleration and angular velocity of
IMU. Define the state vector as

= [p™, v, q™), by, bgl”, (1)

where p™ = [p,, Dy p-1" is the coordinate vector of x, y
and z axis of UAV in the world coordinate system, v =
Vi, vy, vZ]Tis the velocity vector of x, y and z axis of UAV
in the world coordinate system, q(W) = [gw, qx, qy, qZ]T is
the quaternion vector of UAV attitude in the world coordinate
system, b, is the bias vector of accelerometer, and b, is the
bias vector of gyroscope.

The world coordinate system here refers to the coordinate
system of UWB positioning system above, which will be
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introduced in Fig. 1. Equation (1) derives the time as follows:

(w) 7
—. v
p A
vw) 0
X=14"|=]|q"® [w(b)}
L D¢ W, |
_ o -
Ry@" —b, —ny,)
0
_|igwe [w) . } , ?)
8 8
Wy,
L W, 4

where a") is the acceleration of the body in the world
coordinate system, @® is the angular velocity vector in the
body coordinate system, a®” is the measured value vector of
the accelerometer, @® is the measured value vector of the
gyroscope, g™ = [0,0, —9.8]7 is the gravitational accel-
eration vector, in the coordinate system defined by UWB.
W,, = n, and Wb = ng are the Gaussian white noise
of the accelerometer and gyrosc Pe respectively, ® is the
quaternion multiplication [34], R is the rotation matrix
from the body coordinate system to the world coordinate
system [35], and can be calculated by (3).

R
b
1-2¢3—-2q%  2qxqy—2qwqz 2qxqz+2qwqy
= |2qxqy +2qwaz 1-29%-24% 2qvqz—2qwqx |-
2qxqz—2qway 2qvqz +2qwax  1-2q% —2q7
3)

The recurrence formula of the state in continuous time is
given by

P =0 v A

i+1
+f [ RYG® — b, —n) +g™1dr, (o)

(W) (w)
l+l =YV

i+1
[ REE® b, n+ gVl @
i

i+1 1 0
(w) (w) (w)
41 =94 ®/,~ (Eqi ® |:g')(b) — b, —

where i is the ith sampling time of UWB data.

It is worth noting that the bias of accelerometers and gyro-
scopes changes very slowly in a short period of time, so the
integration process in a short period of time considers that the
bias is constant, that is, W, =n, =0, W;,g =n, = 0.

The update frequency of UWB data is less than that of
IMU, and there will be multiple IMU data to be sampled
between the sampling times of two UWB data. Therefore, it is
necessary to integrate the IMU data when forecasting, and the
median integration method is adopted here.

ng] )dt, (4c)
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The recurrence formula of discrete-time state obtained by
means of median integration method is as follows:

1o
pj) =p)" +v{"er + Eaj(at)? (5a)
v = v A (5b)
1
w) _ (W)
47 = ® |: w]51:| (5¢)
2

where j is the jth sampling time of IMU, and

3= —[(RbW(*b) by, — ng) + )

b
+(R,,/+, @), = by, —ng,) + ")) (6a)
~ b ~(b
& = [w( ' +8711— by, — . (6b)

Besides, the bias bgj, baj of IMU in two UWB sampling
times is considered to be constant here.

For the observation model, it can be easily obtained accord-
ing to the geometric relationship from UWB positioning
system showed in Fig. 1:

o + py(0)? + po(h)?

ﬁi?ﬁi‘i Vot = e + py0) + p(h)?
D] pe ) Loz =y +pth?
| 7 +py 0 + (Lo — po(h))?
nr.ok)
st | @
nr 3(k)

where nr o, n7,1, nT 2 and nr 3 are the measurement noises
of four distances respectively.

Ill. UKF BASED FUSION ALGORITHM DESIGN

The following describes the implementation details and pro-
cess of the algorithm. The UKF based fusion algorithm
mainly includes initialization, prediction and update.

A. INITIALIZATION

In the initialization part, the state variables and covari-
ance matrix are initialized. By (1), the state vector
includes position p™, velocity v(*), rotation quaternion g,
accelerometer bias b, and gyroscope bias b,. In the static
state, the distance from 100 groups of labels to the base station
is obtained through the UWB positioning system, and the
position data is calculated through the geometric relationship.
The average value is taken as the initial value of p*).
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Using Pythagorean theorem, the specific calculation for-
mula is as follows (8):

28
P = \/ (Dro)? — (L—1>2

py = \/(Dr 0)? — ( )2 ®)

Pz \/(DT 0)? = ( )2

Among them, S, S> and S3 are the areas of AAgA;T,
AApALT and AApA3T respectively. The calculation of the
area is based on Heron’s formula [36]. v**) is initialized to
zero vector at rest.

Take the data of 100 groups of accelerometers, and cal-
culate the roll angle of the fuselage around the x-axis of the
fuselage and the pitch angle of the fuselage around the y-axis
of the fuselage according to formula (9) [37]:

. _Ax
0 = arcsin( )
VA +Ai2 A )
¢ = arcsin( i

)
cost\[A2 + A2+ A2

In the formula, Ay, Ay and A; are the acceleration values of
the x, y and z axes of the accelerometer respectively. The
yaw angle ¥ of rotation around the z-axis can be calculated
according to the magnetometer in flight control, and the
calculation formula [38] is:

Hycos¢ — H_sing

Y = —arctan( —— - ). (10)
H,.cos0 + HysinOsing + H,sinfcos¢

In the above formula, H,, Hy, and H, are the measured
values of the three axes of the magnetometer respectively.
Take the average values (84yg, Pavg, Yavg) Of 100 such attitude
angles and convert them into quaternions.

According to the order of z-y-x rotation, the conver-
sion formula of quaternion of attitude angle rotation is as
follows (11) [39]:

(‘p“;g) ( “2””> (‘”gvgwr (¢;“g> ( “Vg) (ngg)
(¢avg) ( avg) (Ilfavg)_ (¢avg) ( avg) (I/Iuvg)
W) _ 2 2 2 2 2 2
q() ¢avg avg 1pavg ¢avg avg 1,Zfavg
<2>( YD)+ ()
¢avg) ( avg) (wavg)_ (¢avg)( avg) (Wavg)
(11)

This quaternion is taken as the initial value of q**). For b,
and by, it can be obtained in IV-B.2. For covariance matrix,
it can be initialized as unit matrix or use the initial set of data
for calculation.
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B. PREDICTION

According to the unscented Kalman filter algorithm, in the
prediction part, the nonlinear function needs to be linearized
by unscented transformation, and then the Gaussian probabil-
ity density function is transferred by the linearized model.

1) If the first frame of IMU data or the first frame of
IMU data after the unscented Kalman filter update is
executed, the initialized state vector and covariance
matrix or the updated state vector and covariance matrix
of unscented Kalman filter are first expanded to:

_ [Xe
Be= |:06><1:| ’ (12)
| 0 0
S.=| 0 Q. 0] (13)
0 0 Q

This is because the noise covariance of accelerometers
and gyroscopes is also uncertain.

2) The formula (14) and (15) produce 2N + I(N =
dim(X,;) = 22) sigma points Z"™ and corresponding

weight w:
y AL
", n=20
= 1#;, +C(VIN +1)X2), n=1~N
w, = Con(VIN+ M), n=N+1)~2N
(14)
W
A
TR
=1VH (15)
— n=1~2N
2(N +))

where C, represents column n of matrix, the same below.
N is the dimension of the expanded state vector, A is a
scaling parameter, and its setting reference [29].

3) Integrate IMU data before UWB data update.
Since the covariance matrix is expanded in (13), each
sigma point in (14) is expanded into the form of state
and motion noise:

ikfl,n

Mg n

Then, when the IMU data is updated, each sigma point
is brought into (5¢) for calculation until the UWB data is
updated. At this time, the state vector calculated by each
sigma point is recorded as )V(k,,,.

4) Recombine )v(k,n. and its corresponding weights into
prediction confidence:

2N

Xp = Y wXp . (17)
n=0
2N

P = ZW(H)(Xk,n — X)X, — X0, (18)
n=0
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So far, we have got the mean value and variance of the
prediction part, and prepared the data for the update part.
Next update.

C. UPDATE
Similar to the prediction procedure, the tracking free trans-
formation is also needed in the update part, because the
observation model is also a nonlinear model.
1) The mean and covariance of the prediction are
expanded to:

X;
= , 19
[P 0
Y = |: 0 Ruwb:| . (20)

2) Generate 2M + I(M = dim(Xs) = 20) sigma
points Y and corresponding weight p™ according
to (21) and (22):

yim
2D m=20
= us+Cou(VIM + M) X), m=1~M
ws—Cryy (WM +1)Xg), m=WM+1)~2M
2D
p(m)
A
YRR m=0
= B (22)
— m=1~2M
2(M + A)

3) Each sigma point is expanded into the form of state and
motion noise:

Y(Wl) — |: Xk,m i| ) (23)

In the formula,

nr,o(k, m)
nr.1(k, m)
nr2(k, m)
nr,3(k, m)

Ruwb,m = (24)

Then, each sigma point is carried into (7) to
calculate Dy .

4) The mean value and covariance of the observations are
obtained by recombining and its corresponding weights:

2M

D; = Zp(m)Dk’”“ (25)
m=0
2M

Eop = p™Dkm — DD — D). (26)
m=0

5) Calculate the unscented Kalman gain and update the
state variables and covariance:

Ki = ZxpZp). 27)
Xy = Xy + Ky (D — Dy), (28)
P, =P — K; 3%, (29)
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where ﬁk is the distance vector from the label to the base
station in the UWB positioning system, and

2M
Exp =) p"Xim — Xp)Drm — D). (30)

m=0

Update the state vector and covariance matrix to prepare
for the next iteration. This completes the update step.

D. ALGORITHM FLOW CHART
The above describes the initialization, prediction and update
of the algorithm process, and the following describes the
specific operation process of the algorithm. Since the update
frequency of IMU is faster than that of UWB, the data of IMU
is integrated between two frames of UWB data, and the result
of integration is used as the prediction of Unscented Kalman
filter.

When UWB data is updated, unscented Kalman filter is
updated. Fig. 2 is the time flow chart of IMU and UWB data
fusion.

MU
Prediction
r____4___£____‘_”__\._____:
LU T,
“““““ I
\ o

Update

FIGURE 2. Time flow chart of data fusion between IMU and UWB.

Fig. 3 is the algorithm operation flow chart. At the begin-
ning of the algorithm, initialization of relevant variables and
parameters is carried out first, followed by data fusion pro-
cess, that is, repeated prediction and update. In Fig. 3, the red
virtual border part is the prediction part, and the green virtual
border part is the update part.

IV. EXPERIMENTAL PLATFORM AND SIMULATIONS

This part is the experimental part. Firstly, it introduces the
experimental environment, including software and hardware.
Secondly, it preprocesses the data before fusion, so as to carry
out data fusion. Finally, it carries out data fusion experiments
in the indoor environment, and analyzes the experimental
results.

A. EXPERIMENTAL ENVIRONMENT
The composition of the experimental platform is shown
in Fig. 4, mainly including software and hardware. The main
body of the software is ROS, a small development operat-
ing system running on the Ubuntu operating system. The
corresponding functions are realized by ROS nodes, such
as location data acquisition, data fusion filtering and UAV
position control.

The hardware mainly includes four rotor frame, airborne
computer NVIDIA Jetson TX2 (hereinafter referred to as
TX?2), flight controller pixhawk, UWB positioning system.
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FIGURE 3. Algorithm operation flow chart.

FIGURE 4. Experimental platform.

Airborne computer is mainly used to run ROS, while flight
controller is used to read sensor data and related control.

As shown in Fig. 5, the onboard computer TX2 can receive
IMU data sent by the flight controller pixhawk, includ-
ing accelerometer data and gyroscope data, through mavros
(mavros is the ROS interface function package for TX2 to
communicate with pixhawk).
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FIGURE 5. Schematic diagram of data acquisition.

In addition, the location data of UWB can be read by
ROS node.

Next, preprocess the acquired data, and then carry out
data fusion.

B. DATA PREPROCESSING

1) CALIBRATION OF UWB DATA

In different indoor environment, UWB often shows the phe-
nomenon that the measured value is larger than the actual
value or smaller than the actual value, so this paper does the
following calibration work. A base station and a label are set
in the environment to fix the base station in a position, and
then the labels are moved to the preset positions with a certain
distance from the base station. Read the 50 UWB distance
measurements of the label at each preset position, take the
average of the 50 measurements as the measurement value
of the distance, record the data as shown in Table 1, and plot
each actual distance value and its UWB measurement value
in Fig. 6.

TABLE 1. The actual distance value and the UWB observation distance
value record table.

AV 100 200 300 400 500 600 700
OM | 577.83 | 786.41 | 896.54 | 996.46 | 1074.28 | 1212.19 | 1305.28
AV | 800 900 1000 1100 1200 1300 1400
OM | 1397.23 | 1478.65 | 1578.52 | 1658.44 | 1763.28 | 1878.68 | 1973.65
AV | 1500 1600 1700 1800 1900 2000 2100
OM | 2074.65 | 2172.19 | 2277.93 | 2380.19 | 2593.41 | 2680.48 | 2728.94
AV | 2200 2300 2400 2500 2600 2700 2800
OM | 2829.06 | 2942.37 | 3054.43 | 3120.69 | 3217.33 | 3330.61 | 3423.39

AC = actual value, the data in the same row as AC is the actual value,
and its unit is millimeter.

OM = observation mean, the data in the same row as OM is the measured
value, and its unit is millimeter.

It can be seen that the relationship between the observation
value and the actual value is approximately linear, so the
linear fitting is carried out in this paper. Take the actual
value as an independent variable and the measured value as a
function, use the data linear equation fitting function of Excel
software to perform linear fitting, and get the relationship
between the observation value and the actual value x,. using
Yob = axae + b. Then there is xoc = Y22, that is to say,
the UWB estimate corresponding to the actual distance value
can be obtained by the formula.

The above is only a linear fitting of the measurement data,
considering a wide environment without obstacles. If there
are obstacles between the base station and the label in the
application environment, it is easy to affect the measure-
ment accuracy of UWB. At this time, the influence of the
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FIGURE 6. UWB data calibration results. The unit of coordinate axis in the
figure is millimeter.

obstacle weakening UWB signal on the measurement should
be considered. For specific measures, please refer to [40].
During the use, the tag and base station should be placed
vertically, and the pitch and roll angles of the four rotor UAV
equipped with the tag should not be too large, otherwise the
measurement accuracy will be reduced due to the too large tilt
angle of the tag. If the attitude of the UAV changes greatly in
the application environment, the measurement error caused
by the attitude change should be compensated, refer to [41]
for details. In addition, if the application scenario is complex,
it is also necessary to establish an appropriate distance error
calibration model for the scenario, please refer to [42].

2) CALIBRATION OF IMU

So far, the UWB data calibration is completed. Before data
fusion, the IMU in the flight controller needs to be calibrated
to obtain the variance and bias information of the IMU.
However, there are special software to calibrate the IMU in
the flight controller, such as Allen variance curve [43], etc.,
so the specific calibration process will not be described here.

C. EXPERIMENT AND RESULT ANALYSIS

This experiment is carried out in an indoor environment of
(Bm x 2.5m x 2.4m) cubic meters, in which the positioning
system as shown in Fig 1 is arranged and the label is placed
on the UAV. As shown in Fig. 7, several ROS nodes are run on
the on-board computer TX2 to achieve UWB data acquisition
and analysis, IMU data acquisition, data fusion algorithm
implementation and data recording functions.

UWB label sends data out through serial port, so this
experiment uses USB to serial port module to connect the
serial port of label and the USB interface of TX2 board
computer, as shown in Fig. 8. Then a ROS node reading serial
port is created. The node reads the UWB data and analyzes it,
and gets the distance data from the tag to four base stations.
Finally, the four distance data are published in the form of
ROS topic, so that the ROS node that carries out data fusion
and data recording receives it.
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FIGURE 7. ROS node diagram.

FIGURE 8. USB serial port module.

FIGURE 9. 3D positioning diagram.

IMU data comes from flight controller. TX2 onboard
computer needs ROS function package named mavros to
read. The specific communication protocol is mavlink. Then,
the read IMU information is published in the form of ROS
topic, so that the ROS node that performs data fusion
receives it. The node implemented by the data fusion algo-
rithm mainly listens to two ROS topics of UWB distance and
IMU acceleration data. When any data is updated, the data
fusion algorithm is executed, and the position information of
the four rotors is released in the form of ROS topic, so that
the ROS node recorded data can receive it. After receiving the
UWRB distance data, the ROS node of the data record performs
the coordinate solution according to (7), and then records the
coordinate data and time stamp in a file.
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In addition, the ROS node of the data record also lis-
tens to the coordinate topic from the data fusion node, and
records the coordinate and receiving time stamp of the topic
in another file.
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The above preparations for the data fusion experiment are
well done. Next, the remote control four rotors fly in the
built indoor environment, recording the data of UWB single
positioning and the data of UWB and IMU fusion positioning.
Fig. 9 is a 3D schematic diagram of UWB single positioning
and UWB and IMU fusion positioning when the four rotor
UAV is in indoor remote control flight, and its top view is
shown in Fig. 10. By analyzing the positioning datain x, y and
z directions, as shown in Fig. 11, Fig. 12 and Fig. 13, it can be
seen that the accuracy of UWB and IMU fusion positioning
is higher than that of UWB alone positioning.

In static state, UWB and IMU fusion positioning and UWB
are waveform schematic diagrams separately located in three
coordinate axes, as shown in Fig. 14, Fig. 15 and Fig. 16.
It can be seen that the accuracy of UWB positioning alone is
within +5cm, while the accuracy of UWB and IMU fusion
positioning is within +1.5cm, and the accuracy is signifi-
cantly improved.

Fig. 17 and Fig. 18 are the data waveforms of UWB single
positioning and UWB and IMU fusion positioning in x-axis
and y-axis collected during a remote control flight. It can be
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seen that when the UWB data has hourly anomalies, the data
of fusion location can still ensure the correctness of the data,
and the UWB anomaly has no obvious impact on the later
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data fusion, which is enough to show that the fusion algorithm
has strong robustness.

V. CONCLUSION

In this paper, an indoor positioning design method is proposed
by combining the Inertial Measurement Unit (IMU) and
UWSB positioning technology, which can effectively suppress
the error accumulation of the IMU and further improve the
positioning accuracy. The multisensor fusion technology is
proposed based on unscented Kalman filter (UKF) during
the path planning of quadrotor UAV, which not only improve
the accuracy of positioning and enhances the robustness of
positioning. Moreover, an accurate and reliable positioning
scheme has been provide for indoor quadrotor UAV. Finally,
a hardware-in-the-loop simulation platform is designed to
verify the effectiveness of the indoor positioning method and
improve the positioning accuracy.
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