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ABSTRACT The practical driving cycle is of great significance in studying the control strategy of vehicles,
and effective clustering of micro-trips is the key to obtaining the typical driving cycle. A novel and
efficient method for constructing typical driving cycles is presented in this paper. First, by combining the
preying behavior and random behavior of the artificial fish swarm algorithm (AFSA) with particle swarm
optimization (PSO), a modified particle swarm optimization (MPSO) is proposed. By comparing the means
and standard deviations of the optima, MPSO is verified as much more accurate and stable than PSO, AFSA,
select particle swarm optimization (SPSO) and cross particle swarm optimization (CPSO) in the optimization
calculation of four typical multi-modal benchmark functions. Second, by applying MPSO to optimize the
k-means algorithm, the k-MPSO clustering algorithm is obtained. In the case of clustering the Iris standard
data set, the average error rates of the k-means algorithm and k-MPSO clustering algorithm are 11.6% and
7.8%, respectively, which means that the k-MPSO clustering algorithm has a stronger searching ability.
Finally, with the ECAN Tools software, real-world driving data that include thousands of micro-trips in
Jinan are collected, and 19 representative characteristic parameters are selected to fully describe the driving
conditions. After principal component analysis (PCA), the k-MPSO clustering algorithm method is applied
to cluster the micro-trips into three classes and construct the typical driving cycle in Jinan.

INDEX TERMS Artificial fish swarm algorithm, driving cycle, k-MPSO clustering algorithm, particle
swarm optimization.

I. INTRODUCTION
To improve the fuel economy and emission characteristics of
vehicles, the use of driving cycles in typical cities to establish
appropriate vehicle control strategy has become a current
research focus [1]–[3]. Certain standard driving cycles have
been previously established, e.g., FTP72 of America and
NEDC of Europe [4]. However, the driving conditions of
different cities or vehicles are not consistent with the standard
driving cycles. In recent years, many researchers [5]–[7] have
made great efforts to study the driving cycles of typical
cities or specific vehicles, e.g., a driving cycle for passenger
cars and motorcycles in Chennai (India) [8], driving cycles
for suburban road-work vehicles and airport vehicles [9],
a dynamic driving cycle for public buses in Hamburg (Ger-
many) [10], simulated driving cycles for light, medium, and
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heavy duty trucks in the Toronto Waterfront Area [11], and
a driving cycle for a supercapacitor electric bus route in
Hong Kong (China) [12].

A common approach to constructing driving cycles is the
Micro-trips method [13]. However, the k-means clustering
analysis used in the Micro-trips method is easily trapped in
local optima when selecting the clustering centers. To obtain
more accurate and effective clustering centers, it is nec-
essary to improve the traditional k-means algorithm with
metaheuristic search algorithms, e.g., artificial bee colony
(ABC) [14], particle swarm optimization (PSO) [15] and
firefly algorithm (FA) [16], which have validated the effec-
tiveness of such hybrid clustering methods. Due to its sim-
ple updating formulas and excellent searching ability, PSO
has been widely applied in clustering analysis [17] and
other optimization fields, e.g., single- and multi-objective
problems [18], artificial neural network improving prob-
lem [19], assignment problem [20], and optimum battery
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energy storage problem [21]. However, the canonical PSO
still must be improved with respect to parameter set-
ting [22]–[24], updating strategy [25]–[28], and convergence
theory [29]–[31], among others. Particularly, Wen et al. [32]
introduced Gauss distribution function into PSO, and the
obtained Gaussian-PSO had excellent optimization perfor-
mance, which was also verified by Higashi and Iba [33] later.

In this paper, a modified particle swarm optimiza-
tion (MPSO) is presented to improve the traditional k-means
algorithm. Based on the idea of the artificial fish swarm
algorithm (AFSA), the improvements to the PSO in this
study focus on setting of the inertial weight and the updat-
ing strategy. In the optimization calculation of four typi-
cal multi-modal benchmark functions, the modified particle
swarm optimization (MPSO) shows better performance in
both local searching ability and global searching ability than
PSO and AFSA. To further verify the effectiveness of MPSO,
two other existing modified particle swarm optimizations,
i.e., select particle swarm optimization (SPSO) and cross
particle swarm optimization (CPSO) [34], are compared with
MPSO in optimization calculation of the four test functions,
proving that MPSO shows much better performance in both
computational stability and accuracy. In clustering of the Iris
standard data set, the average error rates of the k-means algo-
rithm and k-MPSO clustering algorithm are 11.6% and 7.8%,
respectively, which means that a stronger searching ability
exists in the k-MPSO clustering algorithm. After collecting
real-world driving data, selecting 19 representative character-
istic parameters to fully describe the driving conditions, and
reducing the dimensionality of the characteristic parameters
matrix by principal component analysis (PCA), the k-MPSO
clustering algorithm method is applied to cluster the thou-
sands of micro-trips into three classes, from which the typical
driving cycle in a typical city (Jinan, the capital of Shandong
Province, China) is constructed.

The remainder of this paper is organized as follows.
In Section II, the k-MPSO clustering algorithm method is
presented and analyzed in detail. The detailed process of con-
structing the driving cycle in Jinan is described in Section III.
Finally, in Section IV, the conclusions from this study with
respect to the k-MPSO clustering algorithm method are
presented.

II. PROPOSED k-MPSO CLUSTERING ALGORITHM
A. DESCRIPTION OF THE PSO PRINCIPLE
Proposed by Kennedy and Eberhart in 1995 [35], the canon-
ical PSO assumes the existence of a bird flock with a limited
number of birds that search for food in a given solution space.
The exact locations of the food are unknown to all birds, but
the distances between the birds and the food are known. The
most efficient way to find the food is to search near the bird
that is closest to the food.

Assuming that a particle swarm exists with m number of
particles, the position and velocity of particle i are represented
as xi = (xi1, xi2, . . . , xis) and vi = (vi1, vi2, . . . , vis), respec-
tively, where i = 1, 2, . . . ,m, and s is the dimensionality of

particle i. The personal best solution found so far by itself
is represented as pi = (pi1, pi2, . . . , pis), and the global best
solution found by the entire particle swarm is represented
as pg = (pg1, pg2, . . . , pgs). In the iteration process, each
particle updates its position and velocity as follows:

vr+1i = w · vri + c1 · rand · (p
r
i − x

r
i )+ c2 · rand · (p

r
g − x

r
i )

(1)

xr+1i = xri + v
r+1
i (2)

where w is the inertial weight, r is the rth iteration, c1 and
c2 are positive acceleration constants, normally c1 = c2 =
1.4995, and rand is a random sequence in the range of [0,1].
To prevent the particle from searching outside the solution
space, the position and velocity are limited within the ranges
of [xmin, xmax] and [vmin, vmax], respectively.

B. MODIFIED PSO
In the canonical PSO, the particle searches to approach the
personal and global best solution, which makes it converge
quickly but easily fall into local optima, thus displaying the
premature phenomenon. Thus, an improved method of inertia
weight is proposed, and the idea of AFSA is introduced into
the particle search strategy.

1) IMPROVEMENT OF THE INERTIAL WEIGHT
The inertial weight w represents the ability of particles
to maintain self-motion inertia. Earlier researchers set this
weight to a fixed value of 1.0 [35], which makes the speed
of convergence too rapid to obtain sufficient local searching
performance in the late iteration stages.

A better global searching ability and a worse local
searching ability exist with a larger inertia weight. Thus,
an improved method for inertia weight is proposed. The
inertia weight varies slowly at the early iteration stage and
decreases linearly at the later stage, thus producing a strong
global searching ability as well as a strong local searching
ability in the entire iteration stage. The variation of inertia
weight is shown in Fig. 1 and the following equation.
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2
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2
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1
2
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−
3
2
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r
R
,
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2
R < r ≤ R

(3)

where wmax and wmin are the maximum and minimum of w,
which are set to 0.9 and 0.4, respectively, and R is the total
number of the iterations.

2) IMPROVEMENT OF THE PARTICLE UPDATE STRATEGY
AFSA is also a swarm intelligence algorithm based on animal
behaviors in which swarming and following behavior are
performed to search for the global optimal value, and preying
and random behavior are performed to search for the local
optimal value. To strengthen the local searching ability in
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FIGURE 1. The variation of inertia weight.

the early stage, the preying behavior and random behavior
of AFSA are introduced into the PSO.

Preying behavior: Each particle of the PSO is treated as an
artificial fish, and its velocity is treated as the visual of the
artificial fish. The particle xi attempts to find the location xi0
with higher food concentration in its visual range as follows:

xi0 = xi + rand · vi (4)

If xi0 exists, the velocity and position of xi are updated
respectively as follows:

vr+1i = w · vri + c1 · rand · (xi0 − x
r
i )+ c2 · rand · (p

r
g − x

r
i )

(5)

xr+1i = xri + v
r+1
i + step · rand ·

xi0 − xri
||xi0 − xri ||

(6)

where vi is the velocity of the particle, which also the visual of
the artificial fish, and step is the moving step of the particle.
If xi0 cannot be found after attempting the set times

(trynumber), the random behavior is performed.
Random behavior: This behavior is different from that of

traditional AFSA. All particles with fitness value greater than
the particle xi are found. One of the particles, xj, is randomly
selected as the direction to update the velocity and position
of particle xi, which can be expressed as follows:

vr+1i = w · vri + c1 · rand · (xj − x
r
i )+ c2 · rand · (p

r
g − x

r
i )

(7)

xr+1i = xri + v
r+1
i + step · rand ·

xj − xri
||xj − xri ||

(8)

At the early iteration stage, the particle swarm often misses
the global optimum and falls into a local optimum due to the
large inertia weight. Thus, it is necessary to strengthen the
local searching ability in the early stage. The particle swarm
performs preying behavior first. It can be observed that the
historical optimal position of each particle is replaced by
the better position in its visual range, which strengthens the
local searching ability of the particle. At the later iteration

FIGURE 2. The flow diagram of MPSO.

stage, as the inertia weight decreases, the local searching
ability strengthens, and the global searching ability weak-
ens. Therefore, the velocity and position of each particle are
updated according to the canonical PSO, which improves
the global searching ability. MPSO guarantees the global
searching ability and strengthens its local searching ability
at both the early and later stages. The process of MPSO is
given as shown in Fig. 2.

3) VERIFICATION OF THE EFFECTIVENESS OF MPSO
To verify the effectiveness of the proposed MPSO, 4 typical
multi-modal benchmark functions are selected to test the per-
formance. The four functions are shown in (9) through (12)
and Fig. 3, and there is only one global optimum but many
local extrema for each function.

F1(x, y) = −20 · e−0.2·
√

x2+y2
2 − e

cos2πx+cos2πy
2 + 20+ e (9)
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TABLE 1. The comparison of experimental results on 4 test functions.

where x and y are limited within the range of [-5,5].

F2(x, y) =
sin

√
x2+y2

2√
x2+y2

2

+ e
cos2πx+cos2πy

2 − e (10)

where x and y are limited within the range of [-2,2].

F3(x, y) =
sin2

√
x2+y2

2 − 0.5

[1+ 0.001(x2 + y2)]2
+ 0.5 (11)

where x and y are limited within the range of [-100,100].

F4(x, y) =
x2 + y2

4000
− cosx · cos

y
√
2
+ 1 (12)

where x and y are limited within the range of [-10,10].
All algorithms are run on a PC with a 3.20 GHz quad-core

processor and 16.0 GB RAM. With the same MATLAB
coding environment, each function is calculated 20 times
with PSO, AFSA, SPSO, CPSO andMPSO. The experiments
attempt to ensure that the parameters of each algorithm are
consistent: the total number of iterations is 300, and the
number of particles or fish is 40. The parameters of AFSA
are set as follows: visual is 0.5 times the independent variable
upper limit for each test function, and step = 0.4visual. The
parameters of MPSO are set as follows: c1 = c2 = 1.4995,
vmax is 0.2 times the independent variable upper limit for each
test function, visual = v, step = 0.5visual, and trynumber =
100. The inertia weights of SPSO and CPSO are set as 0.9,
and the other parameters are the same as those of MPSO.
The experimental results of each algorithm are compared as
shown in Table 1.

It can be observed that MPSO is much better than the other
algorithms in both computational stability and accuracy under
the same test environment and parameter settings, which

FIGURE 3. The three-dimensional graphs of the four test functions.

shows that the improved method is effective in searching for
optimal values.

To further compare the performances, Fig. 4 shows the
average iteration process of 20 runs for each algorithm.
MPSO has a higher convergence accuracy than the other
algorithms. In optimization of each function, the convergence
speed of the other algorithms might be faster in the early
stage, but the optimal values are no longer updated while
the iteration continues. Due to the introduction of preying
and random behaviors, MPSO tends towards convergence
quickly while ensuring exploration in the full search space
in the early stage. With the decrease in the inertia weight,
the local searching ability is enhanced and converges, further
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FIGURE 4. Comparison of the average iteration processes for each
algorithm.

TABLE 2. Clustering results comparison of Iris standard data set.

improving the accuracy over that of PSO, AFSA, SPSO
and CPSO.

C. PROPOSED k-MPSO CLUSTERING ALGORITHM
The k-MPSO clustering algorithm is a hybrid clustering algo-
rithm based on MPSO and the k-means clustering algorithm,
for which the position of each particle represents the position
of k clustering centers. The mathematical process is shown as
follows:

Suppose there is a data set Y with a number of h groups of
data, which can be written as Y = (yl1, yl2, . . . , yln), where
l = 1, 2, . . . , h.
First, the position xi and velocity vi of the particle i are

initialized randomly as follows: xi = (c1, c2, . . . , ck ) and
vi = (q1, q2, . . . , qk ), where cj = (cj1, cj2, . . . , cjn), qj =
(qj1, qj2, . . . , qjn), i = 1, 2, . . . ,m and m particles cluster the
entire data set inm different ways, j = 1, 2, . . . , k , and cj and
qj are the jth clustering center and its velocity, respectively.
The data set Y are clustered into k classes according to the

Euclidean distance from each data yl to each cluster center cj
of the particle i. The sum of distances is calculated to evaluate
the fitness value of the particle i, which is shown in (13).

f (xi) =
k∑
j=1

h∑
l=1

√√√√ n∑
o=1

(ylo − cjo)2 (13)

where cj is the closest clustering center to yl .
When the individual and global optimal values of the initial

generation are determined, the positions and velocities of the
m particles are updated to obtain the minimum fitness value
fmin(xa) based on the proposed MPSO. After obtaining the
optimal clustering centers according to the particle a, the data
set Y is eventually clustered into k classes.

The Iris standard data set is selected to compare the perfor-
mance of k-MPSO with that of the k-means clustering algo-
rithm. There are four attributes and a total of 150 groups of
data to be divided into three classes in the data set. All data are
standardized by themin-max function before clustering. Each
algorithm is run 20 times to obtain the clustering centers, and
the results are shown in Table 2. It can be observed that the
k-MPSO clustering algorithm has a lower average error rate
than the k-means clustering algorithm. Furthermore, k-means
analysis also easily falls into local optima, and the efficiency
of the k-MPSO clustering algorithm is strengthened, which
means that it can be used in application and research of
practical engineering problems.
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FIGURE 5. The speed-time profile of a trip.

III. CONSTRUCTION OF A TYPICAL DRIVING CYCLE
A. DATA ACQUISITION AND PROCESSING
Within themain urban areas in Jinan, the testers drive vehicles
according to their purpose, without a given route or date,
to obtain driving data for the period 7:00-9:00. The data
acquisition device is the USBCAN-OBD, which collects data
through the controller area network (CAN) on vehicles con-
nected with the OBD interface. Using the ECAN Tools soft-
ware, the data frames obtained through CAN are identified
by the software OBD interface to obtain the parameters, e.g.,
the engine speed and vehicle speed. To obtain sufficient data
to construct a typical driving cycle, the experimental vehicles
drive to different destinations as many times as possible.
Fig. 5 shows the speed-time profile of one trip.

In the testing process, abnormal points occasionally appear
in the collected data, which can affect the entire speed-time
profile. Therefore, first, the abnormal points are removed by
a filtering method as follows:

vt =


0, vt−1 + vt+1 = 0
0, vt−2 + vt+2 = 0
vt , else

(14)

Second, the speed curve is corrected by a high-frequency
interference filter as follows [36]:

vt =
1
T
·

T∑
x=−T

K (
x
T
) · vt+x (15)

where vt is the vehicle speed at the moment t , T = 4s,
and K ( xT ) represents the weightiness of the vehicle speed at
the moment t + x, which can be obtained via the following
equation[37].

K (
x
T
) =


T 2
− 1
T 2 · [1− (

x
T
)2]2,

x
T
< 1

0, else
(16)

Affected by many factors, e.g., traffic stream, pedestrians
and traffic lights, driving vehicles show different kinematic
modes. Thus, 4 kinematic modes are defined as follows:

TABLE 3. The 19 representative characteristic parameters.

1. Idling mode: v = 0 and a = 0,
2. Acceleration mode: v > 0 and a ≥ 0.15,
3. Cruising mode: v > 0 and |a| < 0.15,
4. Deceleration mode: v > 0 and a ≤ −0.15,
where v is the vehicle speed (m/s), and a is the accelera-

tion (m/s2).
The speed-time data are divided into diverse kinematic

micro-trips from the last idling mode to the current idling
mode. To describe the kinematic micro-trips accurately and
comprehensively, 19 representative characteristic parameters
are selected and are shown in Table 3.

By inputting the collected speed-time data, characteristic
parameters of 108 kinematic micro-trips are extracted from
thousands of micro-trips, which can be shown as Table 4.

In the process of analyzing the driving data, the informa-
tion on the kinematicmicro-tripsmight be similar because too
many characteristic parameters are selected. Thus, the princi-
pal component analysis (PCA) method [38], [39] is adopted
to reduce the dimensionality of the characteristic parameter
matrix. First, the obtained characteristic matrix is standard-
ized to eliminate the influence of the magnitude order and
unit. Via mathematical transformation, several principle com-
ponents with a lack of linear correlation are extracted from the
characteristic parameters matrix to reflect the original char-
acteristic parameters more comprehensively. By calculation,
the eigenvalues of the first three principle components are
8.618, 4.213 and 2.458, respectively, of which the accumu-
lative contribution rate is 80.466%, i.e., they are sufficient to
describe the 108 kinematic micro-trips.

B. CLUSTERING ANALYSIS BASED ON k-MPSO
By reducing the dimensionality of the original characteris-
tic matrix to obtain a three-dimensional matrix, the compu-
tational complexity is greatly decreased, and the k-MPSO
clustering algorithm is applied to cluster the 108 kinematic
micro-trips.
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TABLE 4. The characteristic parameters of 108 kinematic micro-trips.

FIGURE 6. The clustering result of 108 kinematic micro-trips.

As shown in Fig. 6, the samples are divided into three
classes to represent the low-speed, medium-speed and
high- speed conditions of Jinan. The first class consists
of low-speed conditions, representing urban crowded traf-
fic. Frequent modes of rapid acceleration and deceleration
occur, with a short cruising time of the micro-trips and a
high percentage of idling time. The second class consists of
medium-speed conditions, for which the maximum speeds
fall mostly in the range of 30-60 km/h, the idling modes
are relatively small, traffic is not heavy, and acceleration
and deceleration modes often occur. The third class consists
of high-speed conditions, for which the maximum speeds

FIGURE 7. The typical driving cycle in Jinan.

FIGURE 8. The distribution of acceleration-speed scatters.

exceed 60 km/h, the average speed is high, and the driv-
ing time is long with a high percentage of cruising time,
i.e., good traffic conditions. It can be inferred that the first
class represents urban driving conditions on residential roads,
the second class represents minor arterial roads, and the third
class represents arterial roads.
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C. CONSTRUCTION OF THE DRIVING CYCLE
Referring to the research in [40], the total time of the con-
structed driving cycle is set to approximately 1500 s. After
calculating the percentage of the time length of the above
three classes, the time allocation of each class in the con-
structed driving cycle can be determined. The kinematic
micro-trips with characteristic parameters closest to the clus-
tering centers are selected to represent the typical driving
conditions of this class. The typical driving cycle in Jinan is
shown in Fig. 7.

To verify the effectiveness of the typical driving cycle,
acceleration-speed scatter diagrams are constructed to de-
scribe the distribution before and after clustering and are
shown in Fig. 8.

As shown in Fig. 8, the distribution of the typical driving
cycle is similar to that of the original data, i.e., it can represent
the typical driving conditions in Jinan and can be applied to
establish an appropriate vehicle control strategy.

IV. CONCLUSION
To improve the fuel economy and emission characteristics
of vehicles, it is of great importance to construct a practical
driving cycle in a specific city for study of vehicle control
strategies. A novel and efficient method for constructing
typical driving cycles is presented in this paper.

Effective clustering of micro-trips is the key to obtaining
the typical driving cycle, and thus, the k-MPSO cluster-
ing algorithm is presented. First, by combining the prey-
ing behavior and random behavior of AFSA with the PSO
method, a modified particle swarm optimization (MPSO)
approach is proposed. MPSO is demonstrated to produce
much better accuracy and stability than PSO, AFSA, SPSO
and CPSO in comparison of the optima means and stan-
dard deviations for optimization calculation of four typi-
cal multi-modal benchmark functions. Second, by applying
MPSO to optimize the k-means algorithm, the k-MPSO clus-
tering algorithm is obtained. Compared with the k-means
clustering algorithm, the k-MPSO clustering algorithm shows
better performance with a lower average error rate of 7.81%
compared with the average error rate of 11.6% in the case of
clustering the Iris standard data set.

The proposed k-MPSO clustering algorithm is applied to
construction of the typical driving cycle in Jinan. Using PCA
and the k-MPSO clustering algorithm method, the collected
data are clustered into three classes that reflect with the real-
world driving conditions of vehicles in Jinan. The distribution
of the acceleration-speed scatters also proves that the typical
driving cycle can reflect the traffic characteristics of Jinan to
a certain extent. In conclusion, the proposed method is a fea-
sible and efficient way to apply the proposed k-MPSO clus-
tering algorithm to construction of the typical driving cycle.
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