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ABSTRACT This paper studies the static output quadratic control problem of discrete-time Markov jump
linear systems (MJLS) with hard constraints on the norm of the state and control variables. Both cases the
finite horizon as well as the infinite horizon are considered. Regarding the Markov chain parameter θ (k),
it is assumed that the controller only has access to a detector which emits signals θ̂ (k) providing information
on the parameter θ (k). The goal is to design a static output feedback linear control using the information
provided by detector θ̂ (k) in order to minimize an upper bound for the quadratic cost and satisfy the hard
constraints. For the infinite horizon case it is also imposed that the controller stochastically stabilizes the
closed loop system. LMIs (linear matrix inequalities) are formulated in order to obtain a solution for these
optimization problems. The cases in which the initial conditions are fixed and when it is desired to maximize
an estimate of the domain of an invariant set are also analyzed. Some numerical examples are presented for
the purpose of illustrating the results obtained.

INDEX TERMS Constrained control, hybrid systems, Markov processes, LMIs, static output control,
stochastic optimal control.

I. INTRODUCTION
In recent years systems subject to sudden changes in their
dynamics have been the focus of many researches in engi-
neering and related fields. Faced with this situation, Markov
jump linear systems (MJLS) appear as an useful mathe-
matical tool capable of modeling and analyzing these sys-
tems, covering several areas of application such as: systems
subject to component failures and repairs [3], [27]; active
fault-tolerant control systems (AFTCS) [15], [16], [22], [46];
economics [38]; finance [4], [44]; energy planning [18], [31];
reservoir operation [26], [47]; etc.

MJLS have by now an extensive literature in which
assumptions, extensions, generalizations and different struc-
tures are considered (see, for instance, [30]). As a sample of
works in this area we can mention [24], [28], [36] for the
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continuous-time domain, and [1], [25], [41] for the discrete-
time case. Also, we can cite the books [6], [7], which give
a solid basis on stability, filtering, and optimal control of
MJLS in the discrete-time and continuous-time cases. In the
aforementioned works theMarkov parameter θ (k) is assumed
to be available to the controller. However in many applica-
tions this does not occur, and the only information available
to the controller about the system mode is provided by an
associated detector θ̂ (k). In order to analyze this situation it
is usually assumed that

(
θ (k), θ̂ (k)

)
follows a hidden Markov

model, as it was adopted, for instance, in [8], [39], yield-
ing to the so-called hidden MJLS (or detector-based MJLS
approach). Nowadays, we can find in the literature several
works using this framework, also referred to as asynchronous
control as presented, e.g., in Song et al [34], [35], in which
the problems of static output feedback control and sliding
mode control of MJLS with hidden observations were con-
sidered, and Dong et al [12]–[14], where an asynchronous
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controller is designed based on a hidden Markov model and
following a Takagi-Sugeno fuzzy approach under different
assumptions. Ogura et al [23] considered an observation
process in which the Markov chain is accessed only when
some operation modes of a different Markov process are
visited, a model that generalizes the mode-dependent, cluster,
and mode-independent formulations, as well as the detector
approach of Costa et al [8].

In many practical situations in the control of a dynamic
system there are physical constraints on the actuators and
state variables, so that these constraints have to be taken
into consideration in the design of the controller. Regarding
the constrained MJLS with the Markov parameter available
to the controller we can mention the papers [42], [43],
where constraints on the first and second moments for
the state and control variables are imposed; [25], which
presents a generalization of MJLS, where the subsystems
can be non-linear; [21], which deals with a model pre-
dictive control (MPC) formulation and adopts uncertain-
ties of the polytopic type in the system matrices as well
as in the transition probabilities between modes; [40],
which introduces polytopic constraints on the inputs and
states of a robust MPC problem for MJLS; and [5], which
considers a quadratic state feedback optimization problem
for MJLS subject to constraints on the state and control
variables.

This paper deals with constrained static output control
for discrete-time MJLS with partial information using LMI
optimization problems for minimizing an upper bound for
the quadratic cost function and/or maximizing the estimate
of the domain of an invariant set with a fixed upper bound
cost. The static output feedback control is known for its
complexity, since even for the case without jumps it can
be only formulated as a bilinear matrix inequality (BMI)
problem, see, for instance, the survey [29]. For hiddenMJLS,
it was introduced in [9] a new method for the design of mixed
H2/H∞ static output feedback controllers providing suitable
upper bounds for theH2 andH∞ norms under uncertainty in
the transition matrix. Within the discrete-time finite horizon
setup it was considered in [33] the stochastic boundedness
and `2 − `∞ disturbance attenuation performance with guar-
anteed upper bound costs for hidden MJLS via a static output
feedback strategy. Notice that the introduction of constraints
on the actuators and state variables brings new challenges for
the problem, since the design of the controllers has to take
into account not only the uncertainties due to the detector
but also the presence of the hard constraints on the state and
control variables. These points represent the main technical
difficulties for studying this problem. The advantages of the
method proposed in this paper is that we develop LMIs opti-
mization problems in order to obtain the desired controllers
for the finite and infinite horizon cases. Notice that with the
existing LMIs tool boxes the proposed optimization problems
can be easily implemented. As far as the authors are aware of,
this static-output hidden MJLS problem with constraints on
the actuators and state variables had not been considered in

previous existing works. The main contributions of this paper
are summarized as follows.
• Differently from [5], [21], [25], [40], [42], [43],
we introduce the constrained quadratic control for
discrete-timeMJLS considering that the Markov param-
eter θ (k) is not available to the controller and, instead,
we only have an estimation for this parameter provided
by θ̂ (k) with an associated detection probability matrix,
following the hidden MJLS methodology.

• With respect to the works [8] and [9], which study con-
trol problems for the hidden MJLS without constraints,
it is imposed in this paper hard symmetrical constraints
on the norm of the state and control variables when the
hidden MJLS framework is adopted.

• The finite and infinite horizon scenarios are tackled in
the development of the control law via static output
feedback, which can be considered as a generalization
of the work introduced in [45], which only addressed
the state feedback case within the infinite horizon
setup.

• Numerical simulations of an unmanned aircraft system
subject to actuators faults and under hard constraints
in the control variable are presented as an illustrative
example of the derived algorithms.

The work is organized as follows. The notation that will
be used in the following sections are presented in Section II.
Section III introduces some important definitions such as:
structure of the system, time-variant and time-invariant con-
trollers, stabilizability for MJLS and the finite and infinite
horizon cases. The main results regarding the finite and
infinite cases (Problem 9 and Problem 12) are shown in
Section IV and Section V respectively, where we suppose
that the initial condition for state x0 and Markov parame-
ter θ0 are unknown. Section VI deals with two alternative
problems, in which in the first one we consider that the
initial state and Markov parameter are known (x0, θ0), and
in the second problem it is obtained the largest internal ball
in a critical region for a fixed cost upper bound. Numerical
simulations to illustrate the developed results are presented
in Section VII. We conclude this paper with some final com-
ments in Section VIII.

II. NOTATION
For X and Y complex Banach spaces, we set B(X,Y) the
Banach space of all bounded linear operator of X into Y.
For simplicity we set B(X) := B(X,X). We denote by Rn

the n-dimensional real space, and setM(Rn,Rm) the normed
linear space of all m by n real matrices. Whenever m = n we
write M(Rn,Rn) = M(Rn) for simplicity. The superscript
′ will indicate transpose. L ≥ 0 and L > 0 will be used
if a self-adjoint matrix is positive semi-definite or positive
definite respectively and we write M(Rn)+ = {L ∈ M(Rn);
L = L ′ ≥ 0}. We denote by ‖.‖ either the induced norm in
M(Rn) or the standard norm in Rn. We set diag{Qs} as the
matrix inM(RSn) formed by Q1, . . . ,QS in the diagonal, and
zero elsewhere.
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We defineHm,n the linear space made up of allN -sequence
of matrices V = (V1, . . . ,VN ), Vi ∈ M(Rm,Rn), i ∈ N.
We set Hn,n

= Hn and Hn+
= {V = (V1, . . . ,VN ) ∈ Hn

;

Vi ∈ M(Rn)+, i ∈ N}. For H = (H1, . . . ,HN ) and V =
(V1, . . . ,VN ) in Hn+ the notation H ≤ L (H < L) indicates
that Hi ≤ Li (Hi < Li) for each i ∈ N.

On a probability space (�,P,F) with filtration {Fk}

we define E(.) as the expected value operator and `n2 as
the Hilbert space formed by the sequence of second order
random vectors z = (z(0), z(1), . . .) with z(k) ∈ Rn and
Fk -measurable for each k = 0, 1, . . ., and such that,
‖z‖22 :=

∑
∞

k=0 ‖z(k)‖
2
2 <∞, where ‖z(k)‖22 := E(‖z(k)‖2).

We have the following results, stated as remarks, which
will be useful in the sequel.

Remark 1: W =

[
Q S
S ′ R

]
> 0 if and only if R > 0,

Q > SR−1S ′. For non-strict inequalities this result can be

generalized as follows: W =

[
Q S
S ′ R

]
≥ 0 if and only if

R ≥ 0, Q ≥ SR†S ′, S(I − RR†) = 0, where R† denotes the
Moore-Penrose inverse of R (see [2]).
Remark 2: If Q > 0 then U + U ′ − Q ≤ U ′Q−1U .

III. PROBLEMS FORMULATION
On a probabilistic space (�,P,F) consider the following
controlled discrete-time linear system with Markov jumps:

x(k + 1) = Aθ (k)x(k)+ Bθ (k)u(k), (1)

y(k) = Hθ (k)x(k), (2)

z(k) = Cθ (k)x(k)+ Dθ (k)u(k), (3)

x(0) = x0, θ(0) = θ0, (4)

where x(k) ∈ Rn is the state variable, y(k) ∈ Rp the observ-
able output variable, u(k) ∈ Rm the control variable and
z(k) ∈ Rr the controlled output variable. The operation mode
of the system is determined by a Markov chain θ (k) taking
values in the set N = {1, . . . ,N } and with transition prob-
ability matrix P = [pij]. We will assume that the controller
does not have access to neither x(k) nor θ (k) but, instead,
it can observe the output variable y(k) and a signal θ̂ (k) ∈M.
This signal takes values in a finite set M = {1, . . .M}, and
is related to the Markov chain θ (k) in the following way.
Let F̂0 be the σ -field generated by {x(0), u(0), θ(0)} and F̂k
be the σ -field generated by {x(0), u(0), θ(0), θ̂ (0), . . . , x(k),
u(k − 1), θ(k)} (therefore excluding θ̂ (k) at time k).
We assume that the signal provided by the detector θ̂ (k) ∈
{1, . . . ,M} is related to θ (k) in such a way that

P(θ̂ (k) = ` | F̂k ) = P(θ̂ (k) = ` | θ (k))

= αθ (k)`, ` ∈M, (5)

with
M∑̀
=1
αi` = 1 for each i ∈ N. Roughly speaking, the values

of θ̂ (k) ∈M depends only on the present value of θ (k), being
thus independent of all previous and present values of the
other processes, and αi` gives the probability of θ̂ (k) = `

whenever θ (k) = i. We define for each i ∈ N,

Ii
.
= {` ∈M;αi` > 0} = {k i1, . . . , k

i
τ i
}

and we assume that ∪Ni=1Ii = M. It will be convenient to
define τ = τ 1 + . . .+ τN .
Remark 3: An important question that may be posed is

how to implement the model (θ (k), θ̂ (k)) in real applications.
This is an open point in the literature that deserves further
investigation, that is, how to satisfactorily tune the proba-
bilities αi`. A possibility is to follow a similar approach as
in [22], presented within the continuous-time framework, and
develop a statistical algorithm to estimate the values of αi`
within the discrete-time setup, or to follow the partly acces-
sible mode detection probabilities approach as presented
in [35].

As pointed out in [8], the model for θ̂ (k) above encom-
passes the perfect information case (M = N and αii = 1,
for i ∈ N, which would correspond to the situation in which
θ̂ (k) = θ (k), that is, θ (k) is known, and Ii = {i}, M = N),
the mode-independent case (M = 1 and αi1 = 1 for all
i ∈ N, which corresponds to the situation in which θ̂ (k)
does not provide any information about θ (k), that is, θ (k)
is totally unknown), and the cluster case (see [11]), which
corresponds to the situation such that the state spaceN can be
decomposed into disjoint sets and it is only known to which
of these disjoint sets the Markov chain θ (k) belongs to.
Remark 4: We are going to study optimization problems

for the finite and infinite horizon cases. For the finite horizon
case all the matrices Ai, Bi, Hi, Ci, Di, P, and [αi`] could be
time-dependent but, for notational simplicity, we will con-
sider them time invariant.

We will consider static output feedback controls using the
observed emitted signal θ̂ (k) instead of the unknown variable
θ (k), that is, u(k) will be of the following form:

u(k) = Kθ̂ (k)(k)y(k), (6)

for K`(k) ∈M(Rp,Rm), ` ∈M. Associated to a control as in
(6) set for i ∈ N, ` ∈ Ii,

Ai`(k)
.
= Ai + BiK`(k)Hi, (7)

Ci`(k)
.
= Ci + DiK`(k)Hi. (8)

For the infinite horizon case we will need the definition
of stochastic stabilizability, presented next. In this case we
consider time-invariant controllers

u(k) = Kθ̂ (k)y(k), (9)

for K` ∈M(Rp,Rm), ` ∈M, and set for i ∈ N, ` ∈ Ii,

Ai`
.
= Ai + BiK`Hi, Ci`

.
= Ci + DiK`Hi. (10)

Definition 5: We say that System (1) is stochastically sta-
bilizable if there exists K` ∈ B(Rn,Rp), ` ∈ M, such that
for u(k) as in (6) we have, for every initial condition x0 with
finite second moment and every initial Markov state θ0, that

‖x‖22 =
∞∑
k=0

E(‖x(k)‖2) <∞. (11)
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We denote by K the set of feedback gains K = {K`; ` ∈M},
such that stochastically stabilizes System (1).

For controllers as in (6), and a set of feedback gains
K (k) = {K`(k); ` ∈ M}, define the finite horizon cost, with
final time Tf , as:

JTf (K ) .=
Tf−1∑
k=0

E(‖z(k)‖2)+ E(‖C f
θ (Tf )

x(Tf )‖2) (12)

with z = (z(0), . . .) given by (3). Since u(k) = Kθ̂ (k)(k)y(k) =
Kθ̂ (k)(k)Hθ (k)x(k) we get that

z(k) = Cθ (k)x(k)+ Dθ (k)u(k)

= Cθ (k)x(k)+ Dθ (k)Kθ̂ (k)(k)Hθ (k)x(k)

= Cθ (k)θ̂ (k)(k)x(k) (13)

and thus (12) can be re-written as

JTf (K ) =
Tf−1∑
k=0

E(‖Cθ (k)θ̂ (k)(k)x(k)‖
2)+ E(‖C f

θ (Tf )
x(Tf )‖2).

(14)

For the infinite horizon case with K = {K`; ` ∈M} ∈ K and
control as in (9), the cost will be given by (see (13))

J (K ) .= ‖z‖22 =
∞∑
k=0

E(‖z(k)‖2)

=

∞∑
k=0

E(‖Cθ (k)θ̂ (k)x(k)‖
2). (15)

We present next the hard constraints that will be considered in
our optimization problems. The motivation for these restric-
tions is that in many practical situations there are constraints
on the manipulated and controlled variables. As pointed out
in [17], constraints on the input are typically hard constraints,
since they represent limitations on process equipment (such
as valve saturations in industrial processes), and thus cannot
be relaxed. On the other hand, constraints on the output are
often associated to performance goals in which it is desired
to keep the output within some range. With this in mind
we will consider the following hard constraints on the state
variable x(k) and control variable u(k). For coefficient matri-
ces Fι of appropriated dimensions and bounds ρι, which are
parameters chosen or established according to the nature or
design criteria of the system to be controlled, we introduce
the constraints[

x(k)′ u(k)′
]
F ′ιFι

[
x(k)
u(k)

]
≤ ρι, ι = 1, . . . , t. (16)

We define next the control problems we are interested in;
Definition 6 (The Finite Horizon Case): Find K (k) =

{K`(k); ` ∈ M}, k = 0, . . . ,Tf − 1, and a set D0 ⊂ Rn
× N

such that whenever (x0, θ0) ∈ D0, we have that JTf (K ) ≤
δ‖x0‖2, (16) (for k = 0, . . . ,Tf − 1) and the final constraint
(17) (below) are satisfied,

x(Tf )′(Gfι )
′Gfι x(Tf ) ≤ ρ

f
ι , ι = 1, . . . , t. (17)

In the next definition we consider a variable δ > 0 which
is associated to an upper bound value for the cost.
Definition 7 (The Infinite Horizon Case): Find K ∈ K

and a set D0 ⊂ Rn
× N such that whenever (x0, θ0) ∈ D0

we have that J (K ) ≤ δ‖x0‖2 and (16) are satisfied for all
k = 0, 1, . . ..
We conclude this section with the following condition

regarding Hi:
Condition 8: It is assumed that Hi has full row rank for

all i ∈ N.
From Condition 8 there exist non-singular matrices Si such

that for each i ∈ N,

HiSi =
[
I 0

]
. (18)

IV. THE FINITE HORIZON CASE
In this section we analyze the finite horizon quadratic control
problem as posed in Definition 6 through a LMI optimization
problem. The goal will be to obtain K (k) = {K`(k); ` ∈ M},
k = 0, . . . ,Tf − 1, which minimizes the upper bound value
δ at the same time that we get a set D0 ⊂ Rn

× N such that
whenever (x0, θ0) ∈ D0, we have that JTf (K ) ≤ δ‖x0‖2 and
(16), (17), are satisfied.

In order to define the LMI optimization problem, set for
i ∈ N, 0i = [p1/2i1 I1 . . . p

1/2
iN IN ] ∈M(Rn,Rτn), where Ii is an

n × τ in matrix formed by τ i identity matrices of dimension
n, and

diag{Rsζ }
.
= diag{R1k11

, . . . ,R1k1
τ1
, . . . ,RNkN1

, . . . ,RNkN
τN
},

a block-diagonal matrix of dimension nτ and, for fixed i ∈ N,

diag{Riζ }
.
= diag{Rik i1

, . . . ,Rik i
τ i
},

a block-diagonal matrix of dimension nτi. Notice that
diag{Rsζ } = diag{diag{R1ζ }, . . . , diag{RNζ }}. We will con-
sider the following problem:
Problem 9: Find δ > 0; Q(k) = (Q1(k), . . . ,QN (k)) > 0;

Riζ (k) > 0; 8iζ for i ∈ N, ζ ∈ Ii, k = 0, . . . ,Tf ; and Y`(κ),
U`(κ) for ` ∈M, κ = 0, . . . ,Tf − 1, such that

min δ

subject to,[
δI Ii
• diag{Riζ (0)}

]
≥ 0, for i ∈ N, (19)[

U`(k)′ + U`(k)− αi`S
−1
i Ri`(k)(S

−1
i )′ (AiTiU`(k)+ Bi

[
Y`(k)′

0

]
)′0i

• diag{Rsζ (k + 1)}
• •

(CiSiU`(k)+ Di

[
Y`(k)′

0

]
)′

0
I

 > 0, (20)

[
8iζ +8

′
iζ − Riζ (Tf ) 8′iζ (C

f
i )
′

• τ iI

]
> 0, (21)
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for i ∈ N, ` ∈ Ii, k = 0, . . . ,Tf − 1, where,

U`(k) =
[
U`,1(k) 0
U`,2(k) U`,3(k)

]
, (22)

and[
U ′
`
(k)+ U`(k)− S

−1
i Qi(k)(S

−1
i )′ (AiTiU`(k)+ Bi

[
Y`(k)′

0

]
)′

• Qj(k + 1)

]
> 0,

(23)

for i ∈ N, ` ∈ Ii, j such that pij > 0, k = 0, . . . ,Tf − 1, andρ2ι I Fι

[
SiU`(k)[
Y`(k) 0

]]
• U`(k)′ + U`(k)− S

−1
i Qi(k)(S

−1
i )′

 > 0, (24)

for ι = 1, . . . , t , i ∈ N, ` ∈ Ii, k = 0, . . . ,Tf − 1, and[
ρ2ι I GιSiU`(Tf )
• U`(Tf )′ + U`(Tf )− S

−1
i Qi(Tf )(S

−1
i )′

]
> 0,

(25)

for ι = 1, . . . , t , i ∈ N, ` ∈ Ii.
For P(k) = (P1(k), . . . ,PN (k)) > 0 define the function

P(x, i, k) = x ′Pi(k)x, i ∈ N, and, for γ > 0,

LP(γ, k) :=
{
(x, i) ∈ Rn

× N; x ′Pi(k)x ≤
1
γ

}
. (26)

We have the following theorem.
Theorem 10: Suppose there is a solution δ > 0, Q(k) =

(Q1(k), . . . ,QN (k)) > 0, Riζ (k) > 0, 8iζ , i ∈ N, ζ ∈ Ii,
k = 0, . . . ,Tf , Y`(κ), U`(κ), ` ∈ M, κ = 0, . . . ,Tf − 1,
for Problem 9. Define K`(k) = Yl(k)U`,1(k)−1, ` ∈ M
and P(x, i, k) = x ′Pi(k)x, Pi(k) = Qi(k)−1, i ∈ N.
Then JTf (K ) ≤ δ‖x0‖2, and if (x0, θ0) ∈ LP(1)(0) then
(x(k), θ(k)) ∈ LP(1, k) for all k = 0, 1, . . . ,Tf and the
constraints (16), (17), are satisfied.

Proof: From (20) we must have that U`(k) are non-
singular. Indeed, if we could find v 6= 0 such that
U`(k)v = 0 then from (20) and pre and pos multiplying by

the vector

v0
0

we would end up with v′U`(k)′v+v′U`(k)v−

αi`v′S
−1
i Ri`(k)(S

−1
i )′v = −αi`v′S

−1
i Ri`(k)(S

−1
i )′v > 0

(since αi` > 0 and Ri`(k) > 0), which is a contradiction.
From this and (22) it follows that

U`(k)−1 =
[

U`,1(k)−1 0
−U`,3(k)−1U`,2(k)U`,1(k)−1 U`,3(k)−1

]
.

(27)

From Remark 2 and (20) we get thatU`(k)′(S−1i (αi`Ri`(k))(S
−1
i )′)−1U`(k)

•

•

(AiTiU`(k)+ Bi

[
Y`(k)′

0

]
U`(k))′0i (CiSiU`(k)+ Di

[
Y`(k)′

0

]
)′

diag{Rsζ (k + 1)} 0
• I


> 0, (28)

so that by pre and post multiplying (28) by diag{(U ′`)(k)
−1,

I , I } and its transpose, it yields to: S
′
i (αi`Ri`(k))

−1Si (AiTi + Bi

[
Y`(k)′

0

]
U`(k)−1)′0i

• diag{Rsζ (k + 1)}
• •

(CiSi + Di

[
Y`(k)′

0

]
U`(k)−1

0
I

 > 0. (29)

It follows from (27) and (18) that

Bi
[
Y`(k) 0

]
U`(k)−1 = Bi

[
Y`(k)U`,1(k)−1 0

]
= Bi

[
K`(k) 0

]
= BiK`(k)

[
I 0

]
= BiK`(k)HiSi, (30)

and similarly, Di
[
Y`(k) 0

]
U`(k)−1 = DiK`(k)HiSi. From

(30) and pre and post multiplying (29) by diag{(S ′i )
−1, I , I }

and its transpose, it yields to
(αi`Ri`(k))−1 (Ai + BiK`(k)Hi)′0i (Ci + DiK`(k)Hi)′

• diag{Rsζ (k + 1)} 0
• • I

>0.

(31)

From Remark 1 we get that (31) is equivalent to

Ri`(k)−1>αi`
{
(Ai + BiK`(k)Hi)′

×

 N∑
j=1

pij
(∑
ζ∈Ij

Rjζ (k + 1)−1
) (Ai+BiK`(k)Hi)

+ (Ci + DiK`(k)Hi)′(Ci + DiK`(k)Hi)
}
, (32)

for i ∈ N, ` ∈ Ii. Set Vi(k) =
∑
ζ∈Ii Riζ (k)

−1, i ∈ N,
V (k) = (V1(k), . . . ,VN (k)). From (32) we have that

Vi(k) >
∑
ζ∈Ii

αiζ

{
(Ai + BiKζ (k)Hi)′Ei(V (k + 1))

× (Ai + BiKζ (k)Hi)

+ (Ci + DiKζ (k)Hi)′(Ci + DiKζ (k)Hi)
}
. (33)

Multiplying (33) from the left-hand side by x(k)′ and
the right-hand by x(k) and taking the expected value, we
get that (from the same arguments as in the proof of
Proposition 4 in [8]):∥∥∥Vθ (k)(k)1/2x(k)∥∥∥2

2
= E(x(k)′Vθ (k)(k)x(k))

≥ E(x(k + 1)′Vθ (k+1)(k + 1)x(k + 1))

+‖z(k)‖22

=

∥∥∥Vθ (k+1)(k + 1)1/2x(k + 1)
∥∥∥2
2

+‖z(k)‖22 . (34)
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Summing up (34) from k = 0 to Tf − 1, we obtain that

Tf−1∑
k=0

‖z(k)‖22 ≤ E(x ′0Vθ0 (0)x0)− E(x(Tf )
′Vθ (Tf )(Tf )x(Tf ))

≤ δ‖x0‖22 − E(x(Tf )
′Vθ (Tf )(Tf )x(Tf )), (35)

where the last inequality follows from (19) since that from
Remark 1 we derive that (19) is equivalent to

δI ≥
∑
ζ∈Ii

R−1iζ (0) = Vi(0). (36)

Notice that, from (21) and the same arguments as above,
we get that Riζ (Tf )−1 > 1

τ i
(C f

i )
′(C f

i ), so that Vi(Tf ) =∑
ζ∈Ii Riζ (Tf )

−1 > (C f
i )
′C f
i (since =

∑
ζ∈Ii 1 = τ

i). From
this and (35) we obtain that JTf (K ) ≤ δ‖x0‖22.
Let us show now that if (x0, θ0) ∈ LP(1)(0) then

(x(k), θ(k)) ∈ LP(1, k) for all k = 0, 1, . . . ,Tf . From (23)
and Remark 2, we have that[
U ′`S

′
iQi(k)

−1SiU` (AiSiU`(k)+ Bi
[
Y`(k) 0

]
)′

• Qj

]
> 0,

(37)

so that by pre and post multiplying (23) by diag{(U ′`)(k)
−1, I }

and its transpose, and repeating the same reasoning as in (30)
we get that[
S ′iQi(k)

−1Si (AiSi + Bi
[
Y`(k) 0

]
U`(k)−1)′)

• Qj(k + 1)

]
=

[
S ′iQi(k)

−1Si ((Ai + BiK`(k)Hi)Si)′)
• Qj(k + 1)

]
> 0. (38)

Pre and post multiplying (38) by diag{(S ′i )
−1, I } and its trans-

pose and applying Remark 1, we get that for pij > 0 (after
setting Ps(k) = Qs(k)−1):

Pi(k) > (Ai + BiK`(k)Hi)′Pj(k + 1)(Ai + BiK`(k)Hi). (39)

Hence, from (1) and (6), x(k + 1) = (Aθ (k) +
Bθ (k)Kθ̂ (k)(k)Hθ (k))x(k), and from (39) we get that

x(k)′Pθ (k)(k)x(k) ≥ x(k + 1)′Pθ (k+1)(k + 1)x(k + 1). (40)

and thus (40) yields to

x ′0Pθ0 (0)x0 ≥ x(k)′Pθ (k)(k)x(k)

> x(k + 1)′Pθ (k+1)(k + 1)x(k + 1). (41)

From (41) we have that if (x0, θ0) ∈ LP(1)(0) (that is,
x ′0Pθ0 (0)x0 ≤ 1) then (x(k), θ(k)) ∈ LP(1, k) for every
k = 0, 1, . . . (since from (41) x(k)′Pθ (k)(k)x(k) ≤ 1). Finally
let us show that the constraints (16), (17), are satisfied. From
(24) and Remark 2 again we get thatρ2ι I Fι

[
SiU`(k)[
Y`(k) 0

]]
• U`(k)′(S

−1
i Qi(k)(S

−1
i )′)−1U`(k)

 > 0. (42)

Pre and post multiplying (42) by diag{I , (U ′`)(k)
−1
} and its

transpose, and repeating the same reasoning as in (30) we

have thatρ2ι I Fι

[
SiU`(k)[
Y`(k) 0

]]U−1`
• S ′iQi(k)

−1Si

=
ρ2ι I Fι

[
I

K`(k)Hi

]
Si

• S ′iQ
−1
i (k)Si


> 0. (43)

Pre and post multiplying (43) by diag{I , (S ′i )
−1
} and its trans-

pose, and Remark 1, we derive that

ρ2ι I > Fι

[
I

K`(k)Hi

]
Qi(k)(Fι

[
I

K`(k)Hi

]
)′, (44)

so that, from (44), we conclude that

‖Fι

[
I

K`(k)Hi

]
Qi(k)1/2‖2 ≤ ρ2ι for all ` ∈ Ii, i ∈ N.

Thus we get that

‖Fι

[
x(k)
u(k)

]
‖
2
= ‖Fι

[
I

Kθ̂ (k)Hθ (k)

]
x(k)‖2

= ‖Fι

[
I

Kθ̂ (k)Hθ (k)

]
Qθ (k)(k)1/2

×Qθ (k)(k)−1/2x(k)‖2

≤ ‖Fι

[
I

Kθ̂ (k)Hθ (k)

]
Qθ (k)(k)1/2‖2

×‖Qθ (k)(k)−1/2x(k)‖2

≤ ρ2ι x(k)
′Q−1θ (k)x(k)

= ρ2ι x(k)
′Pθ (k)x(k) ≤ ρ2ι (45)

since x(k)′Pθ (k)x(k) ≤ 1, showing the result for k =
0, . . . ,Tf − 1. From (25) and repeating the same arguments
as above we get that ‖Gιx(Tf )‖2 ≤ ρ2ι , completing the proof.

�

V. THE INFINITE HORIZON CASE
For the infinite horizon case we will need to introduce the
following operators E , L in B(Hn). For V = (V1, . . . ,VN ) ∈
Hn, and i, j ∈ N, Ei(V ) =

∑N
j=1 pijVj, Li(V ) =∑

`∈Ii αi`A
′

i`Ei(V )Ai`. The proof of the next result can be
found in [8], and it presents conditions for stochastic stabi-
lizability of System (1).
Theorem 11: System (1) is stochastically stabilizable if

and only if there exists K` ∈ B(Rp,Rm), ` ∈M and P ∈ Hn,
P > 0, such that for Ai` as in (7),

P− L(P) > 0. (46)

The next LMI optimization problem aims at obtaining a
K ∈ K which minimizes the upper bound value δ at the
same time that obtains an invariant set D0 such that when-
ever (x0, θ0) ∈ D0 we have that (x(k), θ(k)) ∈ D0 for all
k = 0, 1, . . . and the constraints (16) are satisfied. In
Section VI we present other versions of this problem, either
by fixing the initial condition (x0, θ0) or by fixing δ > 0 and
aiming to find the largest inner ball inside an invariant setD0.
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Problem 12: Find δ > 0; Q = (Q1, . . . ,QN ) > 0; Riζ >
0 for i ∈ N, ζ ∈ Ii; and Y`, U` for ` ∈M, such that

min δ

subject to,[
δI Ii
• diag{Riζ }

]
≥ 0, for i ∈ N, (47)U

′

` + U` − αi`S
−1
i Ri`(S

−1
i )′ (AiTiU` + Bi

[
Y ′`
0

]
)′0i

• diag{Rsζ }
• •

(CiSiU` + Di

[
Y ′`
0

]
)′

0
I

 > 0, (48)

for i ∈ N, ` ∈ Ii,

U` =
[
U`,1 0
U`,2 U`,3

]
, (49)[

U ′`+U`−S
−1
i Qi(S

−1
i )′ (AiTiU`+Bi

[
Y` 0

]
)′

• Qj

]
> 0, (50)

for i ∈ N, ` ∈ Ii, j such that pij > 0, andρ2ι I Fι

[
SiU`[
Y` 0

]]
• U ′` + U` − S

−1
i Qi(S

−1
i )′

 > 0, (51)

for ι = 1, . . . , t , i ∈ N, ` ∈ Ii.
For P = (P1, . . . ,PN ) > 0, set the function

P(x, i) = x ′Pix, i ∈ N, and, for γ > 0,

LP(γ ) :=
{
(x, i) ∈ Rn

× N; x ′Pix ≤
1
γ

}
. (52)

We have the following result.
Theorem 13: Suppose there is a solution δ > 0,

Q = (Q1, . . . ,QN ) > 0, Riζ > 0, i ∈ N, ζ ∈ Ii, Y`,
U`, ` ∈ M, for Problem 12. Define K` = YlU

−1
`,1 , ` ∈ M

and P(x, i) = x ′Pix, Pi = Q−1i , i ∈ N. Then: i) K ∈ K;
ii) J (K ) ≤ δ‖x0‖2. If (x0, θ0) ∈ LP(1) then: iii) (x(k), θ(k)) ∈
LP(1) for all k = 0, 1, . . .; iv) the constraints (16) are
satisfied.

Proof: Following the same steps as in the proof of
Theorem 10 we obtain from (48) that(αi`Ri`)−1 (Ai + BiK`Hi)′0i (Ci + DiK`Hi)′

• diag{Rsζ } 0
• • I

 > 0,

(53)

and thus, from Remark 1, we get that (53) is equivalent to

R−1i` > αi`

{
(Ai + BiK`Hi)′

 N∑
j=1

pij
(∑
ζ∈Ij

R−1jζ
)

× (Ai + BiK`Hi)+ (Ci + DiK`Hi)′(Ci + DiK`Hi)
}

(54)

for i ∈ N, ` ∈ Ii. Set Vi =
∑
ζ∈Ii R

−1
iζ , i ∈ N, V =

(V1, . . . ,VN ). From (54) we have that

Vi >
∑
ζ∈Ii

αiζ

{
(Ai + BiKζHi)′Ei(V )(Ai + BiKζHi)

+ (Ci + DiKζHi)′(Ci + DiKζHi)
}
(55)

and thus (55) implies that V − L(V ) > 0, so that, from The-
orem 11, K ∈ K, showing i). Let us now show ii). Following
the same steps as in the proof of Proposition 4 in [8] we get
from (55) that∥∥∥V 1/2

θ (k)x(k)
∥∥∥2
2
= E(x(k)′Vθ (k)x(k))

≥ E(x(k + 1)′Vθ (k+1)x(k + 1))+ ‖z(k)‖22

=

∥∥∥V 1/2
θ (k+1)x(k + 1)

∥∥∥2
2
+ ‖z(k)‖22 . (56)

Since K ∈ K we have, from the stochastic stability of (1),

(6), that
∥∥∥V 1/2

θ (k)x(k)
∥∥∥2
2
→ 0 as k → ∞. From Remark 1 we

derive that (47) is equivalent to

δI ≥
∑
ζ∈Ii

R−1iζ = Vi. (57)

Taking the sum in (56) for k = 0 to ∞, and using (57) we
obtain that

J (K ) = ‖z‖22 =
∞∑
k=0

‖z(k)‖22 ≤ E(x
′

0Vθ0x0) ≤ δ‖x0‖
2
2. (58)

Let us now show iii). From (50) and repeating the same
reasoning as in the proof of Theorem 10 we get that (after
setting Ps = Q−1s ):

Pi > (Ai + BiK`Hi)′Pj(Ai + BiK`Hi), for pij > 0, (59)

and recalling that x(k + 1) = (Aθ (k) + Bθ (k)Kθ̂ (k)Hθ (k))x(k),
we get from (59) that

x(k)′Pθ (k)x(k) ≥ x(k + 1)′Pθ (k+1)x(k + 1). (60)

so that (60) yields to

x ′0Pθ0x0 ≥ x(k)
′Pθ (k)x(k) ≥ x(k + 1)′Pθ (k+1)x(k + 1). (61)

Therefore (61) implies that if (x0, θ0) ∈ LP(1) (that is,
x ′0Pθ0x0 ≤ 1) then (x(k), θ(k)) ∈ LP(1) for every k = 0, 1, . . .
(since from (41) x(k)′Pθ (k)x(k) ≤ 1), completing the proof of
iii). Let us now show iv). Repeating the same reasoning as in
the proof of Theorem 10, we get from (51) that

ρ2ι I > Fι

[
I

K`Hi

]
Qi(Fι

[
I

K`Hi

]
)′, (62)

and from (62) we conclude that ‖Fι

[
I

K`Hi

]
Q1/2
i ‖

2
≤ ρ2ι for

all ` ∈ Ii, i ∈ N. As in the proof of Theorem 10, this implies
that

‖Fι

[
x(k)
u(k)

]
‖
2
≤ ‖Fι

[
I

K`Hi

]
Q1/2
i ‖

2
‖Q−1/2θ (k) x(k)‖

2

≤ ρ2ι x(k)
′Q−1θ (k)x(k) = ρ

2
ι x(k)

′Pθ (k)x(k)

≤ ρ2ι

since x(k)′Pθ (k)x(k) ≤ 1, completing the proof. �
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VI. ALTERNATIVE PROBLEMS
We have 2 alternative problems associated to Problems 9
(finite horizon case) and 12 (infinite horizon case). For sim-
plicity we will present the results only for the infinite horizon
case (Problem 12). These 2 new problems will be referred to
as Problem 14 and Problem 15. If the initial condition x0 and
the initial probability for θ0 are fixed, withµi = P(θ0 = i) for
i ∈ N, we can re-write Problem 12, taking into account these
specific initial conditions, as Problem 14 in the following
way:
Problem 14: Find δ > 0; Q = (Q1, . . . ,QN ) > 0; Riζ >

0 for i ∈ N, ζ ∈ Ii; and Y`, U` for ` ∈M, such that

min δ
subject to,[
δ x ′0

[
µ
1/2
1 I1 · · · µ

1/2
N IN

]
• diag{Rsζ }

]
≥ 0, (63)[

1 x ′0
• Qi

]
≥ 0, for i ∈ N with µi > 0, (64)

and the LMIs (48)-(51).
As shown in Corollary 1 in [45], we have that (63) and

Remark 1 implies that

δ ≥ x ′0
( N∑
i=1

µi(
∑
ζ∈I〉

R−1iζ )
)
x0

= x ′0
( N∑
i=1

µiVi
)
x0 = E(x ′0Vθ0x0) (65)

so that, from (58), we obtain that J (K ) ≤ δ. From (64) it
follows that 1 ≥ x ′0Q

−1
i x0 = x ′0Pix0 for any i ∈ N with

µi > 0, and thus (x0, θ0) ∈ LP(1). From (61) and the fact that
(x0, θ0) ∈ LP(1) we get that (x(k), θ(k)) ∈ LP(1) for every
k = 0, 1, . . ., and the remaining of the proof of Theorem 13
can be applied.

The second alternative problem would be, for a fixed δ >
0, to get an approximation for the largest inner ball (with
radius 1

υ
) Dυ

.
= {x0 ∈ Rn

; ‖x0‖2 ≤ 1
υ
} included in the

set L̂P(1) := {x ∈ Rn
; (x, i) ∈ LP(1) for some i ∈ N},

in other words, to obtain the minimum υ > 0 such that
Dυ ⊆ L̂P(1). This problem would be too hard to be solved,
so that a simplified convex version of this problem would be
in the following way. Notice that, with υ = maxi∈N ‖Pi‖,
we have that Dυ ×N ⊂ LP(1) since that, if x0 ∈ Dυ then for
any i ∈ N we have that x ′0Pix0 ≤ ‖x0‖

2
‖Pi‖ ≤ ‖x0‖2υ ≤ 1.

Thus, by minimizing maxi∈N ‖Pi‖ υ we get the largest inner
ball as defined in Dυ with υ = maxi∈N ‖Pi‖, included in the
set L̂P(1). Having this in mind, for δ > 0 fixed, we re-write
Problem 12 as follows:
Problem 15: Find υ > 0; Q = (Q1, . . . ,QN ) > 0;

Riζ > 0 for i ∈ N, ζ ∈ Ii; and Y`, U` for ` ∈M, such that

min υ
subject to,[
υI I
• Qj

]
≥ 0, (66)

and the LMIs (47)-(51).

As shown in Corollary 2 in [45], we have from (66) and
Remark 1 that υI ≥ Q−1j , so that υ ≥ maxj∈N ‖Q

−1
j ‖.

Since we want to minimize υ the optimal solution υ∗ will
be such that υ∗ = maxj∈N ‖Q

−1
j ‖ = maxj∈N ‖Pj‖ since,

by definition, Pj = Q−1j .

VII. NUMERICAL SIMULATIONS
For the simulations it is considered the linearized model of
a small unmanned aerial vehicle in steady flight with some
modifications (see [9]). The state variable x(k) is represented
by small perturbations on the roll rate, yaw rate, sideslip,
and roll angles, and the control variable u(k) corresponds
to the aileron and rudder commands. We assume that the
aircraft’s motion has two operation modes (N = 2), with the
nominal operation model assigned by θ (k) = 1 and the faulty
operation mode by θ (k) = 2. The system parameters for the
nominal operation mode are:

A1 =


0.5637 0.1133 −0.6607 −0.0062
0.0198 0.8368 1.0512 0.0089
0.0033 −0.0450 0.9481 0.0159
0.0381 0.0073 −0.0164 0.9999

 ,

B1 =


2.9735 −0.0618
−0.1175 0.6414
0.0112 −0.0165
0.0812 −0.0006

 .
For the faulty operation mode it is assumed that the aileron
command is ineffective, i.e.,

A2 = A1, B2 = B1

[
0 0
0 1

]
.

The matrices Hi and Si are chosen as follows (i ∈ {1, 2}):

Hi =
[
0 0 0.1 0
0 0 0 0.1

]
, Si =

[
0 0 10 0
0 0 0 10

]
.

Note that states x1(k) and x2(k) are not included in the output
y(k) (Equation (2)). The remaining parameters are set in the
canonical form

Ci =
[
I2 02
02 02

]
, Di =

[
02
I2

]
, i ∈ {1, 2}.

The transition matrix that relates the system operation
modes P, detection probability matrix

[
αi`
]
and initial prob-

ability of Markov parameter θ0 are given by:

P =
[
0.6 0.4
0.3 0.7

]
,

[
αi`
]
=

[
pi` 1− pi`

1− pi` pi`

]
,

µ0 =

[
0.6
0.4

]
.

For the constrained case it is considered the following hard
restriction,

|u2(k)| ≤ 0.1,

and therefore we have that,

Fι =
[
0 0 0 0 0 1

]
and ρ1 = 0.1.
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TABLE 1. Performance parameters for different cases.

FIGURE 1. The upper bound δ for the finite horizon Case as a function of
the final time Tf (pi` = 0.75), and the upper bound value for the infinite
horizon Case (dashed line).

In the sequel the numerical results will be presented,
solving the previous LMI optimization problems, using the
YALMIP [20] and SeDuMi [37] numerical tool packages.

Figure 1 shows the convergence of the upper bound δ for
the finite horizon case (Theorem 10) as the final time Tf
increases, in comparison with the upper bound obtained for
the infinite horizon case (Theorem 13). As expected, the limit
value for the finite horizon case is lower than for the infinite
horizon case, since the finite horizon case allows time varying
gains, being thus less restrictive.

The solution of Problem 14 is implemented and presented
in Figure 2. We can observe that for both cases in the fig-
ure (the state feedback and the static output cases), the upper
bound δ is symmetric with respect to the value αi` = 0.5, and
it varies with the degree of information (entropy), attaining
its maximum value in the equiprobable scenario (αi` = 0.5).
This situation corresponds to the mode-independent con-
troller since, in this case, the detector does not provide any
useful information. We can also corroborate that the upper
bound is lower when we have complete observation of the

FIGURE 2. The upper bound δ for state feedback and static output cases
as a function of the detection probability αi`.

state vector, which results in a better performance of the
control system.

For the elaboration of Figure 3 and Figure 4, Montecarlo
simulations were performed with 1000 experiments. The
mean value of the state (second component, x2(k)) is shown
in Figure 3 for the unconstrained and constrained cases.
We can observe that even without considering x2(k) in the
output vector (static output case), it is possible to stabilize
the closed loop system. Notice that the unconstrained case
performs better than the constrained case in terms of oscilla-
tions and stabilization time, as expected.

Figure 4 presents the extreme values among all the real-
izations of u(k) (the second component u2(k) of u(k) for
both cases). The extreme realization values (maximum and
minimum) for the constrained case are bounded by the pre-
fixed bound ρ1 = 0.1 (constant lines) as expected in the
design for the constrained algorithm. On the other hand,
the values for the unconstrained case are outside the region
bounded by the hard constraint (shaded zone), showing the
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FIGURE 3. Mean value of the state (second component) E
(
x2(k)

)
for the

unconstrained and constrained cases (pi` = 0.85).

FIGURE 4. Extreme realization values of the control variable (second
component) u2(k) for the unconstrained (dashed line) and constrained
(star continuous line) cases (pi` = 0.85).

importance of including these constraints in the optimization
problem.

Some performance parameters are shown in Table 1.
We can see that in all cases the real cost J (K ) is less than its
corresponding upper bound δ. We can also see that the state
feedback case has better indices (δ and J (K )) than the static
output case, as expected. The respective controllers for each
case are shown in the fourth column.

VIII. CONCLUSION
In this paper it was studied the constrained static output feed-
back control problem for discrete-time MJLS considering
the finite horizon as well as the infinite horizon cases, and
that the Markov parameter θ (k) is not directly observed. It is
assumed that the only information available to the controller
with respect to θ (k) comes from a detector which provides a
signal θ̂ (k) (estimation), where it is assumed that

(
θ (k), θ̂ (k)

)
follows a hidden Markov model. For the infinite horizon case
the obtained results in this paper can be seen as a generaliza-
tion of the state feedback case introduced in [45], by setting
the output matrix as the identity matrix. Theorems 10 and 13
show that, by obtaining a solution for the LMI optimization
Problems 9 and 12, we can find a static output feedback
controller as in (6) for the finite horizon case, stabilizing
static output feedback controller as in (9) for the infinite
horizon case, such that the hard constraints (16) (and (17)
for the finite horizon case) are satisfied and the quadratic
costs (14) and (15) are lower than the upper bound δ‖x0‖2.
Alternative problems in which the initial conditions are fixed

and in which it is desired to maximize an estimate of the
domain of an invariant set are also analyzed (Problems 14 and
15 respectively). Numerical simulations were implemented
showing, as expected, that the case with state feedback has
better indices (δ and J (K )) than the static output case, and
that a more reliable detector yields to a lower value for
the upper bound (cost function). A future extension of the
present work is to analyze the case with second moment
constraints as introduced in [43] instead of hard constraints
(which should yield to less conservative controllers), study
the so-called positive Markov jump linear systems (PMJLS)
(see for instance [19]) in order to apply the derived algorithms
to the fields of reservoir control and energy planning, and
consider some real applications as in wireless control network
systems, in which the burden of data communication loss has
to be mitigated (see, for instance, [10], [32]).
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