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ABSTRACT Dockless bike sharing plays an important role in complementing urban transportation systems
and promoting the sustainable development of cities worldwide. To improve system operational efficiency,
it is critical to study the spatiotemporal patterns of dockless bike sharing demand as well as factors
influencing these patterns. Based on bicycle trip data fromMobike, Point of Interest (POI) data and smart card
data in Beijing, we built a spatially embedded network and implemented the Infomap algorithm, a community
detection method to uncover the usage patterns. Then, the Gradient Boosting Decision Tree (GBDT) model
was adopted to investigate the effect of the built environment and public transit services by controlling the
temporal variables. The spatiotemporal distribution shows imbalanced characteristics. About half of the
total trips occur in the morning/evening rush hours and at noon. The community detection results further
reveal a polycentric pattern of trip demand distribution and 120 sub-regions with a significant difference
in connection strength and scale. The result of the GBDT model indicates that factors including subway
ridership, bus ridership, hour, residence density, office density have considerable impacts on trip demand,
contributing about 62.6% of the total influence. Factors also represent complex nonlinear relationships with
dockless bike sharing usage. The effect ranges of each factor were identified, it indicates rebalancing schemes
could be changed according to spatial location. These findings may help planners and policymakers to
determine the reasonable scale of bike deployment and improve the efficiency of redistribution in local
regions while reducing rebalance costs.

INDEX TERMS Dockless bike sharing system, spatiotemporal patterns, built environment, community
detection, gradient boosting decision tree.

I. INTRODUCTION
In the last decade, the bike sharing system, an environmen-
tally friendly urban transportation mode has been deployed
and become popular in many cities around the world. The
public bike sharing system provides people with convenient
public bicycle access at numerous unattended stations, pri-
marily serving daily mobility [1]. The potential benefits of
public bike sharing include increasing use of public transit,
relieving traffic congestion, avoiding the problems of main-
taining and parking of private bicycles, and also reducing

The associate editor coordinating the review of this manuscript and

approving it for publication was Junchi Yan .

energy consumption and emissions [2], [3]. Therefore, many
cities have identified public bike sharing as an effective way
to complement the urban transportation systems and con-
tribute to urban sustainability [4], [5].

In early 2017, dockless bike sharing, an innovative shared-
transportation service, emerged in several cities in China and
soon expanded. This new dockless bike sharing system has
a significant difference compared with the traditional pub-
lic bike sharing system, dockless bike sharing significantly
enhances enjoyment and convenience for riders. For exam-
ple, bike accessibility is improved through a built-in satellite
positioning device and an intelligent lock, riders can rent the
bike by using a smartphone to scan the QR code printed on
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the bicycle body, the bike can be parked in any designated
spot [6]–[8].

According to Mobike [9], one of the most famous dockless
bike sharing companies in China, with increasing popularity
inmany cities, these innovative dockless bike sharing services
reduce car usage by 3.2% in China’s urban transportation
systems. Furthermore, the usage of bicycles (especially bike
sharing) had twice the contribution rate, at 11.6% of the vol-
ume of urban transportation. Meanwhile, like the traditional
public bike sharing system, the problem of fluctuating spa-
tiotemporal demand requires periodic redistribution of bicy-
cles. Inefficient bike rebalancing can discourage users from
choosing dockless bike sharing and increase the operating
costs for service providers [8], [10]. Moreover, dockless bike
sharing faces several unique problems, such as users parking
illegally, which in turn encroaches road resources, and creates
challenges in managing parking areas.

Unbalanced spatiotemporal demand distribution of bike
sharing results in ineffective redistribution and higher oper-
ating costs. Improving the bike sharing system efficiency and
encouraging more people to use bike sharing are challenges
that have drawn the attention of researchers, leading to studies
regarding the spatiotemporal characteristics and how deter-
mining factors affect the usage of conventional public bike
sharing usage at the station level [11]–[15]. However, only a
few studies have analyzed the spatiotemporal characteristics
of dockless bike sharing usage based on large-scale, real-
world trip data [6]–[8], [16], [17].

This study seeks to identify the spatiotemporal patterns
of dockless bike sharing demand and clarify the correlations
with the built environment, existing public transit systems,
and the temporal factors based on a large-scale citywide trip
dataset in Beijing provided by Mobike. This study imple-
ments a community detection method to reconstruct the spa-
tiotemporal usage patterns of bike sharing. A machine learn-
ing approach, Gradient Boosting Decision Tree (GBDT),
is then employed to uncover the relative importance and
marginal effects of factors contributing to spatiotemporal
fluctuations of dockless bike sharing demand.

This paper is structured as follows. Section II provides a
comprehensive review of relevant studies. Sections III and IV
represent the multi-source dataset and detailed descriptions
of methodologies, respectively. Section V presents the results
and analyses of models. Finally, in Section VI, we conclude
our research findings and discuss future work.

II. LITERATURE REVIEW
A. SPATIOTEMPORAL CHARACTERISTICS OF BIKE
SHARING TRIP DEMAND
Analyzing the spatiotemporal patterns of bike sharing trip
demand can support operation scheduling. Gebhart and
Noland [14] found that bicycle usage can vary considerably
from month to month. Bergström and Magnusson [18] found
that bike usage declined by 47 percent from summer to win-
ter in Sweden. Significant variations have also been found

between workday and non-workday usage. People prefer to
use bike sharing during peak hours on workdays, which
indicates bike sharing is dominantly used for commuting [4].

Many studies employed clustering methods to classify sta-
tions with similar spatiotemporal patterns and to better reveal
the dynamics of the public bike sharing system [19]–[23].
Munoz-Mendez et al. [20] used a novel clustering method
to explore spatiotemporal patterns based on bike sharing trip
data in London, the results revealed self-contained and inter-
connected community structures. Jia et al. [22] applied a two-
level affinity propagation clustering algorithm to divide bike
sharing stations into some groups based on the trip distribu-
tion among stations and geographical locations. Shi et al. [23]
employed the Latent Dirichlet Allocationmodel to investigate
the use patterns of bike sharing systems in New York and
Hangzhou, the findings highlighted the decisive role of bike
sharing in commuting to work in the morning peak hour.

B. DETERMINING FACTORS OF THE USAGE OF BIKE
SHARING
Built environment factors have an appreciable effect on the
choice of travel mode as well as travel behavior. People living
in areas with higher density and more diverse land use might
prefer to use non-motorized travel modes [8], [15], [24]–[27].
Xu et al. [8] found that the bike sharing demand was asso-
ciated with residential density, commercial density and the
number of intersections in Singapore. Noland et al. [15]
applied Bayesian regression to quantify the association of
bike sharing usage at the station level with factors such as
population and employment density, land use and public
transit accessibility. Wang and Chen [24] found bike sharing
stations of the Citi Bike system around cafes and restaurants
would generate more ridership in New York City. Evidence
indicated that more mixed land use attributes could gener-
ate more trips than a single land use attribute [25]. Built
environment significantly influenced the reallocation count
of bike sharing in Nanjing, for example, the docked stations
with higher densities of restaurants and employment in the
service areas required more bicycle removal in the morn-
ing and evening bicycle refilling in the afternoon [26]. Bao
et al. [27] classified the bike sharing stations into different
categories based on the distribution of POI within the service
areas, then found the influences of the factors such as bicycle
infrastructures, station capacity, and socioeconomic variables
were varied across different station categories.

Bike infrastructures such as bike lanes also played a key
role in increasing bike sharing demand, creating a bicycle-
friendly environment and protecting riders from collisions
with vehicles [13], [28]. Street lights, station connectivity,
density might be positively correlated with bike sharing trip
demand [4]. Improving the bike sharing accessibility would
generate more ridership, however, the effects were varied
with the different built environment, especially in areas with
higher bike sharing service [29].

Considerable studies have investigated the correlation
between bike sharing and the public transport system. Bike
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sharing plays an important role in combining the bike with
bus and rail transit and helps to solve the first mile/last mile
problem [11], [30]–[33]. People living near the bike sharing
stations would like to transfer to public transportation to
go to work as well as use bike sharing to ride home after
work [11]. Bike sharing might provide a faster and more
convenient alternative for point-to-point travel rather than
transferring rail lines to get to a destination, and more limited
rail coverage may contribute to use bike sharing as a first
mile/last mile connection [33]. The above research shows that
the built environment and public transportation facilities have
an important impact on the demand for bike sharing.

In addition, since cyclists are in direct contact with the nat-
ural environment, some studies have investigated the impacts
of weather on the bike sharing usage considering variables
such as temperature, rainfall, snowfall, wind speed, air pollu-
tion, and relative humidity [12], [14], [34]–[36]. In summary,
the literature suggests that extremeweather conditions reduce
both bike usage and trip duration. Furthermore, temperature
and precipitation are the most predominant factors for bicycle
usage with complex non-linear relationships.

C. DISTRIBUTION PATTERNS OF DOCKLESS BIKE
SHARING DEMAND
Emerging dockless bike sharing programs allow riders to start
and end their trips wherever they want. Therefore, the useful-
ness of previous studies concentrating on docked bike sharing
usage may be limited because the spatial distribution of the
dockless bike sharing trip is no longer confined to fixed
stations. Few studies have revealed the distribution patterns
of dockless bike sharing demand [6]–[8], [10], [16]. Xu et al.
[8] developed LSTMneural networks to forecast the temporal
and spatial distribution of dockless bike sharing usage in
the center area of Nanjing, China, considering exogenous
factors including weather conditions, air quality, and the
built environment. Shen et al. [16] implemented a spatial
autoregressive model to investigate the associations between
dockless bike sharing demand and built environment, weather
variables and in Singapore.

Numerous previous research studies have provided valu-
able insights into understanding spatiotemporal patterns
and factors such as built environment and public transport
contributing to spatiotemporal fluctuations of conventional
docked bike-sharing demand. Emerging dockless bike shar-
ing programs also suffer from the problem of fluctuating
spatiotemporal demand, so it is critical to uncover how factors
determine dockless bike sharing usage at the regional level.
To fill this gap, this study intends to investigate spatiotem-
poral attributes of dockless bike sharing demand and their
associations with built environments and public transporta-
tion services.

III. Data
A. DOCKLESS BIKE SHARING TRIP DATA
The trip dataset for ten consecutive weekdays starting from
May 10th, 2017, was provided by Mobike which is one of

the most famous dockless bike sharing operators in China.
Our study area is within the Fifth Ring Road of Beijing,
the trips within the Fifth Ring Road account for more than
90 percent of the total trips of Mobike in Beijing. Each raw
of data includes start point and end point location and time,
bike ID, and anonymized user ID. The location information
was provided in Geohash geocoding by Mobike, which is
a hierarchical data structure and can convert longitude and
latitude into strings and divides the space into grids [37]. The
trip dataset uses 7-bit Geohash geocoding, which can accu-
rately represent the grid with an area of about 0.018 square
kilometers. We removed the records of the dataset of trips
that occurred outside of the study area and those that occurred
from midnight to 5:00 a.m., and about 3 million records were
finally included in the study. Our study focuses on the impact
of the built environment and public transport service, other
external factors, for example, weather conditions should be
consistent as much as possible during the study period to
avoid the biases. It is worth noting that the weather was good
in Beijing during the study period.

B. BUILT ENVIRONMENT DATA
Many existing studies suggested using density, diversity, and
design to describe the built environment of the region [38],
[39]. To explore the effect of the built environment on the
distribution of dockless bike sharing demand, Point of Inter-
est (POI) data and transport infrastructure data were used
to reflect the built environment conditions of regions, POI
data and road network vector data are both collected from
AMAP, one of the most popular digital map providers in
China (https://www.amap.com/). POI data includes the name,
latitude, and longitude as well as the category of each facility.
AMAP divides the POI into 20 categories, and we chose
5 categories, which are considered to significantly influence
factors according to the existing studies, such as residence,
office, entertainment, leisure, and education. We measured
the densities of each category of POI. Bike lane length,
as an indicator of design, was used to measure the regional
convenience of cycling. We also used the Shannon entropy
to measure the land-use diversity in each region considering
the densities of residence, office, entertainment, leisure, and
education. The detailed built environment factors of each
region will be described in Section V.

C. SMART CARD DATA
Previous studies have shown that bike sharing effectively
facilitates the first mile/last mile connection to public trans-
portation [4], [31], [32]. The larger usage of public bike
sharing stations adjacent to public transport systems could be
ascribed to the public transit ridership [4]. To deepen under-
standing about associations between dockless bike sharing
and public transport systems, smart card data of the same
period was collected from Beijing Municipal Transportation
Operations Coordination Center. Smart card data records
the information of passengers traveling by bus or subway,
including card ID, boarding and alighting time, and boarding
and alighting line and station, etc. About 13 million bus trip
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records and 5 million subway trip records were obtained
every day.

IV. METHODOLOGY
A. WEIGHTED DIRECTED NETWORK CONSTRUCTION AND
COMMUNITY DETECTION
People riding in the city can integrate discrete areas within a
network. The dockless bike sharing trip dataset includes the
information of origins and destinations, spatial interactions
between these areas can be further understood by aggregating
trip flow. A spatially embedded network will be constructed
by regarding the origin and destination grids as nodes and trip
flow as edges, and complex network methods such as com-
munity detection can be employed to reveal the properties and
structures of the network [19], [20].

To build a weighted and directed network G = (V ,E,W )
from dockless bike sharing trip data, in this study each Geo-
hash grid corresponds to a node vi, and V = {vi |1, 2, · · ·N }is
the set of vertices. Trips between two grids represent
a directed edge eij from node vi to node vj, E ={
eij |i, j = 1, 2 · · · N , i 6= j

}
is the set of edges, and W ={

wij |i, j = 1, 2 · · · N , i 6= j
}
is the set of weights, with wij

representing the weight of eij and equals the trip volume
passing through eij, the network construction steps are shown
in Fig. 1(a), (b) and (c). In the dockless bike sharing trip
network, some nodes are intensely connected while others
are sparsely connected, reflecting the spatial interactions
between the areas. Community detection can reduce the
complexity of the network, and it is naturally suited for bike
sharing trip networks [20]. The trip network will be divided
into closely connected sub-networks based on community
detection (Fig. 1(d)), called communities (or modules),
in turn revealing the cluster characteristics of the network.
The city will also be divided into some intensely connected
subregions, as shown in Fig.1(e). The spatial distribution of
dockless bike sharing trips can then be better understood,
which provides technical support for the scheduling of shared
bicycles.

In numerous community detection algorithms, the Infomap
algorithm can more efficiently, steadily, and accurately deal
with the large-scale weighted and directed network [41].
Infomap algorithm seeks to minimize the expected descrip-
tion length of the information flow of the random walk path
in the network. More details of the Infomap algorithm can
be found in the study constructed by Rosvall and Bergstrom
[42]. Therefore, we employed the Infomap algorithm in the
igraph Python package ( https://igraph.org/python/) to handle
the dockless bike sharing trip network in this study. We
applied themodularity tomeasure the accuracy of community
division, which ranges from 0 to 1. A good division with
higher modularity indicates that there are many edges within
communities and only a few between them.

B. INFLUENCE MODEL CONSTRUCTION
1) GRADIENT BOOSTING DECISION TREE
Some research studies have adopted the Gradient Boosting
Decision Tree (GBDT) model, a machine learning approach

FIGURE 1. Weighted directed network construction and community
detection [40].

to investigate how factors influence the crash occurrence [43]
and travel behavior [44], [45], which can better illustrate the
nonlinear and interactive impacts of independent variables.
Therefore, this study employs the GBDT model to explore
the impact of the built environment and public transit factors
on average hourly trips of dockless bike sharing in each
subregion, after controlling the temporal variable. Based on a
robust tree-based structure generated by the GBDT model,
we can obtain the relative importance and rank of each of
the built environment and public transit factors contributing
to regional dockless bike sharing trip demand, and identify
the complex nonlinear relationship between them and the
influence extent using partial dependence plots.Wemeasured
the average hourly trips in each subregion based on the same
period from Monday to Friday.

The GBDT model is constructed based on an ensemble of
many base decision trees. Supposing that x =

{
x1, x2, · · ·xk

}
is a set of independent variables (i.e., built environment and
public transit ridership variables in this study), y is the (i.e.,
average hourly trips of dockless bike sharing) and T =
{(x1, y1), (x2, y2), · · ·(xn, yn)}is the training data set. The
GBDT model generates M base decision trees h(x; a1), · ·
·h(x; am), and the feature space will be divided into J non-
overlapping regions R1m, · · ·,Rjm with the corresponding
predicted value rjm. The approximation function F(x) of the
independent variableyis estimated by summation of the basis
functions h(x; am) [46]

F(x) =
M∑
m=1

fm(x) =
M∑
m=1

βmh(x; am) (1)

h(x; am) =
J∑
j=1

rjmI (x ∈ Rjm), (2)

where I = 1, if x ∈ Rjm; I = 0, otherwise

where am represents a set of parameters of each tree h(x; am)
regarding splitting variable, splitting locations and predicted
values, βm represents the expansion coefficients. The gradient
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boosting procedure is employed to estimate parameters am
and βm, it generates the model in a stagewise way and updates
the model by gradually reducing the expected value of a
specific loss function L(y, f (x)).

To improve accuracy and avoid overfitting, some hyper-
parameters such as the number of trees M , learning rate ξ ,
and max depth D need to be fine-tuned in the GBDT model.
A larger number of trees can make the GBDT model fit the
data well, but can also lead to an over-fitting problem. The
learning rate ξ controls the contribution of the individual base
decision tree as follows:

fm(x) = fm−1(x)+ ξβm (x; am) ,where 0 < ξ < 1 (3)

A smaller learning rate leads to better minimization of
the loss function, but it also needs to increase the number
of trees. There is a trade-off between the aforementioned
two hyper-parameters. Max depth, referring to the maximum
depth of each base decision tree, also influences the per-
formance of the GBDT model. In general, the best perfor-
mance of the GBDT model relies on the optimal combina-
tion of the number of trees, learning rate, and max depth.
A five-fold cross-validation was employed to achieve the
optimal performance of the model with different combina-
tions using the Scikit-learn package in Python (https://scikit-
learn.org/stable/). With a learning rate of 0.15, a number of
the trees of 110, and a max depth of 5, the GBDT model
achieves lowest predictive deviance.

2) RELATIVE IMPORTANCE OF INFLUENTIAL FACTORS
The GBDT model can identify relative importance or contri-
bution of each factor on dockless bike sharing trip demand,
according to the number of times that variables are selected
for splitting and the degree of improvement of the model in
the splitting process [46]. For an individual base decision tree
T , the relative importance of variables xk on the dependent
variable can be measured as follows:

R2k (T ) =
J−1∑
t=1

E2
t I (vt = k) (4)

where the sum is over J−1internal nodes of the tree, vt is the
splitting variable related to the node t , E2

t is an improvement
in squared error after splitting.

For a collection of decision trees {Tm}M1 in the GBDT
model, the importance measure is generalized by averaging
all trees as follows:

R2k =
1
M

M∑
m=1

R2k (Tm) (5)

3) PARTIAL DEPENDENCE PLOTS
After identifying the most important factors, we investigate
the marginal effect of a factor on dockless bike sharing trip
demand with the help of partial dependence function [46].
We suppose that S is a subset of independent variables x,
C is the complement subset and S ∪ C = x. Generally,

f (x) is determined by all the independent variables: f (x) =
f (xS , xC ), the partial dependence of xS on f (x) can be defined
as follows:

fS (xs) = ExC f (xS , xC ) (6)

It can be estimated by

f S (xs) =
1
N

N∑
i=1

[f (xS , xiC )] (7)

where {x1c, x2c, · · ·xNc} is the value of xCoccurring in the
training data set, it means that the entire training data set
should be used to calculate the partial dependence of a spe-
cific independent variable. Therefore, the partial dependence
function defined in (6) represents the effect of xS on f (x)
accounting for the average effects of the other variables xC
on f (x).

V. CASE STUDY
A. SPATIOTEMPORAL PATTERNS AND COMMUNITY
DETECTION RESULTS
The results indicate the imbalanced spatiotemporal distribu-
tion of dockless bike sharing demand in Beijing. The spatial
distribution of bike sharing trip demand in the grid level is
shown in Fig. 2 (a). Hot spots are mainly distributed in areas
within the Fourth Ring Road, with over 75 percent of grids
having more than 91 trips. Each grid includes 74 trips on
average, and the standard deviation is 121 trips, it indicates a
high variable spatial distribution of demand across different
grids. The trips in some grids are close to zero. One reason
is that bike sharing is prohibited in some areas, such as
Tiananmen Square and some park areas.

The community detection result is shown in Fig. 2(b). The
best division generated 120 subregions with the modularity
value of 0.77, it means the result of the community detection
is reasonable. It is worth noting that we removed the mod-
ules in the peripheral area including less than 10 grids with
low trip flows, avoiding generating unstable structures. The
subregions have 240 grids and 15 thousand trips on average,
respectively. On average, 76.7% of the trips start and end in
the samemodules. The results reveal the polycentric structure
of the city and identify the borders between them. The borders
of modules generated by the collective travel patterns are
often affected by major roads and natural barriers such as
rivers, mountains, and parks. The polycentric structure can
help to improve local rebalance efficiency in each sub-region.
Fig. 2(c) represents the temporal distribution of demand in
each subregion; the distributions have obvious peak agglom-
eration characteristics. In addition to the morning peak and
evening peak hours, a considerable number of trips occur at
noon, about 48 percent of total trips occur during these three
peak periods.

Four indicators were selected to reflect the spatial interac-
tion characteristics among grids in each subregion, including
total trip, the strength of node, average clustering coefficient,
and betweenness [40], [47]. The total trip indicator depicts
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FIGURE 2. Spatiotemporal patterns and community detection results.

the total amount of trip productions and attractions in a sub-
region. The strength of a node is defined as the total weight of
edges connecting to it, which is characterized by both inflow
and outflow trip volume of each node. The average clustering
coefficient measures the possibility of nodes in a network
tending to cluster together. The betweenness is a measure of
the importance of nodes in organizing flows along the shortest
paths in the network.

We employed the K-means clustering method [48] to clus-
ter subregions into some categories based on the above four
indicators, we also applied Calinski-Harabasz score [49] to
determine the best number of clusters. When the number
of clusters is 4, the Calinski-Harabasz score reaches the
maximum, indicating the clustering result is reasonable. The
clustering result is shown in Fig.2 (d). The size of modules
gradually decreases from Category A to Category D. Cate-
gory A and Category B generally contain the largest number
of trips, mainly distributed in the central urban area within the
Third Ring Road, and the outer ones including the Wangjing
area in the north of the city and the Yizhuang and Xinfadi
areas in the south, where many residential neighborhoods are
located. Category C mainly lies in the east and north areas
of the city. Category D is mainly located in the western and
southern periphery area, and the community size is relatively
small.

The four indicators of each type of module are shown
in Fig. 3. Compared with Category D, Categories A and B
are higher in total trip and strength, indicating that these areas
have border interactions between nodes within a subregion
and riders may travel in various ways. However, Category D,
with fewer trips and strength, has a higher value in average
clustering coefficient and betweenness, meaning that human
dynamics are more intensified than in Categories A and B.
This finding is similar to the results of a case study developed
by taxi short length trip data [40]; the different intensity
of connections between nodes within a subregion may be
caused by built environment conditions, population density,
and other geographical heterogeneity factors.

B. DESCRIPTION OF THE INDEPENDENT VARIABLES
To comprehend the formation of the imbalanced spatiotempo-
ral distribution of dockless bike sharing demand and the poly-
centric structure, we explored how built environment condi-
tions and public transit services impact dockless bike shar-
ing ridership in subregions. The built environment features
ware quantified within the subregion polygons and linked to
each subregion based on the Spatial Join Toolbox in ArcGIS
software. Subway and bus trip records were aggregated by
the hour for each subregion according to the boarding and
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FIGURE 3. Network properties of 4 type subregions.

TABLE 1. Descriptive statistics for independent variables.

alighting time and location. The descriptive statistics for
independent variables of each subregion are shown in Table 1.

C. EFFECTS OF INDEPENDENT VARIABLES
To explore the effects of various variables on dockless bike
sharing demand, the relative importance of each influential
factor was calculated. A higher value of relative importance
a stronger effect; it is worth noting that the effects of all
influential factors add up to 100%.

The subway ridership and bus ridership are two of the most
important variables that contribute to dockless bike sharing
demand with a value of 16.8% and 14.1%, respectively, indi-
cating that public transit plays an important role in promoting
dockless bike sharing use. This finding is in accord with pre-
vious studies [2], [11], [33]. Hour of the day is the third most
crucial influential factor with a contribution of 11.5%. Collec-
tively, the residence and office variables contribute to 20.3%
of the total impact on dockless bike sharing demand. Previous
studies have shown that dockless bike sharing demand is
closely related to residential density and business density [8],

[15]. Subway ridership, bus ridership, hour, residence and
office attributes collectively carry out approximately 62.6%
of the total contribution to dockless bike sharing demand,
highlighting the significant role of bike sharing in facilitating
the first mile/last mile trips.

The entertainment variable has about an 8.8% contribu-
tion to dockless bike sharing demand. The bike lane length
factor has an 8.7% contribution, it indicates that bike lane
length also acts as a pivotal part in correlation to dockless
bike sharing demand. It is largely consistent with previous
studies [13]. The leisure variable carries out about a 7.6%
contribution. Land use mix contributes 6.9% to dockless bike
sharing demand. It highlights the effects of mixed land use on
promoting to use bike sharing [25]. The education variable
has a trivial effect on the fluctuation of dockless bike sharing
in Beijing with a contribution of 5.4%. The aforementioned
findings can help develop seasonable rebalance strategies to
increase system efficiency.

To shed further light upon how the built environment
and public transit variables influence dockless bike sharing
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FIGURE 4. The relative importance of variables.

demand, partial dependence plots were applied to depict these
relationships, as shown in Fig. 5. It is noted that the effects
begin to even out after going through specific cut off points.

Fig. 5(a) indicates a nonlinearity relationship between sub-
way ridership and dockless bike sharing demand. From 0 to
0.2, dockless bike sharing trips increased sharply as subway
ridership increases; then the effect tends to reach a stable
state. Similarly, the effect of the bus ridership variable also
increases substantially from 0 to 0.15, and then its effect
remains stable. Riders generally prefer to use dockless bike
sharing in areas wheremore public transit lines are scheduled.
Dockless bike sharing has also become a useful solution
to the first mile/last mile problem in public transportation
systems. These findings are also consistent with other empir-
ical results regarding the association between public transit
and bike sharing [30]–[33]. As for the hour factor, dockless
bike sharing becomes more popular during rush hours in
the morning and evening, it indicates commuting is a dom-
inant use of dockless bike sharing in Beijing. In addition
to that, there is also a strong positive effect at noon, pos-
sibly because some people choose to ride dockless shared
bikes home for lunch or eat near their workplace during this
period [17].

Fig. 5(d) indicates that residential land use has a strong
positive effect on dockless bike sharing usage in general.
Dockless bike sharing usage tends to increasewith fluctuation
as residence variable value increases. Areas with a higher
residential population generally have more usage [15]. The
office variable has a nonlinear impact on dockless bike
sharing demand, influenced by a rapidly increasing rate when
the office variable value is within 16 per square kilometer but
then substantially decreasing rate for values between 16 and
87 per square kilometer. In Beijing, urban central business
districts (CBD) are more pedestrian-friendly and with higher
accessibility of public transport. Meanwhile, bike sharing is
not superior to other travel modes considering travel time
and speed.

When the entertainment density is within 7 per square
kilometer, the usage of dockless bike sharing increases with

FIGURE 5. Marginal effects of variables on dockless bike sharing demand.

a higher entertainment density. Beyond this range, its effect
remains stable. This finding affirms that bike sharing usage
has a positive correlation with the accessibility of entertain-
ment facilities [21]. The bike lane length variable is positively
correlated with the usage of dockless bike sharing. Dockless
bike sharing trips sharply increase when the bike lane length
is increased from 2.6 to 9.7 km per square kilometer. After
that, the effect steadily increases and tends to remain stable.
Supportive cycling facilities would encourage bike usage
because bike lanes are generally constructed for areas with
higher population density, meanwhile, users prefer a safer
biking environment [13], [28].
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A complex non-linear relationship between leisure land
use and dockless bike sharing demand is identified as shown
in Fig.5 (h). A leisure variable value below 1.2 per square
kilometer seems to have a minor effect on dockless bike shar-
ing usage. This effect increases substantially when the leisure
variable value is between 1.2 and 1.5 per square kilometer.
After that, its effect fluctuates and decreases. This may be
due to the fact that some public parks offer a bicycle-friendly
environment, while in other leisure places bike sharing is
prohibited in Beijing. As shown in Fig. (i), land use mix has a
small effect on when it is below 0.5, after that it has a signif-
icant positive impact on dockless bike-sharing trip demand.
It indicates the area with a more heterogeneous land use mix
appears to promote the usage of dockless bike sharing. The
important role of mixed land use has also been certified in
previous research [25]. The education variable has a negative
effect on the dockless bike sharing demand. Beyond the range
of 0 to 2, dockless bike sharing usage reduces as the education
variable value increases. It may be ascribed to the majority
of college students in Beijing living on campus and having
personal bikes. In addition, some colleges prohibit using
dockless bike sharing on campus, echoing the findings of case
studies in Seattle [4] and in Beijing [36].

VI. CONCLUSION
This study utilized Mobike trip data, POI data and smart card
data to reveal the temporal and spatial pattern and factor com-
plexity of dockless bike sharing trip demand. The Infomap
algorithm, a community detection method was implemented
to reconstruct the spatiotemporal usage patterns of bike shar-
ing. Gradient Boosting Decision Tree (GBDT), a machine
learning method, was then employed to uncover the factor
complexity of dockless bike sharing demand, considering
correlations with the built environment, public transit rid-
ership, and temporal factors. This may provide new and
useful patterns for stakeholders attempting to determine a
reasonable scale of the bike sharing system and improve the
efficiency of redistribution in local regions.

We first employed spatiotemporal analysis and community
detection to examine the mobility pattern of the dockless
bike sharing, which indicates the imbalanced spatiotemporal
distribution of bike sharing trips. Hot spots are mainly dis-
tributed in core areas within the Fourth Ring Road, charac-
terized by more diverse land-use types. The temporal distri-
bution has obvious peak agglomeration characteristics; a con-
siderable number of trips occur in the morning and evening
rush hours and at noon. The result of community detection
uncovers a polycentric pattern of trip demand distribution,
and 120 subregions with a significant difference in connec-
tion strength and scale are obtained. On average, 76.7% of the
trips start and end in the same subregion, which indicates the
subregions are self-contained and stronger local connectivity.
These findings shed new light on local rebalancing schemes
within subregions, operators should take full advantage of
self-contained characteristic to develop rebalancing schemes
for local areas within the subregions to make demand and

supply balance. Moreover, the result reveals the locations
(origins to destinations) are more frequently used by cyclists,
it will help to set up parking areas.

The results of the GBDT model reveals the relative impor-
tance and marginal effects of factors contributing to spa-
tiotemporal fluctuations of dockless bike sharing demand.
Subway ridership and bus ridership contribute most to dock-
less bike sharing demand, collectively carrying out approx-
imately 31% of the total impact. These findings affirm the
relationship between bike sharing and public transport sys-
tems [11], [33]. The effect of the hour variable is also cru-
cial in motivating to use dockless bike sharing, especially
in the morning and evening peak hours and at noon. The
aforementioned findings further support the role of dockless
bike sharing in commuting and facilitating the first-mile/last-
mile connections to public transport. Some built environment
variables, such as residence, office, entertainment land use,
and bike lane length, are strongly associated with the trip
demand. Others, such as leisure and education factors, seem
to have less impact. These findings echo with the existing
studies on the relationship between built environment and
bike sharing usage [4], [14], [15], [31], [36]. Moremixed land
use is also found to generate more trips [25]. Planners and
operators can propose rebalancing schemes based upon the
relative importance of these factors. Furthermore, the results
show that all variables have non-linear relationships with
dockless bike sharing ridership, the effect ranges of each
variable have been identified, suggesting that dockless bike
sharing providers could develop different scheduling strate-
gies in areas with different levels of built environment condi-
tions, the supply of public transport and periods. For example,
the subway ridership has a significant non-linear relationship
with the dockless bike sharing ridership, and the threshold
value between them has been identified. Operators could
dispatch different scales of the bike in areas with different
levels of subway ridership so that bike sharing can better
connect with the subway system and avoid piling up and
blocking streets.

These findings contribute to system operators having a
valuable basis to plan the best parking location and improve
rebalance efficiency to enhance usage. However, our study
has several limitations. First, we constructed the spatially
embedded network without considering the temporal factor.
We will uncover the spatial distribution pattern by construct-
ing a dynamic graph and considering the temporal element
to better understand the evolution process of community
structure among different periods of the day. Second, it was
found that more bike sharing trips were generated in areas
with more population and employment in New York City
[15], it has an important sense to examine the association
of dockless bike sharing demand and the socio-economic
variables, such as population and employment density. Third,
we didn’t explore the day-to-day variations at each subregion.
Some external factors such as weather conditions and public
holidays have an important influence on the usage of bike
sharing. Understanding the effect of weather conditions and
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temporal variables can support the travel demand forecast
and help optimize bike redistribution. The effects of socio-
economic conditions, weather conditions and public holidays
will be further studied when more data becomes available.
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