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ABSTRACT In the coming 6th generation (6G) and beyond in wireless communication, an increas-
ing number of ultrascale intelligent factors, including mobile robot users and smart cars, will result in
interference exploitation. The management of this exploitation will be a great challenge for detection
algorithms in uplink massive multiple-input and multiple-output (MIMO) systems, especially for high-order
quadrature amplitude modulation (QAM) signals. Artificial intelligence technology employing machine
learning is one of the key approaches among the 6G technical solutions. In this paper, a convolutional-
neural-network-based likelihood ascent search (CNNLAS) detection algorithm is proposed on the basis of
a graphical detection model for uplink multiuser massive MIMO systems. Compared with other algorithms,
the proposed CNNLAS detection algorithm has a stronger robustness against the channel estimation errors,
and requires lower average received signal-to-noise ratios to obtain better bit error rate performance and
to achieve the theoretical spectral efficiency with a lower polynomial average per symbol computational
complexity, both for the graphical low-order and high-order QAM signals in uplinkmultiusermassiveMIMO
systems.

INDEX TERMS Wireless communication, massive multiple-input and multiple-output (MIMO), con-
volutional neural network (CNN), detection algorithm, high-order modulation, bit error rate (BER),
computational complexity.

I. INTRODUCTION
The growing number of ultrascale intelligent factors, includ-
ing mobile robot users and smart cars, create the core require-
ments for ultrahigh-speed and low-latency communications
and innovation in the communication systems architecture,
and the 6th generation (6G) and beyond wireless commu-
nications are coming [1], [2]. Meanwhile, more aggressive
resource sharing and tighter cooperation in these intelli-
gent factors will result in interference exploitation. In uplink
massive multiple-input and multiple-output (MIMO) sys-
tems, obtaining the optimum bit error rate (BER) perfor-
mance with a low polynomial computational complexity is a
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nondeterministic polynomial hard problem [3]–[5]. Interfer-
ence exploitation and management will be a great challenge
for detection algorithms in uplink massive MIMO systems
in the future, especially for high-order quadrature ampli-
tude modulation (QAM) signals at an ultrascale. As key
technology, the development of a low-complexity detection
algorithm for uplink high-order modulated massive MIMO
systems is one of the most difficult but urgent issues that
needs to be addressed.

Recently, for the low-order modulation signals in mas-
sive MIMO systems, including binary phase shift key-
ing and 4-QAM signals, a number of detection algorithms
have obtained approximate optimum BER performance
using the maximum likelihood algorithm with polynomial
computational complexity, including the likelihood ascent
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FIGURE 1. The graphical detection model for the uplink multiuser massive MIMO system in a cell.

search (LAS) detection algorithm [6]–[8], mixed-Gibbs sam-
pling (MGS) detectionmethod [9], [10] and probabilistic data
association detection algorithm [11], [12], belief propaga-
tion (BP) detection method [13], [14], and ant colony opti-
mization detection algorithm [15]. However, these methods
failed to detect high-order modulation signals due to poor
BER performance, including 16-QAM and 64-QAM sig-
nals. On the other hand, the semidefinite relaxation decoder
(SDR) [16], LLLSDR detection method [17], MGS-MR
detection algorithm [18] and hybrid RTS-BP detection algo-
rithm [19] provide solutions for high-order modulation sig-
nals in small- or medium-scale MIMO systems. However,
the BER performance worsens, and the computational com-
plexity increases with an increase in the antenna number
or modulation order. These solutions are not effective for
ultrascale massive MIMO systems.

Artificial intelligence (AI) technology employing machine
learning is one of the key approaches among 6G tech-
nical solutions [1], [2]. In machine learning, deep learn-
ing technology has been employed and has achieved many
advantages in wireless physical communications [20]–[30],
including signal processing and channel estimation. In partic-
ular, by means of deep learning technology, the detection net-
work (DetNet) algorithm proposed in [27], [28], orthogonal
approximate message passing network (OAMP-Net) detec-
tion algorithm in [29], deep-learning-based sphere decoding
(DL-SD) algorithm in [26], and multilevel deep neural net-
work (DNN) detection algorithm in [30] provide solutions to
the problem of detecting both low-order and high-order mod-
ulation signals in small- or medium-scale MIMO systems.

Motivated by this, in this paper, the convolutional neural
network (CNN) in deep learning technology is employed for
detection in massive MIMO systems. The main contribution
of this paper is to propose a CNN-based likelihood ascent
search (CNNLAS) detection algorithm on the basis of the
presented graphical detection model for uplink multiuser

massive MIMO systems. Its effectiveness has been proved
through the simulation results. Compared to other algorithms,
the proposed CNNLAS algorithm requires a lower average
received signal-to-noise ratio (SNR) to obtain a better BER
performance and achieve the theoretical spectral efficiency
with a lower polynomial computational complexity, both for
the graphical low-order and high-order QAM signals in the
uplink multiuser massive MIMO systems.

The remainder of this paper is organized as follows. The
graphical detection model for the uplink multiuser massive
MIMO system is presented in Section II. The proposed
CNNLAS detection algorithm is introduced in Section III.
Section IV analyzes the computational complexity of the
algorithm. Section V presents the simulation results. The
conclusion is presented in Section VI.

Notation
In this paper, the lowercase boldface, uppercase boldface and
blackboard bold letter denote a vector, 2-D matrix and 3-D
matrix, respectively. The superscripts (·)T and (·)−1, vec(·),
unvec(·), ∗ and ⊗, C, R and Z, < (·) and = (·), E {·}, |·|,
sign(·), b·e, I, 0N , 1N , 1N×M denote the transpose, inversion,
column vectorization operators of a matrix, matrix transfor-
mation from a column vector, Hadamard andKronecker prod-
uct, complex, real and integer domains, real and imaginary
parts of a complex number, statistical expectation, absolute
value, sign and round operators, unit diagonal matrix, N × 1
column vector whose entries are all zeros, and N × 1 and
N ×M column vector and matrix whose entries are all ones,
respectively.

II. GRAPHICAL DETECTION MODEL FOR UPLINK
MULTIUSER MASSIVE MIMO SYSTEM
Fig. 1 shows the graphical detection model for uplink mul-
tiuser massive MIMO system in a single cell, which is
constructed based on the Vertical Bell Layered Space-Time
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(VBLAST) system [4]. In this model, hundreds of receiving
antennas are centralized and located at the base station (BS),
which receives the signals transmitted from tens of users
through the uplink channel. The number of receiving anten-
nas and users in a cell are denoted as NR and NK , respec-
tively, and their index numbers are denoted as nR and nk ,
where nR ∈ {1, 2, · · · ,NR} and nk ∈ {1, 2, · · · ,NK }. The
users are randomly distributed in the cell. The transmitting
antennas of each user are centralized and are assumed with
the same number, which is denoted as Nu. The total number
of transmitting antennas in a single cell is denoted as NT ,
where NT = NuNK and NT ≤ NR. The index number of
the nuth transmitting antenna from the nk th user is denoted
as nT = (nk − 1)Nu + nu, where nT ∈ {1, 2, · · · ,NT } and
nu ∈ {1, 2, · · · ,Nu}. The length of the modulation symbols
per frame duration and its index number are denoted as NL
and nl , respectively, where nl ∈ {1, 2, · · · ,NL}.
In the cell, the graphical signal data center is estab-

lished with two parts. One part is the 3-D graphical signal
matrix and is denoted as G =

[
G1, · · · ,Gn, · · · ,GN

]
∈

ANg×NL×N , where Gn
∈ ANg×NL is the nth graphical sig-

nal matrix element, Ng = 2Nu, N is the total number
and NK � N ≤ (

√
M )(NgNL ), and n ∈ {1, 2, · · · ,N }

is its index number. Each symbol entry is transformed
from the bitstream by M -QAM modulation. The modu-
lation constellation is denoted as S = A + jA, where
A =

{
−(
√
M − 1), · · · ,−3,−1, 1, 3, · · · , (

√
M − 1)

}
rep-

resents its real alphabet and M is the modulation order. The
other part of the data center is the label vector of the graphical
signal, which is denoted as f = [f1, · · · , fn, · · · , fN ] ∈ R1×N ,
where the nth entry is fn = n and labels the nth graphical
signal. For the BS and users in the cell, each of them is
equipped with a graphical signal database, which downloads
and stores G and f from the graphical signal data center,
respectively.

Over the unit frame duration for the NK users in the cell,
each user randomly selects one different graphical signal
from the database for graphical encoding at the transmitter.
The transmitted graphical signal matrix from the nk th user
is denoted as X̃nk =

[
x̃1nk , · · · , x̃

nl
nk , · · · , x̃

NL
nk

]
∈ SNu×NL ,

where x̃nlnk =
[
x̃nl(nk−1)Nu+1

, · · · , x̃nl(nk−1)Nu+nu
, · · · , x̃nlnkNu

]T
∈

SNu×1 denotes the transmitted graphical signal vector during
the nl th symbol time and its entry x̃nl(nk−1)Nu+nu

∈ S denotes
the symbol from the nuth transmitting antenna. It is encoded
by

X̃nk = 9G(dnk ) + j8G(dnk ) (1)

Herein,

9 = [1, 0]⊗ INu ∈ ZNu×Ng (2)

and

8 = [0, 1]⊗ INu ∈ ZNu×Ng (3)

As the nth entry of the users’ label vector, which is denoted as
d =

[
d1, · · · , dnk , · · · , dNK

]
∈ Z1×NK , the positive integer

dnk is randomly generated and different in each case, where
1 ≤ dnk ≤ N . Then, the graphical signal transmitted from
each user is different from the others and is nonorthogonal.

The graphical signal matrix transmitted from the NK
users is denoted as X̃ =

[
X̃T
1 , · · · , X̃

T
nk , · · · , X̃

T
NK

]T
=[

x̃1, · · · , x̃nl , · · · , x̃NL
]
∈ SNT×NL under the assumption that

the signals are transmitted from each user and received by
the BS simultaneously through synchronous processing. The

entry x̃nl =
[
(x̃nl1 )

T, · · · , (x̃nlnk )
T, · · · , (x̃nlNK )

T
]T
∈ SNT×1

denotes the transmitted symbol vector over the nl th symbol
duration.

The channel gain matrix is denoted as H̃ = [h̃1, · · · ,
h̃nT , · · · , h̃NT ] ∈ CNR×NT , where h̃nT = [h̃1nT , · · · ,
h̃nRnT , · · · , h̃nRnT ]

T
∈ CNR×1, where h̃nRnT denotes the chan-

nel gain from the nT th transmitting antenna to the nRth receiv-
ing antenna. Over flat fading channel in the rich-scattering
environment, the entries of H̃ are modeled as independent and
identically distributed (iid) complex Gaussian variables with
zero mean and unit variance, and are invariant during a frame
but change independently from frame to frame. Through the
channel estimation procedure, the channel gain matrix has
been known at the receiver [4], [5], [31].
Over the unit frame time, the received signal matrix at the

BS is denoted as Ỹ =
[
ỹ1, · · · , ỹnl , · · · , ỹNL

]
∈ CNR×NL ,

and

Ỹ = H̃X̃+ Z̃ (4)

where ỹnl =
[
ỹnl1 , · · · , ỹ

nl
nR , · · · , ỹ

nl
NR

]T
∈ CNR×1 denotes the

received signal vector during the nl th symbol time. Herein,
the entry ỹnlnR is the received symbol at the nRth receiving
antenna. Z̃ =

[
z̃1, · · · , z̃nl , · · · , z̃NL

]
∈ CNR×NL denotes

the complex additive White Gaussian noise (AWGN) matrix,
whose entry z̃nl ∈ CNR×1 is the received noise vector over
the nl th symbol duration. E

{
z̃nl (z̃nl )H

}
= σ 2INR , where σ

2

is the noise variance.
At the BS, the convolutional neural network (CNN) is

trained by the graphical signal matrix of G and its label
matrix of B in the graphical signal database. With the
trained CNN, a detection algorithm based on the CNN is
proposed in this paper. After graphical detection process-
ing at the BS, the estimated transmitted graphical symbol
matrix for the NK users over the unit frame duration is

obtained and denoted as ˆ̃X =
[
ˆ̃XT
1 , · · · ,

ˆ̃XT
nk , · · · ,

ˆ̃XT
NK

]T
=[

ˆ̃x1, · · · , ˆ̃xnl , · · · , ˆ̃xNL
]
∈ SNT×NL , where ˆ̃Xnk ∈ SNu×NL

is the estimated transmitted graphical signal matrix from the

nk user and ˆ̃xnl =
[
ˆ̃x
nl
1 , · · · ,

ˆ̃x
nl
nT , · · · ,

ˆ̃x
nl
NT

]T
∈ SNT×1 is

the estimated transmitted symbol vector over the nl th sym-
bol duration, whose entry ˆ̃x

nl
nT denotes the estimated symbol

from the nT th transmitting antenna. Meanwhile, the esti-
mated users’ label vector is also obtained and represented as
d̂ =

[
d̂1, · · · , d̂nk , · · · , d̂NK

]
∈ Z1×NK . This paper aims to

obtain the optimum BER performance over finite polynomial
complexity time.
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FIGURE 2. The network architecture and the diagram for the training process and detection procedure of the proposed CNNLAS detection algorithm.

III. PROPOSED
CONVOLUTIONAL-NEURAL-NETWORK-BASED
LIKELIHOOD ASCENT SEARCH DETECTION ALGORITHM
Considering that the algorithm is carried out in the real
domain, the complex detection model in (4) is expanded as
a real one, that is,

Y = HX+ Z (5)

Herein,

H 1
=

[
<(H̃) −=(H̃)
=(H̃) <(H̃)

]
, X 1

=

[
<(X̃)
=(X̃)

]
,

Y 1
=

[
<(Ỹ)
=(Ỹ)

]
, Z 1

=

[
<(Z̃)
=(Z̃)

] (6)

where H =
[
h1, · · · ,hnt , · · · ,hNt

]
∈ RNr×Nt ,

X =
[
x1, · · · , xnl , · · · , xNL

]
∈ ANt×NL , Y =[

y1, · · · , ynl , · · · , yNL
]
∈ RNr×NL and Z ∈ RNr×NL

denote the expanded real channel gain, transmitted
signal, received signal and noise matrix, respectively.
Here, hnt =

[
h1nt , · · · , hnrnt , · · · , hNrnt

]T
∈ RNr×1,

ynl =
[
ynl1 , · · · , y

nl
nr , · · · , y

nl
Nr

]T
∈ RNr×1 and xnl =[

xnl1 , · · · , x
nl
nt , · · · , x

nl
Nt

]T
∈ ANt×1 represent the expanded

real transmitted and received signal vectors over the
nl th symbol duration, respectively. Furthermore, Xnk =[
<(X̃T

nk ),=(X̃
T
nk )
]T
∈ ANg×NL , where Nt = 2NT , Nr = 2NR,

and nt ∈ {1, 2, · · · ,Nt }, nr ∈ {1, 2, · · · ,Nr }.

A. TRAINING PROCESS
As shown in Fig. 2(a) and Fig. 2(b), the convolutional neural
network (CNN) is trained through G and f in the database
before the detection procedure.
As shown in Fig. 2(a), considering the computa-

tional complexity, the CNN consists of five layers: the
input layer, convolutional layer, pool layer, hidden layer
and output layer. In the convolutional layer, the weight
matrix of the convolutional filter is denoted as Wc =[
W1

c, · · · ,W
nc
c , · · · ,W

Nc
c

]
∈ RNf×Nf×Nc , where Wnc

c ∈

RNf×Nf is the weight matrix of the ncth convolutional filter,
Nf denotes its dimension and Nc is the total number of con-
volutional filters, nc ∈ {1, 2, · · · ,Nc}. The weight matrices
between the pool layer and the hidden layer, and between
the hidden layer and the output layer are denoted as Wh ∈

RNh×Nd and Wo ∈ RN×Nh , where Nh =

(
NL − Nf + 1

2

)
N

and Nd =

(
NL − Nf + 1

2

)2

Nc.

As shown in Alg. 1, the training graphical signal matrix
inputed into the CNN is given by

U = 1Tκ ⊗G ∈ ANL×Nu×Nz (7)

Herein, U =
[
U1, · · · ,Unz , · · · ,UNz

]
, whose entry Unz ∈

ANL×Nu denotes the nzth training graphical signal, Nz =

κN is its total number, κ denotes a positive integer, and
nz ∈ {1, 2, · · · ,Nz}. The corresponding label vector of U is
denoted as B =

[
b1, · · · ,bnz , · · · ,bNz

]
∈ ZN×Nz , whose

column vector entry bnz ∈ ZN×1 labels the nzth training
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graphical signal Unz , and

B = 1Tκ ⊗ F (8)

Herein, F ∈ ZN×N , whose fnth diagonal entry is 1, and the
other entries are 0.

Algorithm 1 Training Process

Require: U = 1Tκ ⊗G, B = 1Tκ ⊗ F, W(0)
c ,W(0)

h andW(0)
o .

1: for loop = 1 to Nechop do
2: Initialize each entry ofM(0)

c , M(0)
h andM(0)

o as 0.
3: for nb = 1 to Nb do
4: Initialize each entry of L(0)

c , L(0)
h and L(0)

o as 0.
5: for nq = nb to nb + Nq − 1 do
6: Input Unq and bnq .
7: Calculate Ṽc, Vc, Vp, vh, ṽh, vo successively

according from (9) to (15) in the forward prop-
agation.

8: Calculate eo, eh, Ep, Ec successively according
from (16) to (21) in the back propagation.

9: Update L(nq)
c , L

(nq)
h and L

(nq)
o as in (22).

10: end for
11: UpdateM(nb)

c , M(nb)
h andM(nb)

o as in (23).
12: UpdateW(nb)

c ,W(nb)
h andW(nb)

o as in (24).
13: end for
14: end for
Ensure: W̄c, W̄h and W̄o.

Each entry of W(0)
c , W(0)

h and W(0)
o is initialized as a

random real number ranging from 0 to δc, from −δh to δh
and from −δo to δo, where 0 ≤ δc ≤ 1, 0 ≤ δh ≤ 1 and
0 ≤ δo ≤ 1, respectively.
During each loop of the training, the CNN is trained by

the minibatch method. The number of graphical signals in
each batch is Nq = Nz

/
Nb, where Nb denotes the total

number of batches. Furthermore, each weight matrix is also
updated by the momentum method. As shown in Alg. 1,
the superscript ‘‘(nb)’’ and ‘‘(nq)’’ denote the index number of
training iteration, where nb ∈ {1, 2, · · · ,Nb}.
Through the convolutional filters in the convolutional

layer, Unq is transformed into the feature map matrix, which
is denoted as Ṽc =

[
Ṽ1
c, · · · , Ṽ

nc
c , · · · , Ṽ

Nc
c

]
∈ RNv×Nv×Nc ,

whose ncth entry Ṽnc
c ∈ RNv×Nv denotes the feature map

transformed by the ncth convolutional filter, given by

Ṽnc
c(i,j) =

∑
s

∑
t

U
nq
(s,t)W

nc(nb−1)
c(i−s,j−t) (9)

where the subscript ‘‘(i,j)’’ denotes the (i, j)th entry of a
matrix, and Nv = (NL − Nf + 1).
Then, the ncth feature map Ṽnc

c is activated, given by

Vnc
c = ReLu

(
Ṽnc
c

)
∈ RNv×Nv (10)

where ReLu (x) =
{
x, x > 0
0, x ≤ 0

is the activation func-

tion with the variable x, and Vnc
c is the ncth entry of the

output matrix from the convolutional layer, which is denoted
as Vc =

[
V1
c, · · · ,V

nc
c , · · · ,V

Nc
c

]
∈ RNv×Nv×Nc .

Through the 2 × 2 mean pooling operation in the pool
layer, the ncth activated feature map Vnc

c is transformed into
a smaller map, given by

Vnc
p = 4

(
Wm ∗ Ṽnc

p

)
4T (11)

Herein, Vnc
p ∈ RNs×Ns is the ncth entry of Vp =[

V1
p, · · · ,V

nc
p , · · · ,V

Nc
p

]
∈ RNs×Ns×Nc , Wm =

[
1 0
0 0

]
⊗

1Ns×Ns ∈ ZNv×Nv , 4 = INs ⊗ 1T2 ∈ ZNs×Nv , Ns = Nv
/
2, and

Ṽnc
p ∈ RNv×Nv , given by

Ṽnc
p(i,j) =

∑
s

∑
t

Vnc
c(s,t)Wp(i−s,j−t) (12)

whereWp =
1
412×2 ∈ R2×2 is the mean pooling matrix.

Then, with the smaller feature map matrix Vp, the output
vector from the hidden layer is obtained by

vh = ReLu
(
W(nb−1)

h ṽh
)
∈ RNh×1 (13)

where

ṽh = vec
(
Vp
)
∈ R(N 2

s Nc)×1 (14)

Through the output layer, the output vector is deduced by

vo = Softmax
(
W(nb−1)

o vh
)
∈ RN×1 (15)

Herein, Softmax(χn) = eχn
N∑
i=1
χi

is the activation func-

tion with the variable χn, where χn is the entry of
χ = [χ1, · · · , χn, · · · , χN ]T ∈ RN×1.

With the output vector vo, the back propagation process
is carried out as described below. The error vector from the
output layer is obtained by

eo = bnq − vo (16)

Then, the error vector from the hidden layer is given by

eh =
(
sign (vh)+ 1

2

)
∗

((
W(nb−1)

o

)T
eo

)
(17)

The error matrix from the pooling layer is denoted as
Ep =

[
E1
p, · · · ,E

nc
p , · · · ,E

Nc
p

]
∈ RNv×Nv×Nc , whose ncth

entry Encp ∈ RNv×Nv is given by

Encp =
(
Ẽncp ⊗ 12×2

)
∗

(
1
4
1Nv×Nv

)
(18)

where Ẽncp ∈ RNs×Ns is the ncth matrix entry of Ẽp =[
Ẽ1
p, · · · , Ẽ

nc
p , · · · , Ẽ

Nc
p

]
∈ RNs×Ns×Nc and Ẽp is given by

Ẽp = unvecNs×Ns×Nc

((
W(nb−1)

h

)T
eh

)
(19)
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The error matrix from the convolutional layer is denoted
as Ec =

[
E1
c, · · · ,E

nc
c , · · · ,E

Nc
c

]
∈ RNf×Nf×Nc , whose ncth

matrix entry Encc ∈ RNf×Nf is given by

Encc(i,j) =
∑
s

∑
t

U
nq
(s,t)Ẽ

nc
c(i−s,j−t) (20)

where Ẽncc ∈ RNv×Nv is the ncth matrix entry of Ẽc =[
Ẽ1
c, · · · , Ẽ

nc
c , · · · , Ẽ

Nc
c

]
∈ RNv×Nv×Nc and Ẽc is given by

Ẽc =

(
sign (Vc)+ 1

2

)
∗ Ep (21)

After the nqth training iteration, the delta weight matrices
L(nq)
c ∈ RNf×Nf×Nc , L

(nq)
h ∈ RNh×Nd and L

(nq)
o ∈ RN×Nh are

updated by 
L(nq)
c = L(nq−1)

c + Ec

L
(nq)
h = L

(nq−1)
h + ehṽTh

L
(nq)
o = L

(nq−1)
o + eovTh .

(22)

After the training iteration of the nbth batch, the momen-
tum weight matrices M(nb)

c ∈ RNf×Nf×Nc , M(nb)
h ∈ RNh×Nd

andM(nb)
o ∈ RN×Nh are updated, given by

M(nb)
c = α

(
L(nb+Nq−1)
c

Nq

)
+ βM(nb−1)

c

M(nb)
h = α

(
L
(nb+Nq−1)
h

Nq

)
+ βM(nb−1)

h

M(nb)
o = α

(
L
(nb+Nq−1)
o

Nq

)
+ βM(nb−1)

o .

(23)

where α is the learning rate and β is the momentum
parameter, with 0 < α < 1 and 0 < β < 1.
Then, the weight matrices W(nb)

c , W(nb)
h and W(nb)

o are
updated accordingly, that is,

W(nb)
c =W(nb−1)

c +M(nb)
c

W(nb)
h =W(nb−1)

h +M(nb)
h

W(nb)
o =W(nb−1)

o +M(nb)
o .

(24)

After the training loops by Nechop times, the modified
weight matrices of the trained CNN are obtained and denoted
as W̄c =

[
W̄1

c, · · · , W̄
nc
c , · · · , W̄

Nc
c

]
, W̄h and W̄o.

B. DETECTION PROCEDURE
As shown in Fig. 2(c) and Alg. 2, through the above trained
CNN, the detection procedure is carried out as described
below.

Over the nl th symbol duration, through the minimummean
square error (MMSE) detection method, the initial vectors for
the local search are denoted as xnl (0) and x̃nl (0), given by{

xnl (0) = Q
(
�−1H̄Tȳnl

)
x̃nl (0) = H̄Tȳnl −�xnl0 .

(25)

Algorithm 2 Detection procedure

Require: Y, H, G, f, W̄c, W̄h and W̄o.
1: for nl = 1 to NL do
2: Initialize xnl (0) and x̃nl (0) as in (25) and (26), τ = 0.
3: repeat
4: for q = 1 to Nt do
5: Calculate and modified ρnl (τ )q as in (28) and (29).

6: Compute 1Fnl (τ+1)q (ρnl (τ )q ) as in (27).
7: end for
8: Calculate q′ as in (31).
9: if 1Fnl (τ+1)q′ (ρnl (τ )q′ ) < 0 then
10: Update xnl (τ+1) and x̃nl (τ+1) as in (30).
11: τ = τ + 1.
12: end if
13: until 1Fnl (τ+1)q′ (ρnl (τ )q′ ) ≥ 0
14: x̄nl = xnl (τ )

15: end for
16: for nk = 1 to Nk do
17: Input X̄nk into the trained CNN.
18: Calculate V̂c, V̂p, v̂h and v̂o successively according

from (32) to (37) through the trained CNN.
19: Estimate d̂nk as in (38).
20: Calculate X̂nk as in (39).
21: end for
Ensure: X̂ and d̂.

Herein,

� = H̄TH̄ (26)

where H̄ =

[
H√
σ 2

2 INt

]
and ȳnl =

[
ynl
0Nt

]
. Q(·) is

the hard decision operator according to A. With the initial
value, the local search iterates by likelihood ascent searching
proceed as described below.

During the (τ + 1)th iteration, the qth difference cost
function is obtained by

1Fnl (τ+1)q (ρnl (τ )q ) = (ρnl (τ )q )2rq,q − 2ρnl (τ )q

∣∣∣x̃nl (τ )q

∣∣∣ (27)

where rq,q is the qth diagonal entry of �, x̃nl (τ )q denotes the
qth entry of x̃nl (τ ), and

ρnl (τ )q = 2
⌊∣∣∣x̃nl (τ )q

∣∣∣/(2rq,q)
⌉

(28)

Herein, when x ′nl (τ+1)q = xnl (τ )q + ρ
nl (τ )
q sign(vnl (τ )q ) is out of

the boundary of A, ρnl (τ )q is also further modified, given by

ρnl (τ )q =

sign
(
x ′nl (τ+1)q

) (√
M − 1

)
− xnl (τ )q

sign(x̃nl (τ )q )
(29)

where xnl (τ )q denotes the qth entry of xnl (τ ). τ = 0, 1, · · · and
q ∈ {1, 2, · · · ,Nt }.
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When 1Fnl (τ+1)q′ (ρnl (τ )q′ ) < 0,{
xnl (τ+1) = xnl (τ ) + ρnl (τ )q′ sign(x̃nl (τ )q′ )eq′

x̃nl (τ+1) = x̃nl (τ ) − ρnl (τ )q′ sign(x̃nl (τ )q′ )rq′ .
(30)

Herein,

q′ = argmin
q

1Fnl (t+1)q (ρnl (t)q ) (31)

rq′ ∈ RNt×1 is the q′th column vector entry of � and
eq′ ∈ ZNt×1 denotes the vector whose q′th entry is 1 and the
other entries are 0.

The above iterations are looped until 1Fnl (τ+1)q′

(ρnl (τ )q′ ) ≥ 0, and the optimum solution vector during the unit
symbol time by the local search is obtained, which is denoted
as x̄nl = xnl (τ ) ∈ ANt×1.

After the frame duration, the estimation of the transmit-
ted signal matrix from the NK users by the local search is
obtained, which is denoted as X̄ =

[
x̄1, · · · , x̄nl , · · · , x̄Nl

]
=[(

X̄T
1

)T
, · · · ,

(
X̄T
nk

)T
, · · · ,

(
X̄T
Nk

)T]
∈ ANt×NL , whose

entry X̄nk ∈ ANg×NL is the corresponding estimation of the
graphical signal from the nk th user.
Then, for a further optimization, X̄nk is inputted to the

trained CNN from nk = 1 to nk = NK .
In the trained CNN, through the transformation from X̄nk

by the convolutional filters, the output activated feature map
matrix from the convolutional layer is denoted as V̂c =[
V̂1
c, · · · , V̂

nc
c , · · · , V̂

Nc
c

]
∈ RNv×Nv×Nc , whose ncth acti-

vated feature map matrix entry V̂nc
c is given by

V̂nc
c = ReLu

(
ˆ̃Vnc
c

)
∈ RNv×Nv (32)

where ˆ̃Vnc
c ∈ RNv×Nv is the ncth entry of ˆ̃Vc ∈ RNv×Nv×Nc ,

given by

ˆ̃Vnc
c(i,j) =

∑
s

∑
t

X̄nk (s,t)W̄
nc
c(i−s,j−t) (33)

Through the pool layer, the output smaller feature
map matrix is obtained, which is denoted as V̂p =[
V̂1
p, · · · , V̂

nc
p , · · · , V̂

Nc
p

]
∈ RNs×Ns×Nc , whose ncth matrix

entry V̂nc
p ∈ RNs×Ns is given by

V̂nc
p = 4

(
Wm ∗

ˆ̃Vnc
p

)
4T (34)

where ˆ̃Vnc
p ∈ RNv×Nv is the ncth entry of ˆ̃Vp ∈ RNv×Nv×Nc ,

given by

ˆ̃Vnc
p(i,j) =

∑
s

∑
t

V̂nc
c(s,t)Wp(i−s,j−t) (35)

The output vector from the hidden layer is denoted as v̂h ∈
RNh×1, given by

v̂h = ReLu
(
W̄h

(
vec

(
V̂p

)))
(36)

Through the output layer, the output vector of the trained
CNN is denoted as v̂o ∈ RN×1, that is,

v̂o = Softmax
(
W̄ov̂h

)
(37)

The estimated label number of the nk th user of d̂nk is
deduced by

d̂nk = argmax
n

v̂o (38)

where n ∈ {1, 2, · · · ,N }.
After the optimization by the trained CNN, the optimum

solution of the nk th graphical signal matrix by the proposed
CNNLAS detection algorithm is obtained by

X̂nk = 9G(d̂nk ) + j8G(d̂nk ) (39)

From nk = 1 to nk = NK , the optimum solution of
the graphical signal matrix of X̂ from the NK users and the
optimum estimation of its label vector of d̂ are obtained by
the CNNLAS detection algorithm.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity is evaluated by the order of
magnitude, denoted as O(·), of the number of float point
number operations (flops) [32].

Considering the calculation for AB, where A ∈ Ra×b and
B ∈ Rb×c, the computational complexity is (2b − 1)ac ≈
O(abc) [32].

Considering one convolutional layer, the computational
complexity is O(p2q2st), where p2 is the scale of each feature
map output from one convolutional filter, q2 is the scale of
each convolutional filter, s is the number of input channels
for each filter, and t is the number of convolutional filters in
the layer [33].

As shown in Tab. 1, the computational complexity for
the proposed algorithm arises from two processes. The first
process is the convolutional neural network training, and
the second process is the detection procedure.

A. THE COMPUTATIONAL COMPLEXITY OF THE TRAINING
PROCESS
The computational complexity of the convolutional layer
from (9) and (10) is O(N 2

v N
2
f Nc). The computational com-

plexity of the pool layer from (11) and (12) is O(N 2
v N

2
c ). The

computational complexity from the hidden layer from (13)
and (14) is O(NhNd ). The computational complexity of
the output layer from (17) is O(NhN ). Thus, the compu-
tational complexity during the forward propagation pro-
cess is O(N 2

v N
2
f Nc) + O(N 2

v N
2
c ) + O(NhNd ) + O(NhN ) =

O(4N 2
s N

2
f Nc)+ O(4N 2

s N
2
c )+ O(N 3

s NcN )+ O(NsN 2).
The computational complexity of the procedure of the back

propagation from (16) to (21) is on the same order as that
of the forward propagation process, that is, O(4N 2

s N
2
f Nc) +

O(4N 2
s N

2
c )+O(N

3
s NcN )+O(NsN 2). The number of batches is

Nb, and the number of graphical signals updated during each
batch is Nq.
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TABLE 1. The computational complexity of the proposed CNNLAS detection algorithm.

Thus, considering that N � Nf and N � Ns, the total
computational complexity of the training process during each
loop is

2NbNq

(
O(4N 2

s N
2
f Nc)+ O(4N 2

s N
2
c )

+O(N 3
s NcN )+ O(NsN 2)

)
≈ O

(
Nz(N 2

c + N
2)
)

(40)

B. THE COMPUTATIONAL COMPLEXITY OF THE
DETECTION PROCEDURE
As shown in Tab. 1, the computational complexity of the
detection procedure arises from three processes.

First, the computational complexity of calculating � as
in (26) is O

(
N 2
TNR

)
. When NT = NR, this complex-

ity is approximated as O
(
N 3
T

)
. Then, the computational

complexity of the initial solution calculation as in (25) is
O
(
N 3
T

)
+O

(
N 3
T

)
+O

(
N 3
T

)
+O

(
N 2
T

)
+O

(
N 2
T

)
+O

(
N 2
T

)
=

O
(
3N 3

T + 3N 2
T

)
. When NT ≥ 100, this complexity is

approximated as O
(
N 3
T

)
.

Second, the computational complexity of the local search
of the LAS from (27) to (31) mainly arises from the calcula-
tion of � as in (26), which is O

(
N 3
T

)
.

Third, the computational complexity of the further opti-
mization by the trained CNN from (32) to (39) is the
same as that of the forward procedure for the NK users,
that is, NK (O(4N 2

s N
2
f Nc) + O(4N 2

s N
2
c ) + O(N 3

s NcN ) +
O(NsN 2)) = NT (O((4N 2

s N
2
f )/NuNc) + O((4N 2

s /Nu)N
2
c ) +

O((N 3
s /Nu)NcN ) + O((Ns/Nu)N 2)). Considering NT >>

Ns and NT >> Nf , the complexity is approximated as
O
(
NT (N 2

c + N
2)
)
.

Thus, the total average computational complexity per sym-
bol is deduced as

O
(
N 3
T

)
+ O

(
N 3
T

)
+ O

(
NT (N 2

c + N
2)
)

NT

≈ O
(
N 2
T + N

2
c + N

2
)

(41)

V. SIMULATION RESULTS
The numbers of receiving and transmitting antennas in the
massive MIMO system are considered to be NT = NR =
288, NT = 120 and NR = 288. For each user, the number
of transmitting antennas is Nu = 8. The number of users in
the unit cell is NK = NT /Nu and ranges from 15 to 36. The
number of graphical signals G in the database is N = 100,
and its dimension is Ng × NL , where Ng = 16 and NL =
16. Each symbol of G(n) is modulated by M -QAM from the

randomly generated bitstream, and the label index of G(n) is
fn = n, where M ranges from 4 to 64 and n ∈ {1, 2, · · · ,N }.
Over unit duration, the graphical signal transmitted from the
nk th user X̃nk is generated as in (1), and its label index dnk
is a random integer ranging from 1 to N and different from
each other, where nk ∈ {1, 2, . . . ,NK }. Detailed in Section II,
the channel is flat Rayleigh fading. The average received SNR
ranges from 0 dB to 46 dB.

Detailed in Section III, the hyper parameters of the CNN
are presented as below. The dimension of each filter in the
convolutional layer is Nf × Nf, where Nf changes from 3
to 11. The total number is Nc and changes from 20 to 100.
For the initial value of the weight matrix in the hidden layer
and the output layer, δh =

√
6

4NfN+N 2
s Nc

and δo =
√

6
NfN

[34].
The learning rate is α = 0.01 and the momentum parameter
is β = 0.95. During each loop, the training graphical signal
inputted into the CNN Unz and its label vector bnz are gen-
erated as in (7) and (8), where nz ∈ {1, 2, · · · ,Nz}. Its total
number is Nz = NbNq = 100000, where the total number of
training graphical signals in each batch is Nq = 200 and the
number of batches isNb = 500. The number of training loops
is Nechop = 3.
In this section, implemented by programming through

MATLAB 2017a, the BER performance, spectral efficiency
and computational complexity of the proposed CNNLAS
algorithm are simulated and compared with those of the
MMSE detection algorithm in [4], MMSELAS detection
algorithm in [6], SDR algorithm in [16], LLLSDR algorithm
in [17], DetNet detection algorithm in [28], where the number
of layers for the DetNet algorithm is LD = 90.

A. BER PERFORMANCE
1) BER PERFORMANCE OF DETECTING DIFFERENT
GRAPHICAL M-QAM SIGNALS
Fig. 3 shows the BER performance of the proposed CNNLAS
detection algorithm for the graphical 4-QAM signals in the
uplink multiuser MIMO system, where NT = 32 and NR =
48. At an average received SNR of 3 dB, the BER of the
proposed CNNLAS detection algorithm in the case of Nf ×
Nf = 3×3 andNc = 20 is 10−5, which ismuch lower than the
BER of 10−1 of the counterpart algorithms. To obtain a BER
of 10−5, the required average received SNR for the proposed
CNNLAS algorithm increases by 1 dB whenNf ×Nf = 3×3
increases to Nf × Nf = 7 × 7 as a result of the generated
overfitting but decreases to 2 dB when Nc = 20 increases
to Nc = 60. This average received SNR is nearly 9 dB
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FIGURE 3. BER performance of the proposed CNNLAS detection
algorithm for graphical 4-QAM signals in uplink multiuser MIMO system,
where NT = 32 and NR = 48.

FIGURE 4. BER performance of the proposed CNNLAS detection
algorithm for graphical 4-QAM signals in uplink multiuser massive MIMO
system, where NT = NR = 288.

lower than that required for the DetNet detection algorithm,
10 dB lower than that required for the MMSELAS, SDR and
LLLSDR algorithms, and much lower than that required for
the MMSE detection algorithm. Compared to the counter-
part algorithms, the proposed CNNLAS detection algorithm
obtains a much better BER performance in medium-small
MIMO system.

Fig. 4 shows the BER performance of the proposed
CNNLAS detection algorithm for the graphical 4-QAM sig-
nals in the uplink multiuser massive MIMO system, where
NT = NR = 288. The DetNet detection algorithm obtains
a quite worse BER performance of 10−1 in this case. At an
average received SNR of 6 dB, the BER of the proposed
CNNLAS detection algorithm in the case of Nf × Nf =
3 × 3 and Nc = 20 is 10−5, which is much lower than the
BER of 10−1 of the counterpart algorithms. To obtain a BER
of 10−5, the required average received SNR for the proposed
CNNLAS algorithm increases by 1 dB whenNf ×Nf = 3×3
increases to Nf × Nf = 7 × 7 as a result of the generated
overfitting but decreases to 5 dB when Nc = 20 increases
to Nc = 60. This average received SNR is nearly 7 dB lower

FIGURE 5. BER performance of the proposed CNNLAS detection
algorithm for graphical 16-QAM signals in uplink multiuser massive
MIMO system, where NT = NR = 288.

FIGURE 6. BER performance of the proposed CNNLAS detection
algorithm for graphical 64-QAM signals in uplink multiuser massive
MIMO system, where NT = NR = 288.

than that required for theMMSELASmethod andmuch lower
than that required for the other detection algorithms.

Fig. 5 shows the BER performance of the proposed
CNNLAS detection algorithm for the graphical 16-QAM
signals in the uplink multiuser massive MIMO system, where
NT = NR = 288. At an average received SNR of 16 dB,
the BER of the proposed CNNLAS algorithm in the case
of Nf × Nf = 3 × 3 and Nc = 20 is 10−5, which is
lower than the BER of 10−1 of the counterpart detection
algorithms. To obtain a BER of 10−5, the required average
received SNR for the proposed CNNLAS detection algorithm
decreases by 1 dB when Nf × Nf = 3 × 3 increases to
Nf × Nf = 9 × 9 and decreases to 12 dB when Nc = 20
increases to Nc = 100. This average received SNR is 12 dB
lower than that required for the SDRmethod, and 14 dB lower
than that for the LLSDR algorithm, more than 18 dB lower
than that for the MMSELAS detection algorithm, and much
lower than that required for the MMSE algorithm.

Fig. 6 shows the BER performance of the proposed
CNNLAS detection algorithm for the graphical 64-QAM
signals in the uplink multiuser massive MIMO system, where
NT = NR = 288. At a fixed average received SNR, the BER
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FIGURE 7. BER performance of the proposed CNNLAS detection
algorithm for graphical 64-QAM signals in uplink multiuser massive
MIMO system, where NT = 120 and NR = 288.

of the proposed CNNLAS detection algorithm is lower than
those of the counterpart detection algorithms. To obtain the
BER of 10−5, the required average received SNR for the
proposed CNNLAS detection algorithm is 24 dB in the case
of Nf × Nf = 3 × 3 and Nc = 20, decreases by 5 dB when
Nf ×Nf = 3× 3 increases to Nf ×Nf = 11× 11 and further
decreases to 14 dBwhenNc = 20 increases toNc = 100. This
average received SNR is 20 dB lower than that required for
the SDRmethod,more than 24 dB lower than that required for
the LLLSDR algorithm, and much lower than that required
for the MMSELAS and MMSE detection algorithms.

The above-mentioned simulation results illustrate that the
proposed CNNLAS detection algorithm is both applicable
for graphical low-order and high-order modulation signals
in the uplink multiuser medium-small or massive MIMO
systems. Under medium-low average received SNR cases,
the proposed CNNLAS detection algorithm obtains a much
better BER performance than the counterpart algorithms in
massive MIMO system when NT = NR.

2) BER PERFORMANCE IN THE UPLINK MULTIUSER
MASSIVE MIMO SYSTEMS WHERE NT < NR
Fig. 7 shows the BER performance of the proposed CNNLAS
detection algorithm for the graphical 64-QAM signals in the
uplink multiuser massive MIMO system, where NT = 120
and NR = 288. At an average received SNR of 11 dB,
the BER of the proposed CNNLAS detection algorithm in
the case of Nf × Nf = 3 × 3 and Nc = 20 is 10−5, which is
lower than the BER of 10−1 of the counterpart algorithms.
To achieve a BER of 10−5, the required average received
SNR for the proposed CNNLAS decreases by 3 dB when
Nf × Nf = 3 × 3 increases to Nf × Nf = 11 × 11 and
decreases to 6 dB when Nc = 20 increases to Nc = 100. This
average received SNR is 15 dB lower than that required for
the SDRmethod,more than 18 dB lower than that required for
the LLLSDR and MMSELAS algorithms, and much lower
than that required for the MMSE algorithm.

At medium low average received SNR, when NT < NR,
the proposed CNNLAS detection algorithm obtains better

FIGURE 8. BER performance of the proposed CNNLAS detection
algorithm in presence of channel estimation errors for graphical 64-QAM
signals in uplink multiuser massive MIMO system, where NT = NR = 288
and σ2

ε = 0.1.

BER performance than the counterpart detection algorithms
for the uplink multiuser massive MIMO system.

3) BER PERFORMANCE IN PRESENCE OF CHANNEL
ESTIMATION ERRORS
In presence of channel estimation errors, the performance
of the proposed CNNLAS algorithm in the uplink multiuser
massiveMIMO system is investigated. The estimated channel
gain matrix is given by [35]

ˆ̃H = H̃+1H̃ ∈ CNR×NT (42)

where 1H̃ ∈ CNR×NT is the error matrix with iid complex
Gaussian entries with zero mean and σ 2

ε variance.
Fig. 8 illustrates the BER performance of the proposed

CNNLAS detection algorithm for the graphical 64-QAM
signals in the presence of channel estimation errors as those
in (42), where NT = NR = 288 and σ 2

ε = 0.1, and all other
conditions remain the same as in Fig. 6. It can be seen that,
to achieve a BER of 10−5, the required average received SNR
for the proposed CNNLAS detection algorithm decreases by
6 dB when Nf × Nf = 3 × 3 increases to Nf × Nf =
11 × 11 and decreases to 16 dB when Nc = 20 increases
to Nc = 100. In the presence of channel estimation errors,
to achieve the same BER performance, the average received
SNRs are respectively 3 dB, 2 dB and 2 dB higher than
those required in the cases without channel estimation errors.
The BER performance of the proposed CNNLAS algorithm
decreases sharply versus the average received SNR, but it
is much better than those of the counterpart compared algo-
rithms which obtain a quite worse BER performance of 10−1.

In the presence of channel estimation errors, the coun-
terpart detection algorithms present poor BER performance,
whereas the proposed CNNLAS detection algorithm still
obtains good BER performance. The proposed CNNLAS
detection algorithm shows amuch stronger robustness against
channel estimation errors in the uplink multiuser massive
MIMO system.
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FIGURE 9. Spectral efficiency of the proposed CNNLAS detection
algorithm for graphical 4-QAM signals in uplink multiuser MIMO system,
where NT = 32 and NR = 48.

B. SPECTRAL EFFICIENCY
According to Section II, the graphical detection model for the
uplink multiuser massive MIMO system is constructed on the
VBLAST system, whose theoretical spectral efficiency for
M -QAM signals is [36]

SEtheory = NT log2(M ) (43)

The spectral efficiency of the proposed CNNLAS detection
algorithm is also compared with the theoretical value.

1) SPECTRAL EFFICIENCY OF DETECTING DIFFERENT
GRAPHICAL M-QAM SIGNALS
Fig. 9 shows the spectral efficiency of the proposed CNNLAS
detection algorithm for the graphical 4-QAM signals in the
uplink multiuser MIMO system, where NT = 32 and
NR = 48. The proposed CNNLAS algorithm obtains a
much higher spectral efficiency than the counterpart detection
algorithms. To obtain the theoretical spectral efficiency of
64 bps/Hz, the required average received SNR for the pro-
posed CNNLAS algorithm in the case of Nf × Nf = 3 × 3
andNc = 20 is 3 dB, increases by 1 dBwhenNf ×Nf = 3×3
grows to Nf × Nf = 7 × 7 as a result of the generated
overfitting but decreases to 1 dB when Nc = 20 increases
to Nc = 60. This average received SNR is 8 dB lower than
that required for the DetNet detection algorithm, 9 dB lower
than that required for the MMSELAS, SDR, and LLLSDR
algorithms, and 13 dB lower than that required for theMMSE
algorithm. Compared to the counterpart detection algorithms,
the proposed CNNLAS detection algorithm requires a lower
average received SNR to achieve the theoretical spectral effi-
ciency in the medium-small MIMO systems.

Fig. 10 shows the spectral efficiency of the proposed
CNNLAS detection algorithm for the graphical 4-QAM sig-
nals in the uplink multiuser massive MIMO system, where
NT = NR = 288. The DetNet detection algorithm obtains a
much lower spectral efficiency of 460 bps/Hz than the theo-
retical value in this case. The proposed CNNLAS algorithm

FIGURE 10. Spectral efficiency of the proposed CNNLAS detection
algorithm for graphical 4-QAM signals in uplink multiuser massive MIMO
system, where NT = NR = 288.

FIGURE 11. Spectral efficiency of the proposed CNNLAS detection
algorithm for graphical 16-QAM signals in uplink multiuser massive
MIMO system, where NT = NR = 288.

obtains the much higher spectral efficiency than the counter-
part detection algorithms. To obtain the theoretical spectral
efficiency of 576 bps/Hz, the required average received SNR
for the proposed CNNLAS algorithm in the case ofNf ×Nf =
3×3 andNc = 20 is 5 dB, increases by 1 dB whenNf ×Nf =
3× 3 grows to Nf × Nf = 7× 7 as a result of the generated
overfitting but decreases to 4 dB when Nc = 20 increases
to Nc = 60. This average received SNR is 7 dB lower
than that required for the MMSELAS algorithm, 8 dB lower
than that required for the SDR and LLLSDR algorithms, and
more than 16 dB lower than that required for the MMSE
algorithm.

Fig. 11 shows the spectral efficiency of the proposed
CNNLAS detection algorithm for the graphical 16-QAM
signals in the uplink multiuser massive MIMO system, where
NT = NR = 288. The proposed CNNLAS algorithm obtains
a much higher spectral efficiency than that of the counterpart
algorithms. To obtain the theoretical spectral efficiency of
1152 bps/Hz, the required average received SNR for the
proposed CNNLAS algorithm in the case of Nf × Nf =
3 × 3 and Nc = 20 is 12 dB, decreases by 2 dB when
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FIGURE 12. Spectral efficiency of the proposed CNNLAS detection
algorithm for graphical 64-QAM signals in uplink multiuser massive
MIMO system, where NT = NR = 288.

Nf × Nf = 3 × 3 increases to Nf × Nf = 9 × 9 and
decreases to 8 dB when Nc = 20 increases to Nc = 100. This
average received SNR is 14 dB lower than that required for
the SDR algorithm, and 16 dB lower than that required for the
LLLSDR method, 20 dB lower than that for the MMSELAS
algorithm, and 32 dB lower than that required for the MMSE
detection algorithm.

Fig. 12 shows the spectral efficiency of the proposed
CNNLAS detection algorithm for the graphical 64-QAM
signals in the uplink multiuser massive MIMO system, where
NT = NR = 288. Along with the increase of the aver-
age received SNR, the spectral efficiency of the detection
algorithms increases until converging to the theoretical value
of 1728 bps/Hz. The proposed spectral efficiency of the
proposed CNNLAS algorithm is much higher than that of
the counterpart algorithms. In order to obtain the theoretical
spectral efficiency, the required average received SNR for
the proposed CNNLAS detection algorithm in the case of
Nf × Nf = 3 × 3 and Nc = 20 is 20 dB, decreases by
4 dB when Nf × Nf = 3 × 3 increases to Nf × Nf =
11 × 11, and decreases to 12 dB when Nc = 20 increases
to Nc = 100. This average received SNR is 20 dB lower
than that required for the SDR method, 26 dB lower than that
required for the LLLSDRmethod, andmore than 34 dB lower
than that required for the MMSELAS and MMSE detection
algorithms.

The before-mentioned simulation results show that, com-
pared with the counterpart detection algorithms, the pro-
posed CNNLAS detection algorithm requires a lower average
received SNR to achieve the theoretical spectral efficiency
for uplink multiuser medium-small or massiveMIMO system
in terms of detecting the graphical low-order and high-order
modulation signals.

2) SPECTRAL EFFICIENCY IN THE UPLINK MULTIUSER
MASSIVE MIMO SYSTEMS WHERE NT < NR
Fig. 13 shows the spectral efficiency of the proposed
CNNLAS detection algorithm for the graphical 64-QAM
signals in the uplink multiuser massive MIMO system, where

FIGURE 13. Spectral efficiency of the proposed CNNLAS detection
algorithm for graphical 64-QAM signals in uplink multiuser massive
MIMO system, where NT = 120 and NR = 288.

NT = 120 and NR = 288. The proposed spectral efficiency
of the proposed CNNLAS algorithm is much higher than
that of the counterpart algorithms. To obtain the theoretical
spectral efficiency, the required average received SNR for
the proposed CNNLAS detection algorithm in the case of
Nf × Nf = 3 × 3 and Nc = 20 is 8 dB, decreases by 2 dB
when Nf × Nf = 3× 3 increases to Nf × Nf = 11× 11 and
decreases to 4 dB when Nc = 20 increases to Nc = 100. This
average received SNR is 16 dB lower than that required for
the SDR method, and 20 dB lower than that for the LLLSDR
and MMSELAS algorithms, and more than 24 dB lower than
that required for the MMSE detection algorithm.

In the case of NT < NR, the proposed CNNLAS detection
algorithm requires a much lower average received SNR to
reach the theoretical spectral efficiency when compared with
the counterpart detection algorithms in the uplink multiuser
massive MIMO system.

3) SPECTRAL EFFICIENCY IN PRESENCE OF CHANNEL
ESTIMATION ERRORS
Fig. 14 presents the spectral efficiency of the proposed
CNNLAS detection algorithm for the graphical 64-QAM
signals in the presence of channel estimation errors as in (42),
where NT = NR = 288 and σ 2

ε = 0.1, and all other
conditions remain the same as those in Fig. 12. The results
show that the spectral efficiency of the SDR, LLLDR,
MMSELAS and MMSE detection algorithms increase along
with the average received SNR and converge to 1316 bps/Hz
or 1265 bps/Hz, which are much lower than the theoretical
value 1728 bps/Hz. To reach the theoretical spectral effi-
ciency, the average received SNR required for the proposed
CNNLAS algorithm with channel estimation errors in the
case of Nf × Nf = 3 × 3 and Nc = 20 is 22 dB, which
is 2 dB higher than that required for the same case of the
proposed CNNLAS algorithmwithout the channel estimation
errors. This SNR decreases by 6 dB when Nf × Nf = 3 × 3
increases to Nf × Nf = 11 × 11, and decreases to 12 dB
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TABLE 2. The average per symbol computational complexity of detection algorithms.

FIGURE 14. Spectral efficiency of the proposed CNNLAS detection
algorithm in presence of channel estimation errors for graphical 64-QAM
signals in uplink multiuser massive MIMO system, where NT = NR = 288
and σ2

ε = 0.1.

when Nc = 20 increases to Nc = 100, which are the same as
those of the proposed CNNLAS algorithm without channel
estimation errors.

In the presence of channel estimation errors, the counter-
part algorithms are not applicable to the massive MIMO sys-
tems since their spectral efficiency ismuch lower than the the-
oretical value. The proposed CNNLAS detection algorithm
reaches the theoretical spectral efficiency at medium-low
average received SNR, and shows strong robustness against
the channel estimation errors in the uplink multiuser massive
MIMO system.

C. COMPUTATIONAL COMPLEXITY
The average per symbol computational complexity of the
detection algorithms in the uplink multiuser massive MIMO
system in terms of O(·) with the number of flops is shown
in Tab.2, including the values for the proposed CNNLAS
detection algorithm in this paper and the above mentioned
counterpart detection algorithms.

1) COMPUTATIONAL COMPLEXITY VERSUS DIFFERENT
ANTENNAS
Fig. 15 shows the average per symbol computational com-
plexity of the proposed CNNLAS detection algorithm versus
the number of antennas for graphical 4-QAM signals in the
uplink multiuser massive MIMO system. The computational
complexity of the proposed CNNLAS detection algorithm
increase polynomially with the number of antennas. For
NT = NR = 100, the average computational complexity of
the CNNLAS algorithm in the case of Nc = 20 is 2.0× 104,
which increases by a small amount but maintains a similar
order of magnitude of 3.0 × 104 when Nc = 20 increases

FIGURE 15. Average per symbol computational complexity of the
proposed CNNLAS detection algorithm versus the number of antennas for
graphical 4-QAM signals in uplink multiuser massive MIMO system.

FIGURE 16. Average per symbol computational complexity of the
proposed CNNLAS detection algorithm versus the modulation order for
graphical M-QAM signals in uplink multiuser massive MIMO system,
where NT = NR = 288.

to Nc = 100. For NT = NR = 800, the computational
complexities of the CNNLAS detection algorithm in the two
cases are 6.5× 105 and 6.6× 105, which are on a similar
order of magnitude to the complexities of 6.4× 105 of the
MMSE and MMSELAS algorithms, but much lower than the
complexity of 2.3 × 108 of the DetNet detection algorithm,
the complexity of 1.5×1010 of the LLLSDR method and the
complexity of 8.2× 1010 of the SDR algorithm.

2) COMPUTATIONAL COMPLEXITY OF DETECTING
DIFFERENT GRAPHICAL M-QAM SIGNALS
Fig. 16 shows the average per symbol computational com-
plexity of the proposed CNNLAS detection algorithm versus
the modulation order M for graphical M -QAM signals in
the uplink multiuser massive MIMO system, where NT =
NR = 288. The computational complexities of the DetNet,
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TABLE 3. The comparison of the computational complexity and the performance including the BER and spectral efficiency of the proposed CNNLAS
detection algorithm with those of other detection algorithms for graphical M-QAM signals in the uplink multiuser massive MIMO system where
NT = NR = 288.

LLLSDR and the SDR detection algorithms grow with an
increase in the modulation order M , while the complexity
of the proposed CNNLAS algorithm remains unchanged at
a lower order of magnitude of 9.3×104 with a slight increase
to 1.0 × 105 when Nc = 20 increases to Nc = 100. For the
graphical 64-QAM signals, the complexity of the proposed
CNNLAS algorithm is on a similar order of magnitude to the
complexities of 8.3×104 of theMMSE andMMSELAS algo-
rithms, but much lower than the complexity of 4.8×108 of the
DetNet detection algorithm, the complexity of 3.7 × 109 of
the LLLSDR algorithm and the complexity of 7.5 × 1010 of
the SDR algorithm.

Similar to the MMSE and MMSELAS algorithms,
the computational complexity of the proposed CNNLAS
detection algorithm polynomially increases along with the
number of antennas and remains invariable against the mod-
ulation order. Besides, especially for the graphical high-order
modulation signals, the computational complexity of the pro-
posedCNNLASdetection algorithm ismuch lower than those
of the DetNet, LLLSDR and SDR algorithms in the uplink
multiuser massive MIMO systems.

Eventually, as summarized in Tab. 3, the computational
complexity and the performance including the BER and spec-
tral efficiency of the above mentioned counterpart detec-
tion algorithms are compared with those of the proposed
CNNLAS detection algorithm in the case of Nf × Nf =
11 × 11 and Nc = 100 for the graphical 64-QAM signals,
in the case of Nf × Nf = 9 × 9 and Nc = 100 for
the graphical 16-QAM signals, in the case of Nf × Nf =
3 × 3 and Nc = 60 for the graphical 4-QAM signals in

the uplink multiuser massive MIMO system where NT =
NR = 288. The DetNet detection algorithm has the lowest
spectral efficiency and the worst BER performance with high
computational complexity in this case. Although the com-
putational complexity of the MMSE detection algorithm is
the lowest, the BER and spectral efficiency performance of
it are poor. With the same complexity, the BER and spectral
efficiency performance of theMMSELAS algorithm are poor
for the graphical high-order modulation signals, including
16-QAM and 64-QAM. The LLLSDR and SDR algorithms
have improvements on the BER and spectral efficiency per-
formance for the graphical high-order modulation signals, but
their computational complexities are too high, and sharply
increase versus NT and M . From the comparison, with a
medium low polynomial computational complexity of 105,
the proposed CNNLAS detection algorithm required much
lower average received SNRs to obtain the BER performance
of 10−5 and to achieve the theoretical spectral efficiency both
for the graphical low-order and high-ordermodulation signals
in the uplink multiuser massive MIMO system.

VI. CONCLUSION
In this paper, a CNNLAS detection algorithm is proposed
on the basis of a graphical detection model for the uplink
multiuser massive MIMO system. The proposed CNNLAS
detection algorithm is both applicable for detecting the graph-
ical low-order and high-order QAM signals in the uplink
multiuser medium-small or massiveMIMO systems. The per-
formance of the proposed CNNLAS algorithm is evaluated
in the cases of NT = NR and NT < NR. The polynomial
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average per symbol computational complexity of the pro-
posed CNNLAS algorithm is O(N 2

T + N
2
+ N 2

c ). Compared
with the counterpart algorithms, the proposed CNNLAS
detection algorithm shows a stronger robustness against chan-
nel estimation errors, and it respectively obtains a BER of
10−5 for graphical 4-QAM, 16-QAM and 64-QAM signals
at average received SNRs of 5 dB, 12 dB and 14 dB when
NT = NR = 288. Meanwhile, it respectively requires much
lower average received SNRs of 4 dB, 8 dB and 12 dB to
reach the theoretical spectral efficiency.
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