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ABSTRACT Cloud computing offers hardware and software resources delivered as services. It provides
solutions for dynamic as well as ‘‘pay as you go’’ provision of resources. Energy consumption of these
resources is high which leads to higher operational costs and carbon emissions in data centers. A number of
research studies have been conducted on energy efficiency of data centers, but most of them concentrate on
single factor energy consumption, i.e., energy consumed by CPU only, and energy consumption by Random
Access Memory (RAM) is neglected. However, recently the focus has been turned towards impact of energy
consumption by RAM on data centers. Studies have shown that RAM consumes about 25% of joint energy
consumed by a server’s CPU and RAM. In this paper, two energy-aware virtual machine (VM) consolidation
schemes are proposed that take into account a server’s capacity in terms of CPU and RAM to reduce the
overall energy consumption. The proposed schemes are compared with existing schemes using CloudSim
simulator. The results show that the proposed schemes reduce the energy cost with improved Service Level
Agreement (SLA).

INDEX TERMS Cloud computing, energy efficiency, multi-factor energy consumption, resource allocation,
virtualization, workload consolidation.

I. INTRODUCTION
Cloud computing is a shared computing paradigm that aims to
provide number of services including computing, web host-
ing, and storage under a single platform which are otherwise
offered by different service providers [1]–[3]. Most of the
businesses have shifted to cloud based solutions to make use
of ‘‘pay as you go’’ service model, where a subscriber will
only pay a cost of resources used [2]. Such elasticity offered
by a cloud service model deliver services with an advantage
of cost saving by eliminating the requirement of creating and
maintaining customer’s private infrastructures [4].

Cloud computing uses virtualized hardware, which assists
a physical machine (PM) to operate with multiple virtual
machines (VMs) having different resources’ types and dis-
tributions. A cloud hosts several applications on VMs and
each VM on a PM has different workloads, which vary
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with time. Dynamic workloads may result in overloading,
i.e., resource demand may increase on the PM beyond the
resources allocated to customers. Alternatively, some PMs
may remain under-loaded and idle. This kind of PM load
imbalance adversely effects the performance of VMs, which
ultimately results in more energy consumption and violation
of service level agreement (SLA) between customers and
service provider.

To minimize the energy consumption and uphold the SLA
with the client, workload from overburdened servers is shifted
to underutilized servers. The workload consolidation can be
performed using various energy efficient resource manage-
ment (RM) techniques [5]–[10]. Energy efficiency in cloud
data centers (DCs) is one of the key challenges to minimize
the expense incurred by high energy consumption and it is
also important to reduce the CO2 emissions [11]–[14].

It is reported that 2% of the total CO2 emissions has been
caused by information communication technology (ICT)
industry which is likely to increase up to 12% by the year
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2020 [15]. The large ICT companies, such as Yahoo, Google,
Microsoft, etc. host thousands of servers that consume higher
energy. It is reported that in 2010 alone, 271.8 billion kWh
electricity was consumed by ICT companies, whereas the
DCs in USA consumed up to 70 billion kWh in 2014, which
is projected to raise up to 73 billion kWh of electricity by the
year 2020 [16].

Energy consumption of a typical PM in a DC is about 80%
of the overall energy, while other storage and networking
devices consume rest of the 20% of total energy [17]. Various
RM techniques have been proposed by the researchers to
reduce energy consumption by ensuring efficient utilization
of resources [18]. Generally, to reduce the energy consump-
tion of a DC, researchers used the strategies that focused
particularly on the energy consumption of single resource,
i.e., CPU [14], [19]. However, rapid growth in multi-core
architectures and the virtualization itself is now more prone
to greater energy consumption due to having larger sizes
of RAM [19]. Moreover, of total server’s energy, RAM
consumes up to 25% as reported in [19]. Subsequently,
the research community also started considering RAM-based
energy consumption for efficient energy management
in DCs.

In this paper, we present two energy-aware techniques
for VM consolidation. The proposed schemes consider
energy consumption by RAM along with CPU. Moreover,
the schemes utilize a threshold mechanism in order to keep
some resources free to tackle the increased resource demands
at run time. We subdivide the resource allocation problem
into two components: (a) host selection and (b) VM place-
ment. The proposed techniques take into account a PM’s
capacity and energy consumption while placing VMs on a
server. Moreover, consideration of a server’s capacity while
placing VMs on the host improves the resource manage-
ment which is indicated as improvement in our energy
graphs.

To summarize, following are our main contributions:
1) This paper presents detailed analysis of the selected

energy-efficient resource management techniques
using cloud environments.

2) Two new energy-efficient SLA-aware resource man-
agement techniques namely MaxCap and RemCap are
proposed to optimize energy and handle SLAviolations
by balancing the network load.

3) The proposed algorithms aim to improve performance
in terms of energy efficiency, SLA violations, and
address performance degradation due to migrations.

4) We also present the time and space complexity analysis
of the proposed techniques.

The rest of the paper is organized as follows. Section II
explains the related work. Representation of system model
is explained and elaborated in Section III. We discuss our
proposed techniques in section IV. In Section V, results and
evaluations are discussed, and finally, Section VI concludes
the paper followed by future direction.

II. LITERATURE REVIEW
Over the last decade, cloud computing has encompassed a
large number of applications, e.g., [20]–[25]. Numerous chal-
lenges have been faced by the researchers while performing
resource allocation in cloud DCs and one of the most critical
issues is energy [26]. To handle such issues, a number of
solutions are proposed in the literature and these solutions
are either dynamic voltage frequency scaling (DVFS) based
or they are workload consolidation based. Wu et al. present a
DVFS basedmethodwhich improves the overall utilization of
resources resulting in improved energy efficiency [27]. Alno-
wiser et al. provide the solution using concept of weighted
round robin algorithm [28]. This algorithm monitors, consol-
idate, and migrate the overloaded and underloaded VMs that
are hosted on PM. The weighted round robin utilizes con-
solidation method for energy efficient resource scheduling
to minimize energy consumption by matching voltage and
frequency of the processor. In [29], the authors offer a solu-
tion for CPU intensive applications. These applications are
packed as bag of tasks. A scheduler along with the proposed
solution is used for reducing overall power consumption and
completes the task within the deadline. The authors in [30]
present the multi-objective algorithm based on game theory
that aims to mitigate the overall power consumption. The
game theory factor is responsible for efficient resource man-
agement while decreasing the energy consumption on server
level.

Mertzios et al. provide a workload consolidation method
to minimize the energy consumption at server level [31].
The VMs having overlapped time of processing are consoli-
dated onto server(s) to minimize the power consumption. The
authors in [32] present an energy-efficient resource allocation
method based on ant colony optimization (ACO) that intends
to control the power consumption besides using very basic
operations of resource management, like VM placement,
workload consolidation, and VMs migration. Authors in [33]
aim to optimize processor utilization in the proposed work-
load consolidation schemes to improve energy efficiency.
Using cost functions, the schemes perform server selection
based on utilization and difference in server’s power con-
sumption under varying loads.

Addis et al. in [34] offer solution to energy efficient
resource management based on idea of hierarchical frame-
work as discussed in [35]. The algorithm divides the man-
agers into two types for managing and maintaining the
server’s resources. The servers are classified based on ser-
vices’ classes, and best available server is selected for task
assignment depending upon task’s class. A server’s applica-
tion manager is used to migrate the VMs, allocate the capac-
ity, perform frequency scaling, and perform load balancing
across the servers. In [36], the authors provide amulti-tier vir-
tualized cloud environment to manage the resources. A work-
load prediction method is used to detect the fluctuations in
workloads. These predictions are used to assign the work-
loads to VMs.
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Authors in [37] propose SLA-aware energy efficient
resource management solution based on DVFS that intends to
provide energy efficiency with guaranteed SLA. The DVFS
modules are integrated in all the PMs which utilize hybrid
optimization to address load balancing, resource allocation,
and VM placement across the servers. An energy-efficient
multi-resource model is presented by Li et al. in [38]. The
model works on the principal ofmodified particle swarm opti-
mization (PSO) for consolidating the workload. To handle
SLA violations and to control the migration of VMs, a thresh-
old mechanism is used. Kansal and Chana [39] in their work
present a multi-objective firefly optimization-based model
that aims to decrease the number of VM migrations and thus
reducing overall energy consumption. The proposed tech-
nique migrates the VM with highest resource requirements
to the server with least resource utilization.

Bi et al. [40] proposed an SLA based study for optimizing
the profit of virtualized cloud data centers (VCDC). They
also proposed a dynamic meta-heuristic hybrid algorithm to
maximize the profit and reduce energy costs. The algorithm is
developed with the concept of annealing and particle swarm
optimization (PSO). Results show an increase in profit and
lowering of energy costs. Khoshkholghi et al. [41] aimed to
improve the utilization of resources, such as CPU, RAM, and
bandwidth through dynamic VM consolidation in cloud data
centers. The authors in their study proposed algorithms to
reduce the energy consumption and improve the performance
of computing resources in overall data centers based on SLA.
Results show an improvement in energy costs as well as
performance of data centers. In [42], the authors proposed
a dynamic provision of VMs in virtualized application ser-
vices. They proposed a hybrid queuingmodel for determining
the number of VMs and to allocate each tier of applica-
tion services. Results show improvement in performance and
reduced energy costs.

Castro et al. [19] in their study aim to reduce the
power consumption of servers in clouds. Their model cal-
culates overall energy by adding up the energy consump-
tion of both CPU and RAM. The power difference of a
server before allocation and after allocation is considered
while placing VMs on the server which has never been
picked up for VM placement. To control SLA violations,
the authors used various threshold mechanisms. Recently,
a multi-factor energy-efficient resource allocation model has
been proposed by authors in [14]. The proposed model
takes into account joint power consumption of CPU and
RAM while taking VM hosting decisions. In the aforemen-
tioned work, capacity of server is considered along with
the power consumption while selecting server for hosting
of VMs.

All above cited techniques are designed to deliver energy
efficient resource allocation which ultimately minimizes
the overall cost of cloud DCs. However, these techniques
still have some performance limitations when multiple fac-
tors are considered simultaneously, e.g., SLA and energy
consumption. Moreover, majority of work is not considering

the energy consumed by RAM in addition to CPU. There-
fore, in this work we propose energy-efficient techniques
that optimally utilize CPU and RAM based on energy
model to reduce energy consumption. We also propose
SLA-aware versions of our energy-aware techniques to han-
dle the SLA violations that may occur due to workload
consolidation.

III. SYSTEM MODEL
Proposed system model in cloud environment is presented
in Fig 1. We consider a cloud network of DCs consist-
ing of a large number of heterogeneous servers [19], [39].
Every server has its processing speed, memory, storage-
capacity, and energy consumption. Each individual server is
represented by CPU capacity which is calculated in Million
Instructions Per Second (MIPS), a Random Access Mem-
ory (RAM) and a bandwidth. Servers contain local disks
to host Operating Systems (OS) whereas Network Attached
Storage (NAS) is used to store VMs and to enable live
migration of VMs. Large number of cloud users can submit
request for M number of VMs where each VM consists of its
own load of CPU, memory utilization, and network transfer
rate [43]. For the management of resources, proposed system
consists of two layers: (a) a global manager and (b) a local
manager [19] as shown in Fig 1. Carbon emission directories
are maintained for keeping energy efficiency information.
Global manager on central node also known as green broker
is subdivided into task scheduler, task selector, cost calcu-
lator, application’s profile, and carbon emission calculators.
Each server has local manager, which keeps track of that
server. That information is sent to green broker/global man-
ager at central node which places the workload on different
servers based on collected information. User sends service
request to green broker for allocation of service. Green broker
keeps track of server’s utilization, carbon emission directo-
ries, and application profiles. When a request arrives, green
broker checks the application profile and the requirements
of user. Based on information received from servers, carbon
emission directories, private cloud, and available services,
the green broker assigns the required service to the user. For
the whole process, SLA is agreed with the service provider
where service provider is responsible of providing services
with agreed terms and conditions, and in case of SLA vio-
lations, the service provider is penalized. Power model and
architecture of proposed techniques are presented in the sub-
sequent subsection. Table 1 contains the notations and their
meanings used in our model.

A. CPU ARCHITECTURES
In our proposed model, each server is considered to have n
cores with processing power of mMIPS. A server’s capacity
c is calculated as m×n MIPS. Moreover, separate cores to
host parts of a VM are not used in our model. Therefore, pro-
cessing power of a single VM at most equals the processing
power of a single core.
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FIGURE 1. Green architecture for energy efficient cloud environments.

TABLE 1. Notations and their meanings.

B. POWER ESTIMATION MODEL
The power model computes a server’s power consumption
which is based on joint power consumed by CPU and RAM.
The power consumed by other components, such as net-
work interface and disks is ignored. The total power can be
calculated as:

EALL = ECPU + ERAM . (1)

The formula below expresses the total energy (ECPU ) con-
sumed by a server. So, the overall energy consumption by the
CPU (ECPU ) can be expressed as:

ECPU = k × Pmax + (1− k)× Pmax × CPUutl . (2)

Here, Pmax denotes the maximum power, and k defines the
fraction of time the server remains idle. This fraction is
normally noted as 70% of the total time [19]. The time server
stays active is expressed by 1−k , whereas CPUutl represents
the CPU utilization.

A real-data from SPEC power benchmark is employed to
estimate the CPU consumption [44]. Two servers are used
namely: (a) HP-Proliant ML110 G5 and (b) HP-Proliant
ML110 G4. In the aforementioned benchmark, CPU is the
key energy consumer. Therefore, hard disk and display are
turned off after one minute, while network communications
are minimized and memory pages of applications are kept
locked in physical RAM. Two key components constitute the
power consumption of RAM, namely: (a) background power
(Ebgp) and (b) operational power (Eop). It is calculated as:

ERAM = Ebgp + Eop. (3)

Ebgp is used for changing the memory states [45]. Inspired
by [19], proposed model employs only two states known
as Active Standby (Easb) and Active Power-down (Eapd ).
Aforesaid states present a tradeoff between latency time and
energy consumption. Easb has a highest energy consumption
and least latency. Alternatively, energy consumption of Eapd
is 39% lower thanEasb with the higher cost of latency.We also
assume that the RAM stays in Easb when CPU is processing,
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and the state of the RAM changes to Eapd when CPU is not
in use. Considering these factors, Ebgp can be calculated as:

Ebgp = CPUutl × Easb + CPUidl × Eapd . (4)

Here in (4), CPUutl is the utilization of CPU (varies from
0 to 1) in a given time span and CPUidl is the idleness of
CPU in the same time. Likewise, Eop depends on two factors
i.e., memory read/write attempts and frequency of memory
operations. Eop is basically the product of power, memory,
and the bandwidth required for commands of read/write that
may occur in processing. It can be determined as:

Eop = RAMB ×
Ebr + Ebw

2
× CPUutl × U (0, 1). (5)

where, RAMB is bandwidth of the memory, Ebr and Ebw
are the power requirements for attempting read command
and write command, respectively, and U (0, 1) is a uniformly
distributed random value.

IV. JOINT CPU AND RAM BASED VM CONSOLIDATION
Energy-efficient VM consolidation can be achieved by:
(a) overloaded server’s detection for migration of some VMs
to other servers, (b) underloaded server’s detection for migra-
tion of some VMs to shut down other servers, (c) VM selec-
tion to migrate from overloaded servers to under-loaded
servers, and (d) VM placement to migrate from overloaded
and underloaded servers. In our study, we considered the
aforementioned cases (c) and (d). Therefore, we propose
two energy-aware and SLA-aware techniques to improve the
energy consumption and to handle resultant SLA violations,
respectively.

Our proposedMaxCap and RemCap server selection tech-
niques use the lower threshold (LT)mechanism to identify the
underutilized servers. LT mechanism keeps check on the uti-
lization of a server provided by a local manager that is placed
on each server to keep track of CPU and RAM utilization.
If the utilization of server is below the set threshold value,
then the server is considered as an under-loaded server and
it is switched off after migrating all the hosted VMs to other
servers. Conversely, an upper threshold (UT) mechanism is
used to keep the check on the over-utilized server. UT mech-
anism avoids the SLA violations by keeping the utilization
below a given threshold value. So, when workload on the
server exceeds, then the server is considered as overloaded
server.

A. MAXIMUM CAPACITY AND POWER
TECHNIQUE (MaxCap)
We propose an energy-aware scheme namely MaxCap that
intends to improve the energy consumption of DCs. In the
proposed scheme, server selection for VM hosting is based
on maximum CPU capacity and maximum power consump-
tion. Whereas, the existing schemes have not considered the
capacity factor during server selection for hosting the VMs,
which as a result produces higher power consumption. Server
withminimum energy cost after VMplacement is selected for

hosting of upcoming VMs. The following equation performs
server selection:

MaxCap =
CPUmax
Pmax

. (6)

Here, CPUmax is the maximum CPU capacity calculated in
MIPS, while Pmax is the peak power consumption of server in
watts. The server selected for hosting the VM will be the one
with the maximum MaxCap. A threshold mechanism is also
used in our work to avoid SLA-violations when availability
of computational resources is limited. The pseudocode for
MaxCap is presented in Algorithm 1.

In Line 1, the VMs V are sorted in descending order
of CPU requirements. Servers S are sorted in descending
order of utilization (Line 2), so that the VM with larger
workload is placed on the first utilized server where it fits.
For sorted VMs V ′, the following steps are repeated for
each VM v ∈ V ′ in Line 3–Line 23. A server s is selected
from the sorted list of servers S ′ and cumulative value is
computed consisting of CPU utilization and computational
requirement of VM (Line 7). If the value is less than given
value of threshold, only then the server will be selected
for hosting the VMs. The values of peak energy consump-
tion, maximum CPU capacity, and available CPU capac-
ity are stored in the respective variables (Line 8–Line 10).
Using (5), the aforementioned variables are used to calculate
the MaxCap ratio (Line 11). The algorithm makes sure that
a VM is placed on a server that is already in use, and when
no such server is available, the VM is placed on an unused
server (Line 12–Line 14). The MaxCap is compared with
Max_ratio and is overwritten by Max_ratio if MaxCap is
greater, and s is set to an Allocated_host (Line 15–Line 18).
If none of the used servers is selected, then the allocation is
performed to the unused server (Line 20–Line 22). The above
steps are repeated for remaining servers available in the list
S ′ and a server is selected with maximum value of MaxCap
for hosting of VMs.

B. REMAINING CAPACITY AND POWER (RemCap)
This scheme attempts to improve the CPU and RAM’s energy
consumption. The RemCap utilizes CPU’s available capacity
and a server’s power consumption. A server with minimum
energy cost after VM placement is selected for the next
VM hosting. RemCap is calculated as:

RemCap =
CPUAvailable

Prem
. (7)

In the above equation, CPUAvailable is the available capacity
of a CPU calculated in MIPS whereas Prem is remaining
power in watts a PM can consume. Server offering maximum
RemCap value is selected for hosting the new VM. Algo-
rithm 2 performs the host selection and VM placement based
on two factors i.e., remaining power and server’s capacity.
The pseudocode for RemCap is presented in Algorithm 2.

The VMs and servers’ lists are sorted in descending order
based on CPU requirements and utilizations, respectively
(Line 1–Line 2). For each VM v, a cumulative value for a
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Algorithm 1 Pseudocode forMaxCap Algorithm
Input: srvList(S), vmList(V ), threshold ;
Output: Allocation of VMs

1: V ′ ← getSortedVMs(V )
2: S ′← getSortedServers(S)
3: for each v ∈ V ′ do
4: Max_ratio← 0
5: Allocated_host ← Null
6: comp_reqv← getCompReq(v)
7: for each s ∈ S ′ such that utilization(s)+ comp_reqv < threshold do
8: Pmax ← getPeakEnergyConsumption(s)
9: CPUmax ← getMaxCPUCapacity(s)

10: CPUAvailable← getAvailCPUCapacity(s)
11: MaxCap← CPUmax/Pmax
12: if CPUAvailable = CPUmax and Allocated_host 6= Null then
13: break
14: end if
15: if MaxCap > Max_ratio then
16: Allocated_host ← s
17: Max_ratio← MaxCap
18: end if
19: end for
20: if Allocated_host 6= Null then
21: add_allocation(v,Allocated_host)
22: end if
23: end for
24: Allocation← get_allocation()
25: return Allocation

server s is computed based on CPU utilization and computa-
tional requirement of v (Line 7). If the value is less than given
value of threshold, then server will be selected for hosting
the VM. The details of energy, maximum CPU capacity, and
available CPU capacity are extracted, and used in calculation
of RemCap ratio (Line 8–Line 12). The algorithm makes
sure that VMs are placed on servers that are already in use
(Line 16–Line 19) and new server is utilized if and only if no
such server exists in the server’s list (Line 21–Line 23). The
above steps are repeated for the servers available in list and a
server withmaximumvalue ofRemCap is selected for hosting
of VMs.

C. DISCUSSIONS
In our proposed algorithms, the formulas (6) and (7) are
used to compute the parameters, namely MaxCap and
RemCap, respectively. These parameters provide the maxi-
mum MIPS (capacity) against minimum watts (energy). The
MIPS/Watts ratio provided by the aforementioned parameters
is used to select servers for efficient VM placement. The
difference between both theMaxCap and RemCap is that the
MaxCap server selection technique places VMs on a server
that provides maximum MIPS/watts, i.e., the server that
consumes minimum power and provides maximum capacity
to host the VMs. Whereas, the RemCap server selection

technique places the VMs on a server based on real-time
utilization, i.e., remaining capacity and power that a server
can consume. However, the existing CREW technique selects
the server only based on power consumption of the CPU and
RAM and ignores the capacity of the server. In CREW , just
a power difference before and after placement of VMs on a
server is taken. The server that consumes less power after
placement of VMs is chosen for hosting the VMs. On the
contrary, in our proposed techniques, we are placing the VMs
on servers that are already in use and an unused server is
utilized if and only if no used server can host more VMs.
Such a server whose remaining capacity and remaining power
provides the maximumMIPS/watt ratio is selected to host the
VMs. When we compare our results with the existing CREW
technique, there is significant improvement in energy graphs
of our proposed techniques.

D. SPACE AND TIME COMPLEXITY
The space complexity of proposed techniques namely:
MaxCap and RemCap is computed as: O(2p + q), where,
p denotes the number of VMs that are to be placed on servers,
q is used to represent the number of servers.
The time complexity of our proposed MaxCap and

RemCap algorithms is calculated by using following steps.
First of all, received VMs are sorted in descending order

VOLUME 8, 2020 62995



B. Gul et al.: CPU and RAM Energy-Based SLA-Aware Workload Consolidation Techniques for Clouds

Algorithm 2 Pseudocode for RemCap Algorithm
Input: srvList(S), vmList(V ), threshold ;
Output: Allocation of VMs

1: V ′ ← getSortedVMs(V )
2: S ′← getSortedServers(S)
3: for each v ∈ V ′ do
4: Max_ratio← 0
5: Allocated_host ← Null
6: comp_reqv← getCompReq(v)
7: for each s ∈ S ′ such that utilization(s)+ comp_reqv < threshold do
8: Energy_before_alloc← getBeforeAllocEnergy(s)
9: Energy_after_alloc)← getAfterAllocEnergy(s)
10: CPUmax ← getMaxCPUCapacity(s)
11: CPUAvailable← getAvailCPUCapacity(s)
12: RemCap← CPUAvailable/(Energy_after_alloc − Energy_before_alloc )
13: if CPUAvailable = CPUmax and Allocated_host 6= Null then
14: break
15: end if
16: if RemCap > Max_ratio then
17: Allocated_host ← s
18: Max_ratio← MaxCap
19: end if
20: end for
21: if Allocated_host 6= Null then
22: add_allocation(v,Allocated_host)
23: end if
24: end for
25: Allocation← get_allocation()
26: return Allocation

according to their requirements of CPU and RAM. In case
of p number of VMs, time complexity will be O(p.log(p)).
After sorting VMs, in the second step, the servers on the basis
of their CPU and RAM utilization are sorted in descending
order. Therefore, sorting q servers will exhibit time complex-
ity of O(q.log(q)). After sorting both the VMs and servers in
descending order, theVMplacement will take place for which
the outer loopwill be p times.Whenwe compare the best-case
time complexity of the algorithm, the inner loop will have
s iterations as each time a used server will be available to
host a VM. Alternatively, in worst-case scenario, the inner
loop will have q iterations as no used server is available. The
best-case and worst-case time complexities of Algorithm 1
and Algorithm 2, respectively, are expressed as:

O([p(log(p) + s)]+ q× log(q)).

O([p(log(p) + q]+ q× log(q)).

The time and space complexities of the proposed and selected
techniques are presented in Table 2.

V. EXPERIMENTAL EVALUATIONS
We discuss the experimental environment, performance eval-
uation, and results of our energy-aware and SLA-aware
techniques.

TABLE 2. Time and space complexity.

A. EXPERIMENTAL SETUP
This section evaluates the impact of power consumption
by RAM on overall energy for workload consolidation.
For experiments, CloudSim simulator is used [46] which
allows modeling and simulations of DCs on large scale [46].
Moreover, CloudSim simulates the real-world workloads,
VM instances, and servers’ configuration. A real dataset from
SPECpower benchmark [44] is employed in our simulation in
order to estimate the energy consumption of CPU. The dataset
consists of open source real-world workloads provided by
the PlanetLab. These workloads were collected by PlanetLab
over 10 days timespan by making use of approx. 500 servers
and each of the workload has more than 1000 tasks. More-
over, we used this standard benchmark dataset so that the
other researchers should be able to compare their techniques
using the same dataset.
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TABLE 3. Servers configuration.

TABLE 4. VM sizes.

TABLE 5. Workloads.

We used two types of servers namely HP-Proliant
ML110 G4 and HP-Proliant ML110 G5. A DC having
800 servers is considered consisting of the aforementioned
types of servers as shown in Table 3. Servers in this setup
have RAM of 32GB. We have taken VM sizes from Amazon
EC2 instances [47] given in Table 4. Planetlab workloads are
used as shown in Table 5.

1) PERFORMANCE METRICS
The following performance metrics are used to compare our
heuristic with existing heuristics.

a: ENERGY CONSUMPTION
Joint CPU and RAM energy consumption by PMs in DCs is
considered as a first metric. Our power model is discussed
earlier in Section III.

b: VM MIGRATIONS
Migration of VMs is the method of migrating pages of VMs
from across the servers at runtime. Initially, hypervisor copies
the pages of memory, thenmigrates that VM in several cycles.
Once the VMmigration is completed, the VM starts resuming
its paused processes without interruption.We consider a VM j
with memory of size Mj and network link capacity c from
source to destination. For migrating the VM (j), time needed
can be computed as:

TMj =
Mj

c
. (8)

VM migration effects the performance of applications nega-
tively due to downtime faced during migrations. To estimate
the performance degradation resulting from migrations (Cdj)
we employ the approach as discussed in [19].

c: SLA VIOLATIONS
Three metrics are used for quantifying the level of service for
VMs. The first metric is SLA violations Time per Active Host
(SLATAH). If N represent the number of servers, Tsi is time
when full utilization has been experienced by the server i and
Tai be the total time that server i stays active, then SLATAH
is computed as follows:

SLATAH =
1
M

M∑
i=1

Tsi
Tai

. (9)

Performance degradation due to migrations (PDM) is
the second metric we have considered. For calculating PDM,
let M represents VMs’ count, Cdj be estimated value of per-
formance degradation, and Crj be the required CPU capacity
for VM during its lifetime. PDM is computed as:

PDM =
1
M

n∑
j=1

Cdj
Trj

. (10)

Third and the last metric is SLA violation (SLAV) which is
product of (9) and (10), defined as follows:

SLAV = SLATAH × PDM . (11)

B. PERFORMANCE EVALUATION
We compare our proposed energy-aware and SLA-aware
schemes with existing energy-aware and SLA-aware tech-
niques CREW and SCREW [19]. These techniques take into
account power consumption of server and are considered
as pioneer in measuring the energy consumption by RAM.
Pedro et al. asserted that RAM consumes 25% of a server’s
energy [19]. In earlier studies, there is no power model
designed considering joint power consumption by CPU and
RAM. The authors’ work is also cited by recent studies, such
as [14] and [48], due to the novelty of the topic and efficiency
of energy results. We have also worked in the same area, and
selectedCREW and SCREW as a benchmark for comparisons
of our results.

Our proposed energy-aware schemes MaxCap and
RemCap show improvement in energy consumption at the
cost of SLA.Whereas our SLA-aware versions SMaxCap and
SRemCap reduce the SLA violations occurred due to work-
load consolidation, as well as reduce performance degrada-
tion due to migrations in MaxCap and RemCap. We used
various PlanetLabworkloads for our simulations [49]. Details
of migration policies and mechanisms for setting threshold
values for existing and proposed techniques are provided
in Table 6.

d: DYNAMIC THRESHOLD VALUES
Weutilizedmedian absolute deviation (MAD) based dynamic
threshold mechanism as it is comparatively more resilient
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FIGURE 2. Energy consumption: (a) by various energy-aware and SLA aware techniques and (b) average energy consumption.

TABLE 6. Existing and proposed techniques.

and robust to outliers than standard deviation [50]. MAD
is used to control energy consumption and SLA violations.
Moreover, MAD generates new values of threshold with the
help of previous knowledge gained from server’s utilization.
These values can be obtained using following mechanism
from the given uni-variate set of data X1,X2, · · ·Xn. The
MAD can be computed as:

MAD = mediani(|Xi − medianj(Xj)|). (12)

In above equation, Xi is the current utilization of CPU, while
Xj is the set of previous utilizations of CPU. The dynamic
threshold value Tu can be computed by using the following
threshold formula:

Tu = 1− s ·MAD. (13)

Here, s ∈ R+ is a parameter used to control the threshold
behavior. The value of s ranges from 0 to 1. Moreover, energy
consumption is directly proportional to s. With low value of s,
the energy consumption will also decrease.

Value of s and energy consumption are directly propor-
tional to each other, i.e., if the value of s is low, energy con-
sumption will also be decreased. The value of s is inversely
proportional to SLA, such that with the lower value of s (and
low energy consumption) the SLA violations will be high.

e: STATIC THRESHOLD
This threshold is utilized to set upper limit of server utiliza-
tion. Static threshold remains fixed and do not vary with
time during simulation. In our study, we have fixed the

upper threshold to 80%, and VM migrations will happen
beyond this defined limit [39]. However, in case the dynamic
workloads are used, static threshold mechanism may suffer.
Experiment results are discussed in subsequent subsections.

1) ENERGY CONSUMPTION
Fig. 2 presents the comparison of energy consumption
for various PlanetLab workloads. Comparisons of our
proposed energy-aware schemes (MaxCap and RemCap)
and SLA-aware schemes (SMaxCap and SRemCap) are
performed with existing energy-aware and SLA-aware
techniques, namely: CREW and SCREW [19], respec-
tively. Results show that proposed energy-aware and
SLA-aware schemes outperform the existing energy-aware
and SLA-aware schemes. Improvement in results is due
to improving energy efficiency which is made possible by
decreasing the number of active servers. Moreover, proposed
schemes monitor resource utilization to gather updated infor-
mation while the existing schemes consider only maximum
energy consumption for initial host selection. In our study,
capacity of CPU is considered during VM placement. Server
that provides maximum RAM and CPU capacities per watt
power is selected for VM placement. In this way, energy
consumption is improved as compared to existing CREW. For
instance, MaxCap consumes 37% less energy than CREW
and RemCap consumes 32% less energy than CREW. The
proposed SLA-aware version SMaxCap consumes 35% less
energy than SCREW and SRemCap consumes 31% less
energy than the SLA-aware versions SCREW. Fig. 2b dis-
plays the consolidated average energy consumption on dif-
ferent workloads having different requirements of resources
for each workload.

2) AVERAGE SLA VIOLATIONS
Performance comparisons for SLA violations is presented
in Fig. 3. The SLA-aware SMaxCap and SRemCap show bet-
ter performance in terms of SLA violations when compared
with energy-aware MaxCap and RemCap. The better perfor-
mance is due to the utilization of upper threshold that allows
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FIGURE 3. SLA violations: (a) by various energy-aware and SLA aware techniques and (b) average SLA violations.

FIGURE 4. Performance degradation: (a) by various energy-aware and SLA aware techniques and (b) average performance degradation.

some resources to be free, and when required, the resources
are available, thus avoiding the SLA violations. The Max-
Cap and RemCap show 9% to 7% greater SLA violations
than SCREW, respectively. However, the SLA-aware ver-
sions decrease the violations by 3%. The better performance
of SCREW is due to its non-aggressive behavior in workload
consolidation. The techniques with non-aggressiveness do
not utilize the resources fully, leaving some resources free on
each server. This helps later to accommodate the increased
demands of VMs. However, SCREW consumes more energy
than our proposed schemes, so there is a tradeoff in energy
consumption and SLA violations. Fig. 3b presents the con-
solidated graphs of average SLA violations by both proposed
and existing techniques on different workloads.

3) PERFORMANCE DEGRADATION DUE TO VM MIGRATIONS
Fig. 4 presents the comparison of performance degradation
due to migrations for existing and proposed techniques.
It can observed that efficient management of resources and
the selected VM migration policy i.e., Minimum Migra-
tion Time (MMT) for placement of VMs helps to reduce
the performance degradation. Moreover, using upper thresh-
old mechanism for resources minimizes the SLA violations
because such mechanism keeps some resources free that are

available to fulfill the increased resource demands at runtime,
thus avoiding performance degradation due to VMmigration.
In Fig. 4, SRemCap exhibits lowest average performance
degradation compared to its proposed counterparts MaxCap
and RemCap. Moreover, in Fig. 4b, SRemCap shows bet-
ter performance than SMaxCap. However, our SLA-aware
SMaxCap and SRemCap show greater performance degra-
dation than SCREW. The reason for such behavior is that
primary aim of the proposed techniques is to reduce energy
consumption. Therefore, when we try to reduce energy con-
sumption, this will increase the SLA violations, and perfor-
mance degradation is proportional to SLA violations. How-
ever, as we see in Fig. 2, the energy consumption of existing
schemes CREW and SCREW is greater than our proposed
schemes.

4) EFFECT OF DYNAMIC AND STATIC THRESHOLD
Fig. 5 presents the maximum, average, and minimum energy
consumption of proposed and selected energy-aware and
SLA-aware techniques using dynamic and static thresh-
old. From Fig. 5a and Fig. 5b, it is evident that our pro-
posed MaxCap and RemCap have improved performance in
terms of energy as compared to selected techniques such as
CREW. To identify the underloaded server we used lower
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FIGURE 5. Energy consumption (a) Max, average, and min of all workloads with dynamic thresholds (b) Max, average, and min of all workloads with
static thresholds.

FIGURE 6. SLA Violations (a) Max, average, and min of all workloads with dynamic thresholds (b) Max, average, and min of all workloads with static
thresholds.

threshold mechanism. Experimental findings show that dif-
ference of the power ranges between 1% to 3% and there is a
positive impact of dynamic threshold on efficient utilization
of resources. Dynamic threshold keeps changing according to
the situation, thus lowering the SLA violations and increasing
the upper threshold. Increase in upper threshold permits
server to accommodate more VMs, thereby decreasing the
number of active servers which ultimately reduces the energy
consumption. In other words, when value of threshold is high,
server will able to host more VMs, thus reducing the number
servers and overall energy consumption. However, reduc-
tion in active servers may also increase the SLA violations,
because, free resources may not be available on a server to
fulfill the increased resource demands by hosting VMs.

Comparison of the maximum, average, and minimum SLA
violation of both selected and proposed techniques with
dynamic and static thresholds are presented in Fig. 6. The
proposed SMaxCap and SRemCap schemes perform bet-
ter than their energy-aware versions (MaxCap and Rem-
Cap) using dynamic thresholds in terms of SLA violation.
Dynamic thresholds have shown better performance as they
are adjustable according to the server’s condition. If higher

SLA violations are experienced in previous allocations, then
threshold value will be reconfigured for future allocations
to avoid the SLA violations. Static thresholds on the other
hand are fixed values which cannot be changed at real-time.
In addition, it can be seen that SLA-aware versions of selected
and proposed techniques have shown better performance in
terms of SLA as performance of SLA-aware versions with
dynamic threshold is improved up to 1% to 2% than their
counterparts i.e., MaxCap and RemCap. Difference of Max-
Cap and SMaxCap is 0.2% while the difference of RemCap
and SRemCap is 1%.

Fig. 7 presents the comparison carried out on perfor-
mance degradation due to migration by various selected
and proposed schemes using dynamic and static thresholds.
This comparison is performed taking maximum, average,
and minimum values of performance degradation with static
and dynamic thresholds which is presented in Fig. 7a and
Fig. 7b, respectively. Graphs show that SLA-aware versions
have lower variations with dynamic threshold as compared
to static threshold. Moreover, proposed techniques perform
better with dynamic threshold. It is clear that 1% to 4%
performance has been improved by the SLA-aware versions
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FIGURE 7. Average performance degradation due to migrations (a) Max, average, and min of all workloads with dynamic thresholds (b) Max,
average, and min of all workloads with static thresholds.

(SMaxCap and SRemCap) with dynamic threshold as com-
pared to energy-aware versions (MaxCap and RemCap).

To summarize, results show that for the placement of VMs,
the capacity of both CPU and RAM cannot be neglected.
Moreover, taking into account the capacity of CPU and RAM
is also critical to save energy. SLA versions of our pro-
posed techniques displayed reduced SLA violations which
improves the performance by reducing VM migrations. Our
proposed scheme’s primary objective is to reduce energy
consumption. However, there is a tradeoff exists between
energy conservation and SLA violations. If we reduce energy
consumption, it will definitely increase SLA violations and
migrations (as we have to migrate VM if the desired capacity
of resources are not available on the server).

VI. CONCLUSION AND FUTURE WORK
In this paper, for efficient resource management, we added
the capacity of CPU and RAM into domain along with energy
consumption to improve the server selection for VM place-
ment. We compared our proposed energy-aware schemes
with their counter parts and also with existing techniques.
Results display that our energy-aware versions namely, Max-
Cap and RemCap improves in terms of energy consumption
whereas our proposed SLA-aware versions i.e., SMaxCap
and SRemCap handled 6% to 8% resultant SLA violations
occurred during consolidation of VMs. It has also been
observed that techniques perform better with dynamic thresh-
old as compared to static threshold, and the dynamic thresh-
old has a positive impact on minimizing SLA violations.
In our future work, we will consider the energy consumed
by the Network Interface Card (NIC) in addition to CPU
and RAM, as it has major role during the migration of VM.
Moreover, in addition to energy and SLA, other metrics will
also be considered, such as, network load, load balancing, and
fault tolerance, etc.
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