
Received March 6, 2020, accepted March 28, 2020, date of publication April 2, 2020, date of current version April 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2985132

A Novel Iterative System Identification and
Modeling Scheme With Simultaneous Time-Delay
and Rational Parameter Estimation
SUDEEP SHARMA , (Member, IEEE), AND PRABIN KUMAR PADHY , (Senior Member, IEEE)
Department of Electronics and Communication, PDPM IIITDM at Jabalpur, Jabalpur 482005, India

Corresponding authors: Sudeep Sharma (1612702@iiitdmj.ac.in) and Prabin Kumar Padhy (prabin16@iiitdmj.ac.in)

This work was supported by the Visvesvaraya Ph.D. Scheme of Ministry of Electronics and Information Technology, Government of India,
being implemented by Digital India Corporation.

ABSTRACT In this work, a new method is proposed to identify systems in the form of first and second-
order continuous time-delayed (CTD) models where time-delay and rational parameters are estimated
simultaneously. The time delay is explicitly brought into system parameters by discretizing the CTDmodels.
The sampled input-output data from the system is used in an iterative prediction error minimization (PEM)
algorithm to identify the discrete-time delayed (DTD) model from which the equivalent CTD model is
extracted. TheDTDmodel includes the fractional and integer part of time-delay, where the phase contribution
due to the fractional part is used to correct the estimation of delay as well as the termination of the algorithm
until the phase contribution lies within one sample time. The efficacy of the proposedmethod is demonstrated
by the simulation study with noisy measurements for four different systems along with the experimental
validation.

INDEX TERMS System identification, time-delay estimation, prediction error methods, iterative algorithms,
continuous time-delayed systems, discrete time-delayed systems, robust parameter estimation, adaptive
gradient optimization.

LIST OF SYMBOLS
δ Relative tolerance
γ Negative pure fraction
λ Positive pure fraction
L Laplace transform
Z Z-transform
µ A scalar quantity
ωc Cutoff frequency of state variable filter
τ Time constant
θ Parameter vector
ε Prediction error variable
4 Prediction error vector
D Time delay
d Positive integer
Di Initial time-delay
Dmax Upper time-delay bound
Dmin Lower time-delay bound
g Gradient vector
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H Approximate Hessian matrix
I Identity matrix
J Jacobian matrix
K System gain
N Data length
T Sample time
Tr Transpose operator
u Input variable
V Objective function
w Noise disturbance variable
x Noise-free output variable
y Noisy output variable

I. INTRODUCTION
The system identification plays a vital role in estimating
appropriate models from input/output data for behavior
prediction, simulation modeling, monitoring and controller
synthesis [1], [2]. The identification experiment on real
systems is generally carried out using a digital instrument
such as the computer with sampling and hold devices.
It is demonstrated in [2] that the discretized models using
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zero-order hold (ZOH) and inputs, which are piecewise con-
stant between sampling intervals, produce the same analyt-
ical solution as that of differential equations of the actual
system. The inputs such as step, pulse, and pseudo-random
binary sequence (PRBS) shows the piecewise constant prop-
erty between sampling instants. A suitable choice of sam-
ple time is also essential to generate informative data for
identification [2]–[5].

Time delay is an integral part of many industrial processes,
which mainly occurs due to significant mass or volume trans-
fer, energy or heat exchanges, and signal communication
lags between sensors and actuators. The accurate knowledge
of time delay is essential for effective controlling of time-
delayed systems failing to, which can cause severe perfor-
mance degradation and instability in the system. An excellent
comparative survey on various time delay estimation tech-
niques for linear systems has been reported in [6]. Another
study on open problems and useful advances related to time-
delayed systems can be found in [7]. In this work a technique
is developed through which accurate time-delay estimation
can be achieved.

In control theory, the lower order time-delayed system
modeling of unknown processes having significant time
delays or slower dynamics is preferred to design and tune
suitable controllers based on these models [8]–[10]. It is
observed that the time-delay introduces non-linearity in the
cost function, which is required to be optimized for its esti-
mation. Therefore, the gradient-based numerical optimiza-
tion techniques such as steepest-descent, Newton-Raphson,
Gauss-Newton, and Levenberg-Marquardt (LM) algorithms
are generally being utilized in prediction error minimiza-
tion (PEM) framework, especially for time-delay estima-
tion. However, these techniques require suitable parameter
initialization to avoid trapping into local optimum [1], [2],
[11], [12]. The proposed work is also based on PEM
approach, where it is demonstrated that by using explicitly
computed time-delay one can avoid the problem of trapping
to a local optimum.

The identification of both CTD [12]–[17] and DTD
[19]–[22] systems are popular among researchers and have
their advantages and disadvantages. The former one gives the
benefit of direct physical connection with the actual system
and ability to handle irregularly sampled data but has to be
realized in the discrete form on digital hardware. The latter
one has the advantage of direct digital implementation after
estimation using the sampled data but lags the direct linking
with the actual physical system in terms of its parameters.
Another limitation in DTD system identification is that the
time delay is generally limited to an integer multiple of sam-
ple time, which may cause some approximation errors in the
estimation. Furthermore, in the last two decades, the interest
has been shifted towards identifying continuous time models
directly or indirectly using sampled data [23]–[27]. A novel
approach is proposed here, in which all the parameters of a
CTDmodel is identified indirectly using aDTDmodel, where

the time delay is not restricted to an integer multiple of the
sample time.

The existing literature involving time-delayed system iden-
tification uses different approaches such as: identification
using relay experiments [28]–[30]; simultaneous identifica-
tion of rational model parameters and time delay [15]–[17],
[20]–[22]; identification of rational model parameters and
time delay separately [12], [31], [32]. Although the step
response based identification of time-delayed system is
also popular in literature [33], [36], that is mainly due to
its simplicity in performing the identification experiments.
However, as pointed-out in [14] that the step inputs may
not be suitable to excite all useful dynamics of the
system. Therefore, inputs like PRBS, which are determin-
istic and show white noise like characteristics, are pre-
ferred to generate informative data for more accurate model
estimation.

A recursive time delay estimation algorithm is devel-
oped in [19], where the time delay of a continuous time-
delayed system is estimated based on the phase contribution
of discrete-time zeros from its ZOH based sampled data
system. The main limitation associated with this approach is
that the delay estimation mismatch does not affect discrete-
time zeros only but also affects the discrete-time poles as
well. This problem can be resolved by computing the time-
delay in terms of discrete-time zeros and poles, which is
demonstrated in the proposed work while developing the
discretization of CTD systems. Another interesting contribu-
tion, which uses step response data to identify time-delayed
systems with least square estimation and ZOH discretiza-
tion, is reported in [23]. Where the time-delay is identified
by minimizing an error tolerance between two consecutive
non-negative output samples; however, this type of approach
is less useful as it often produces false estimates in the
presence of noisy measurements. Moreover, most of the
above CTD and DTD estimation techniques may not be
robust with respect to parameter initialization and may not
successfully converge for noisy measurements, whereas the
proposed approach can give excellent convergence while
being less sensitive towards parameter initialization and noisy
measurements.

Recently, an impressive work is reported in [12] (also
see [18]), where various issues related to separately identify
rational parameters and time delay of a CTD system have
been discussed in detail. The authors proposed a simpli-
fied refined instrument variable (SRIV) method for continu-
ous transfer function estimation, which is referred to as the
TFSRIVC algorithm, where the SRIV approach is used to
estimate rational parameters and an adaptive gradient-based
approach is used for time delay estimation, separately in
each iteration. This method uses a state variable filter (SVF)
with a suitable corner frequency to generate initial model
parameters. The authors pointed out that the choice of SVF’s
corner frequency and initial time delay are very critical for
the algorithm’s global convergence and to achieve robustness
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against measurement noise. They also address an issue that
the estimation of a CTD system with zero is somewhat more
difficult and challenging as compared to all pole CTD sys-
tems. In-fact they demonstrated that the higher percentage of
global convergence for CTD systems with zero could only
be achieved through an exhaustive search for the time delay.
The exhaustive search method is based on estimating several
systemmodels one by one for a given range of time delays and
finally selecting the system model that produces a minimum
error to initialize the estimation algorithm. In summary, they
recommended choosing the SVF’s cutoff frequency of less
than one-tenth of the system bandwidth for rational param-
eter initialization of all pole systems and an exhaustive time
delay search method for systems with zero. However, for an
unknown system, it is difficult to know about its bandwidth in
advance. Furthermore, the one by one time-delay search over
a prespecified time delay range is computationally demand-
ing and time-consuming.

In this work, iterative algorithms are proposed to identify
the system dynamics in terms of lower-order CTD mod-
els. The proposed algorithms are based on the accurate
discretized modeling of first order-CTD (FOCTD), second
order-CTD (SOCTD), and SOCTDwith zero (SOCTDZ) sys-
tems. These models are discretized using a ZOH circuit and a
piecewise constant input, where the time delay is expressed in
terms of integer and pure fractional multiple parts of sample
time. The prime motivation behind using the discretization
of CTD models is to explicitly bring the time-delay (more
specifically, the fractional delay part) in the rational model
parameters to enable simultaneous time-delay and rational
parameters identification. In each iteration of the proposed
algorithms, for a fixed integer delay part, rational parameters
and fractional delay part are estimated and the anticipation
of fractional delay part corresponding to integer multiples
of sample time is added to the integer delay part for next
iteration, and this process is continued until the phase due to
fractional delay part lies within a sample time.

The proposed algorithm has the following major contribu-
tions and advantages:

1) Explicit expressions to compute fractional time-delay
part and rational parameters are derived for FOCTD,
SOCTD and, SOCTDZ systems in terms of their dis-
crete equivalents. In fact, this is the first attempt
where explicit expressions are derived to computes the
fractional time-delay part for SOCTD and SOCTDZ
systems.

2) Two new iterative algorithms are proposed, which
enables simultaneous time-delay and rational parame-
ter estimation.

3) Apart from algorithm termination, the identification of
fractional delay part also helps the algorithms to escape
local minima to reach global minima and hence makes
the algorithm robust and accurate, especially in the
cases of multi-model cost function and severe noise
conditions.

4) It is demonstrated through simulations that the pro-
posed approach is less sensitive for initial parameter
choices, and excellent convergence can be achieved
without using the exhaustive time-delay search for sys-
tems with a zero.

5) Most of the existing least square (LS) and instrument
variable (IV) based methods for time-delayed system
identification requires time-integral or time-derivatives
of input-output data for parameter estimation whereas
the proposed technique does not require such
computations.

The systematic organization of the manuscript is as follows:
The problem statement of the proposed work is defined in
Section II. Section III is used for the detailed description of
the proposed methodology and mathematical formulation for
the discretization of CTD systems. The iterative algorithms
for parameter estimation are developed in Section IV. Simu-
lation results are presented in Section V, which is followed by
a real process identification in Section VI. Finally, the work
is concluded in Section VII.

II. PROBLEM DESCRIPTION
Consider the following general output error model
representation:

X (s) = G(s)U (s)

Y (s) = X (s)+W (s) (1)

where G(s) is the system model. The terms U (s), X (s), Y (s)
and W (s) in (1) are the Laplace domain representations of
the system’s input u(t), output x(t), measured output y(t), and
noise disturbance w(t) respectively.
The objective of the proposed work is to use the sampled

data [u(kT ), y(kT ); k = 1, 2, ...N ] of length N , from the
scheme of Fig. 1, with ZOH and at uniform sampling inter-
val T , to estimate DTD systemG(z) in terms of parameters of
original CTD system G(s) with following assumptions:

(1) The G(s) is a single-input single-output (SISO) stable
system operating in open loop.

(2) The input u(t) and output x(t) have zero initial
conditions.

(3) The disturbance signal w(t) is white noise having zero
mean and finite variance.

(4) The input u(t) is piece-wise constant, persistently excit-
ing signal and it is uncorrelated to w(t).

Remark 1: Note that, apart from the above assumptions,
one more consideration, which is typically assumed by most
of the LS, IV, and PEM based approaches, that the dataset
used for identification is complete. However, the presence of
missing data samples in industrial datasets can not be denied,
and suitable actions are required to be taken, which may
require some added computation burden. The interested read-
ers are referred to the excellent work in [34] and references
therein to work in this direction.
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III. FORMULATION OF DISCRETIZATION FOR
PROPOSED METHOD
In this work, identification of following FOCTD, SOCTD,
and SOCTDZ system model types are considered:

G1(s) =
K

τ s+1
e−DS ,

G2(s) =
K

(τ1s+1)(τ2s+1)
e−Ds,

G3(s) =
K (τ0s+1)

(τ1s+1)(τ2s+1)
e−Ds,


τ > 0,D ≥ 0, τ1 6= τ2,
τ1τ2 > 0, (τ1+τ2) > 0,
τ0 6= τ1 6= τ2

(2)

where K is the system gain, D is the time-delay, and τ ’s are
the time constants. The CTD models in (2) are discretized
according to the scheme of Fig. 1, where the corresponding
mathematical relationships are developed in the following
subsections.

FIGURE 1. Standard sampled-data system using sampling and ZOH
devices.

Remark 2: The proposed method can estimate all types of
systems in (2) with unequal stable poles τ1 6= τ2, which can
also be complex-conjugate, as in the case of under-damped
systems. Moreover, the proposed algorithm can also estimate
systems with equal poles τ1 = τ2 using noisy data, which
is always present in the data from real systems. However,
equality does not hold for noise-free data.

A. DISCRETIZATION OF FOCTD SYSTEM
If the continuous time-delay system G1(s) in (2) is sampled
using a ZOH device with transfer function:

H0(s) =
1− e−sT

s
, (3)

then consider the following theorem as
Theorem 1: The modified Z-transform to compute all the

parameters of FOCTD system is:

Z
[
L−1

{
H0(s)

K
(τ s+ 1)

e−Ds
}∣∣∣∣

t=kT

]
; 0 ≤ |λ| < 1

=
a1z−1 + a2z−2

1+ b1z−1
z−d ,where

K = (a1 + a2) / (1+ b1) , τ = −T/ log(−b1),

λ = 1+ (τ/T ) log (1− a1/K ) , D = dT + λT . (4)
Proof: Consider a sampled transfer function G1(z),

which can be computed by substituting (3) in the left-hand
side of the Theorem 1, with z = esT as

G1(z) = (1− z−1)Z
[
L−1

{
K

s(τ s+ 1)
e−Ds

}∣∣∣∣
t=kT

]
, (5)

by applying the partial fraction in (5) we have

G1(z) = (1− z−1)Z
[
L−1

{(
K
s
−

Kτ
τ s+ 1

)
e−Ds

}∣∣∣∣
t=kT

]
.

(6)

If the time delay D in (6) is expressed in terms of integer and
fractional multiples of sample time T as

D =
{
dT + λT ; 0 ≤ λ < 1
(d + 1)T + γT ;−1 < γ ≤ 0

, (7)

where d is a positive integer and λ and γ are the pure positive
and negative fractions respectively.

The results of following lemma and corollary are used
to compute the modified Z-transform ( [2], [23], [37]) in
(6), by considering D = dT + λT , with λ being a pure
positive fraction and then the results can be generalized for
pure negative fractions as well.
Lemma 1: The modified Z-transform of following function

type is

z−dZ
[
L−1

{
1

s+ p
e−λTs

}∣∣∣∣
t=kT

]
; 0 ≤ λ < 1

=
e(λ−1)pT z−1

1− e−pT z−1
z−d . (8)

Proof: Rewriting the left side of (8) using the time-
shifting property of Laplace-transform and assuming system
to be causal then:

z−dZ
[
L−1

{
1

s+ p
e−λTs

}∣∣∣∣
t=kT

]
= z−dZ

[
e−p(t−λT )1(t − λT )

∣∣∣
t=kT

]
, (9)

where 1(t − λT ) is delayed unit step signal. Now, according
to the definition of Z-transform to the right side of (9) for
0 ≤ λ < 1 and by applying sum of infinite geometric
progression with |z| >

∣∣e−pT ∣∣, one can have

z−dZ
[
e−p(t−λT )1(t − λT )

∣∣∣
t=kT

]
= z−depλT

∞∑
k=1

e−pkT z−k =
e(λ−1)pT z−1

1− e−pT z−1
z−d . (10)

This proves Lemma 2. �
Corollary 1: Consider the modified Z-transform of the

following function

z−dZ
[
L−1

{
1
s
e−λTs

}∣∣∣∣
t=kT

]
; 0 ≤ λ < 1 =

z−1

1− z−1
z−d .

(11)
Proof: Consider the special case of Lemma 2, where by

substituting p = 0, on both sides of the expressions in (8),
one can have

z−dZ
[
L−1

{
1
s
e−λTs

}∣∣∣∣
t=kT

]
=

z−1

1− z−1
z−d . (12)

This proves Corollary 1. �

VOLUME 8, 2020 64921



S. Sharma, P. K. Padhy: Novel Iterative System Identification and Modeling Scheme

Remark 3: It can be easily proved that the expressions of
Lemma 1 and Corollary 1 will remain the same if the time-
delay D = (d + 1)T + γT is expressed in terms of pure
negative fraction −1 < γ ≤ 0 with λ = 1 + γ . Therefore
for subsequent computations the general representation of
0 ≤ |λ| < 1, for fractional delay part of time-delay will be
considered.

Now by utilizing the results of Lemma 2 and Corollary 1,
the complete discretization of (6) can be obtained as

G1(z) = (1− z−1)z−dK

[
z−1

1− z−1
−

e
(λ−1)T
τ z−1

1− e−
T
τ z−1

]

=
a1z−1 + a2z−2

1+ b1z−1
z−d ; 0 ≤ |λ| < 1, (13)

where the parameters of the discretized system are

a1 = K (1− e((λ−1)T/τ)), a2 = K (e((λ−1)T/τ) − e−(T/τ)),

b1 = −e−(T/τ), (14)

now all the parameters of the original FOCTD system can be
recovered from (14) using direct algebraic manipulations as

K = (a1 + a2) / (1+ b1) , τ = −T/ log(−b1),

λ = 1+ (τ/T ) log (1− (a1/K )) ,D = dT + λT . (15)

This proves the Theorem 1. �

B. DISCRETIZATION OF SOCTD SYSTEM
Theorem 2: The modified Z-transform to recover all the

parameters of SOCTD system is:

Z
[
L−1

{
H0(s)

K
(τ1s+ 1) (τ2s+ 1)

e−Ds
}∣∣∣∣

t=kT

]
;

×0 ≤ |λ| < 1

=
a1z−1 + a2z−2 + a3z−3

1+ b1z−1 + b2z−2
z−d ,where

τ1 =
−T

log
((
−b1 +

√
b21 − 4b2

)
/2
) ,

τ2 =
−T

log
((
−b1 −

√
b21 − 4b2

)
/2
) ,

λ = (τ2/T ) log

(
a3/K+(1−a1/K−e−T/τ1 )e−T/τ2

(τ2/ (τ1−τ2))
(
e−T/τ1−e−T/τ2

)
e−T/τ2

)
,

K = (a1 + a2 + a3) / (1+ b1 + b2) , D = dT + λT .

(16)
Proof: If G2(z) represents the sampled transfer function

of (16) then we have

G2(z) = Z
[
L−1

{
H0(s)

K
(τ1s+ 1) (τ2s+ 1)

e−Ds
}∣∣∣∣

t=kT

]
(17)

by using (3), (7) and applying partial fraction on (17) with
Lemma 2 in (8) and Corollary 1 in (11), the following

discretized time-delayed model is obtained

G2(z) =
a1z−1 + a2z−2 + a3z−3

1+ b1z−1 + b2z−2
z−d ; 0 ≤ |λ| < 1, (18)

where, the discretized model parameters of (18) are given by

a1 = K
(
1−

τ1

(τ1 − τ2)
e
(λ−1)T
τ1 +

τ2

(τ1 − τ2)
e
(λ−1)T
τ2

)
a2 = −K

(
e−T/τ1 + e−T/τ2

)
+
Kτ1e(λ−1)T/τ1

(
1+ e−T/τ2

)
(τ1 − τ2)

−
Kτ2e(λ−1)T/τ2

(
1+ e−T/τ1

)
(τ1 − τ2)

a3 = Ke−(τ1+τ2)T/τ1τ2 −
Kτ1e(λ−1)T/τ1e−T/τ2

(τ1 − τ2)

+
Kτ2e(λ−1)T/τ2e−T/τ1

(τ1 − τ2)

b1 = −e−T/τ1 − e−T/τ2 , b2 = e−(τ1+τ2)T/τ1τ2 . (19)

Now, the parameters of SOCTD can be easily recovered
through some algebraic manipulations in (19) as

τ1 = −T/ log
((
−b1 +

√
b21 − 4b2

)
/2
)
,

τ2 = −T/ log
((
−b1 −

√
b21 − 4b2

)
/2
)
,

λ =
τ2

T
log

 a3
K + (1− a1

K − e
−

T
τ1 )e−

T
τ2(

τ2
τ1−τ2

)(
e−

T
τ1 − e−

T
τ2

)
e−

T
τ2

 ,
K = (a1 + a2 + a3) / (1+ b1 + b2) ,D = dT + λT .

(20)

This proves the Theorem 3. �
Remark 4: Observe that, the numerator parameters

(a1, a2, and a3) of the DTD model in (19), uses both the CTD
system’s rational parameters and time-delay (in terms of the
fractional delay part ‘λ’), for their computation. Therefore,
any error in estimating the CTD system’s parameters and
time-delay will directly affect these parameters, which then
also affect the value of λ in (20). Hence, by correcting the
estimates of λ until it lies within 0 ≤ |λ| < 1, one can correct
the errors in estimating CTD system parameters.

C. DISCRETIZATION OF SOCTDZ SYSTEM
Theorem 3: The following modified Z-transform is used

to compute all the parameters of SOCTDZ system through its
discretized system as

Z
[
L−1

{
H0(s)

K (τ0s+ 1)
(τ1s+ 1) (τ2s+ 1)

e−Ds
}∣∣∣∣

t=kT

]
;

×0 ≤ |λ| < 1

=
a1z−1 + a2z−2 + a3z−3

1+ b1z−1 + b2z−2
z−d ,where

τ1 =
−T

log
((
−b1 +

√
b21 − 4b2

)
/2
) ,
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τ2 =
−T

log
((
−b1 −

√
b21 − 4b2

)
/2
) ,

K = (a1 + a2 + a3) / (1+ b1 + b2) , D = dT + λT ,

τ0 =
τ1τ2a1

KT (1− λ)
,

and λ is that root of α1λ2 + α2λ + α3 = 0, that lies within
−1 and 1, where α1, α2, and α3 are defined as

α1 = KT 2(e−T/τ1 − e−T/τ2 )/(τ2 − τ1)a1
α2 = KT ((τ2 − 2T )e−T/τ1 − (τ1 − 2T )e−T/τ2 )/(τ2 − τ1)a1
−KT (e−T/τ1e−T/τ2 − a3/K )/a1
−T (τ1e−T/τ1 − τ2e−T/τ2 )/(τ2 − τ1), and
α3 = KT ((T − τ2)e−T/τ1 − (T − τ1)e−T/τ2 )/(τ2 − τ1)a1
+KT (e−T/τ1e−T/τ2 − a3/K )/a1
+(τ1e−T/τ1 (T + τ2)− τ2e−T/τ2 (T + τ1))/(τ2 − τ1).

(21)
Proof: Let the discretized model of (21) is G3(z) that

can be computed as:

G3(z) = z−d (1− z−1)Z
[
L−1

{
K (τ0s+1)e−λTs

s(τ1s+1)(τ2s+1)

}∣∣∣∣
t=kT

]
,

(22)

consider the partial fraction of the following term in (22) as

K (τ0s+ 1)
s(τ1s+ 1)(τ2s+ 1)

= Ke

(
A
s
+

B
s+ p1

+
C

s+ p2

)
(23)

where

A =
q0
p1p2

,B =
q0 − p1

p1 (p1 − p2)
,C =

p2 − q0
p2 (p1 − p2)

,

Ke =
K
A
, q0 = 1/τ0, p1 = 1/τ1, p2 = 1/τ2. (24)

Now, according to Lemma 2 and Corollary 1, the modified
Z-transform of the following terms can be computed as

Z
[
1
s
e−λTs

]
=

z−1

1− z−1
,

Z
[

1
s+ p1

e−λTs
]
=

d1−λ1 z−1

1− d1z−1
,

Z
[

1
s+ p2

e−λTs
]
=

d1−λ2 z−1

1− d2z−1
, (25)

where

d1 = e−p1T , d2 = e−p2T , (26)

on substituting (23) into (22), and using (25) one can have the
following expression as

G3(z) =
a1z−1 + a2z−2 + a3z−3

1+ b1z−1 + b2z−2
z−d ; 0 ≤ |λ| < 1, (27)

where

b1 = −(d1 + d2),

b2 = d1d2,

a1 = Ke
(
A+ Bd1−λ1 + Cd1−λ2

)
,

a2 = −Ke
(
A(d1+d2)+Bd

1−λ
1 (1+d2)+Cd

1−λ
2 (1+d1)

)
,

a3 = Ke
(
Ad1d2 + Bd

1−λ
1 d2 + Cd

1−λ
2 d1

)
. (28)

The values of K , τ1 and, τ2 of (21) can be directly computed
in terms of expressions in (24), (26) and, (28) as

K =
a1 + a2 + a3
1+ b1 + b2

,

τ1 = −T/ log

−b1 +
√
b21 − 4b2

2

 ,
τ2 = −T/ log

−b1 −
√
b21 − 4b2

2

 . (29)

In order to estimate the parameter τ0 of (21), rewrite expres-
sion of a1 in (28) using (24) and (26) as(a1
K
− 1

)
=
(τ1 − τ0)

(τ2 − τ1)
e−(1−λ)T/τ1 +

(τ0 − τ2)

(τ2 − τ1)
e−(1−λ)T/τ2 ,

(30)

by using the first order approximation of exponential terms
in (30) and on simplification we get

τ0 = a1τ1τ2/KT (1− λ). (31)

Remark 5: Note that, the first-order approximation of
exponential terms e−(1−λ)T/τ1 and e−(1−λ)T/τ2 in (30) does
not produce significant approximation error as the sample
time T , is already considered to be sufficiently small as
compared to the system time constants τ1 and τ2.
The following quadratic equation in λ can be obtained

by using expressions of a1 and a3 in (28) and substitutions
from (24), (26) and, (31) with first-order approximation of
exponential terms involving λ as

α1λ
2
+ α2λ+ α3 = 0, (32)

where

α1 = KT 2(e−T/τ1 − e−T/τ2 )/(τ2 − τ1)a1
α2 = KT ((τ2 − 2T )e−T/τ1 − (τ1 − 2T )e−T/τ2 )/(τ2 − τ1)a1

−KT (e−T/τ1e−T/τ2 − a3/K )/a1
−T (τ1e−T/τ1 − τ2e−T/τ2 )/(τ2 − τ1), and

α3 = KT ((T − τ2)e−T/τ1 − (T − τ1)e−T/τ2 )/(τ2 − τ1)a1
+KT (e−T/τ1e−T/τ2 − a3/K )/a1
+(τ1e−T/τ1 (T + τ2)− τ2e−T/τ2 (T + τ1))/(τ2 − τ1),

(33)

and the time delay is computed by D = dT + λT . �
Remark 6: The quadratic equation in (32) does not return

a pure fractional value of λ until the estimated time-delay
is not converged to actual time-delay. Therefore an iterative
procedure is adapted to update the time delay and other
rational parameters until any one of the roots of (32) satisfies
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0 ≤ |λ| < 1. The step by step procedure to select the suitable
root until the convergence been achieved is described in the
following section.

IV. PROPOSED ALGORITHMS FOR
PARAMETER ESTIMATION
In this section, algorithms are developed to estimate all
the parameters of FOCTD, FOCTD, and SOCTDZ sys-
tems, including the fractional delay. As in the real situation,
the identification data is corrupted by the measurement noise.
Therefore, if we consider the generalized difference equation
representation of discretized models as

ŷ(k) = â1u
(
k − d̂ − 1

)
+ ...+ âmu

(
k − d̂ − m

)
−b̂1ŷ(k − 1)− ...− b̂nŷ(k − n), (34)

where ŷ(k) represents the estimated output. For rest of the fol-
lowing representations the values of n & m are considered as
1 & 2 for FOCTD and 2 & 3 for SOCTD and SOCTDZ sys-
tems. Let the estimated parameter vector in (34) is given by

θ̂ =
[
â1 ... âm b̂1 ... b̂n

]Tr
, (35)

where Tr is the transpose operator. If the prediction error at θ̂
between actual and predicted output is defined as

ε
(
k; θ̂

)
= y (k)− ŷ

(
k; θ̂

)
, (36)

then, the prediction error vector for data length N is
denoted by

4(θ̂ ) =
[
ε
(
1; θ̂

)
ε
(
2; θ̂

)
... ε

(
N ; θ̂

)]Tr
. (37)

The objective function for prediction error minimization is
defined by

V (θ̂ ) =
1
2N

4
Tr
(θ̂ )4(θ̂ ), (38)

and the gradient vector can be computed as

g(θ̂ ) =
∂V (θ̂ )

∂θ̂
=

1
N
JTr (θ̂ )4(θ̂ ), (39)

where J (θ̂ ) is the Jacobian matrix defined as the partial
derivative of residuals with respect to estimated parameters as

J
(
θ̂
)
=

[
∂4
(
θ̂
)

∂ â1
...

∂4
(
θ̂
)

∂ âm

∂4
(
θ̂
)

∂ b̂1
...

∂4
(
θ̂
)

∂ b̂n

]
, (40)

where the Jacobian matrix for each parameter is calculated by

Jâi (θ̂ ) =
∂4

(
θ̂
)

∂ âi
= −

∂ ŷ (k)
∂ âi

= −u(k − d − i)

+

n∑
l=1

b̂l
∂ ŷ (k − l)
∂ âi

,

Jb̂j (θ̂ ) =
∂4

(
θ̂
)

∂ b̂j
= −

∂ ŷ (k)

∂ b̂j
= ŷ (k−j)+

n∑
l=1

b̂l
∂ ŷ (k−l)

∂ b̂j
,

(41)

where, âi is the ith numerator and b̂j is the jth denominator
parameter of the identified DTD model. Now, the approxi-
mate Hessian matrix is computed by the relation as

H (θ̂ ) = JTr
(
θ̂
)
J
(
θ̂
)
, (42)

finally, the parameters θ̂ can be updated using following
LM algorithm update rule for (r + 1)th iteration as

θ̂r+1 = θ̂r −1θ̂r+1, 1θ̂r+1 =
[
H (θ̂r )+ µI

]−1
g(θ̂r ),

(43)

where I is an identity matrix, and µ is a scalar whose values
are adaptively updated to switch between gradient descent
and Gauss-Newton algorithm to achieve convergence. The
initial model parameters of the proposed algorithm are com-
puted similarly to the method referred in [12], which is based
on least square estimates of filtered data through a filter
SVF(s) = 1/(s+ ωc)n of order n and cutoff frequency ωc.
The only difference is that the proposed algorithm uses the
discretized version of SVF. The Algorithm 1 andAlgorithm 2
are used to summarize the complete proposed methodology.

V. SIMULATION RESULTS
In this section three examples using following CTD systems
with long time-delay (also see [11], [12]) are used to evaluate
the performance of the proposed method

Sys1 : =
2

s+ 1
e−8s

Sys2 : =
1.5

0.25s2 + 0.25s+ 1
e−8s

Sys3 : =
−4s+ 0.5
s2 + s+ 4

e−8s

Sys4 : =
−6400s+ 1600

s4 + 5s3 + 408s2 + 416s+ 1600
e−8s

Two state of the art methods are used for reference and
comparative analysis with the proposed method. First is the
PROCEST algorithm of MATLAB’s system identification
toolbox, and second is the TFSRIVC algorithm of [12], which
is also available in the CONTSID toolbox [38]. All the sim-
ulations are performed using MATLAB (R2017b) software
installed in a computer having Intel Core i7 2620MCPUwith
8GB RAM.

A persistently exciting PRBS signal of clock period
20 samples and switching levels +1 and −1 is used in all
examples to generate a total of 2540 input/output data sam-
ples with 0.09 s, sampling interval, which is not an integer
multiple of actual time-delay of 8 s. For identification, a white
noise of zero mean is added to the output, and its variance is
adjusted to obtain a 10dB signal to noise ratio (SNR). The
accuracy of the identified model is validated using normal-
ized root mean square error (NRMSE) in terms of Fit value
defined as

Fit = 100

(
1−

∥∥y(k)− ŷ(k)∥∥
‖y(k)− mean(y(k))‖

)
(44)
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Algorithm 1 Identification of FOCTD and SOCTD systems

1: Collect [u(kT ), y(kT )]k=Nk=1 .
Consider: n = 1&m = 2 for FOCTD and n = 2&m = 3
for SOCTD systems.
Specify: max_it , grad_it , d̂0 = round(Di/T ), and ωc.
Use SVF to compute θ̂0.

2: for r = 0 to max_it do
3: Construct Ĝ(z) using θ̂r and d̂r .

If Ĝ(z) have unstable poles (outside the unit circle)
then reflect them into stable region (inside the unit
circle).
Set: update = 1 and µ = 10−3.

4: for i = 1 to grad_it do
5: If: update == 1.

Compute V (θ̂ ir ), g(θ̂
i
r ), J (θ̂

i
r ), and H (θ̂ ir ) using (38),

(39), (40) and (42) respectively.

6: Compute 1θ̂ ir+1 =
[
H (θ̂ ir )+ µI

]−1
g(θ̂ ir ).

Stop If:
∣∣∣1θ̂ ir+1∣∣∣ < δ (relative tolerance).

7: Compute θ̂ ir+1 = θ̂
i
r −1θ̂

i
r+1, and V (θ̂

i
r+1).

If: V (θ̂ ir+1) < V (θ̂ ir ):
Set: update = 1, µ = µ/10, and θ̂ ir = θ̂

i
r+1.

Else: Set update = 0, and µ = 10µ.
8: end for
9: Use θ̂r+1 to compute λ̂r+1 (using (15) for FOCTD

system or by (20) for SOCTD system) and D̂r+1 =∣∣∣d̂rT + λ̂r+1T ∣∣∣.
10: Stop If: 0 ≤

∣∣∣λ̂r+1∣∣∣ < 1, and return Ĝ(s) using

Theorem 1, for FOCTD system or using Theorem 3,
for SOCTD system.
Else: Set θ̂r = θ̂r+1, and d̂r = round(D̂r+1/T ).

11: end for

where ‖.‖ is the 2-norm, y(k) is the measured output and
ŷ(k) is the estimated output. For the given noise conditions,
the estimated model is considered to be successfully con-
verged if Fit > 68.
Remark 7: It can be observed that the lower Dmin

and upper Dmax time-delay bounds are not required in
Algorithm 1, while it is needed in Algorithm 2 for conver-
gence. This is due to the fact that the explicit expression
of fractional delay part λ is used in Algorithm 1, whereas
in Algorithm 2, it is computed by solving a quadratic expres-
sion. Furthermore, the value of Dmin can be set to ‘0’ and
Dmax can be computed by observing system’s step response or
by calculating the maximum cross-correlation between input
u(kT ) and output y(kT ) data [12], or by performing some
statistical tests [35].

A. EXAMPLE 1
In this example, two systems Sys1 and Sys2, are used to
validate the proposed algorithm. The identification settings
for PROCEST method are: the model structure is ‘P1D’

Algorithm 2 Identification of SOCTDZ system

1: Collect [u(kT ), y(kT )]k=Nk=1 .
Specify: n = 2, m = 3, Dmin, Dmax , max_it , grad_it ,
d̂0 = round(Di/T ), and ωc.
Use SVF to compute θ̂0.

2: for r = 0 to max_it do
3: Use Steps 3 to 8 of Algorithm 1.
4: Use θ̂r+1 to compute λ1 and λ2 using (32), then calcu-

late
D1 =

∣∣∣d̂rT + λ1T ∣∣∣ and D2 =

∣∣∣d̂rT + λ2T ∣∣∣.
5: If: Both D1 and D2 lies within Dmin and Dmax, then

choose the one with better Fit value in (44) and corre-
spondingly assign D̂r+1 and λ̂r+1.
ElseIf: Dmin < D1 < Dmax
Set: D̂r+1 = D1 and λ̂r+1 = λ1.
ElseIf: Dmin < D2 < Dmax
Set: D̂r+1 = D2 and λ̂r+1 = λ2.
Else: Stop.

6: Stop If: 0 ≤
∣∣∣λ̂r+1∣∣∣ < 1, and return Ĝ(s) using

Theorem 4.
Else: Set θ̂r = θ̂r+1, and d̂r = round(D̂r+1/T ).

7: end for

for Sys1 and ‘P2DU’ for Sys2. The estimation options are
defined by opt=procestOptions with fields ‘Focus’, ‘Initial-
Condition’, ‘SearchMethod’, ‘SearchOption.MaxIter’ and,
‘SearchOption.Tolerance’ being ‘prediction’, ‘zero’, ‘lm’,
50 and, 10−4, respectively. An initial model is constructed
with these settings where the initial time-delay ‘Struc-
ture.Td.Value’ and it’s lower ‘Structure.Td.Minimum’ and
upper ‘Structure.Td.Maximum’ delay bounds are set to Di,
0 s, and 9 s, respectively. Rest options are set to their
default values. The identification settings for TFSRIVC algo-
rithm [12] are as follows: the name-value pairs in ‘tfsrivc’
routine of CONTSID toolbox is set to lower time delay
bound ‘TdMin=0 s’, upper time delay bound ‘TdMax=9 s’,
initial time-delay ‘IODelay=Di’, tolerance in parameter
change ‘TolPar=10−4’ and tolerance in cost function change
‘TolFun=10−4’. The number of zeros ‘nz’ and the number
of poles ‘np’ are set to ‘0’ & ‘1’ for Sys1 and ‘0’ & ‘2’
for Sys2. The identification settings for the proposed method
is, according to Algorithm 1, where the initial time-delay,
grad_it and the tolerance ‘δ’ in the relative change of esti-
mated parameters1θ̂ are set toDi, 30 and 10−4, respectively.
The SVF’s cutoff frequency for TFSRIVC and the proposed
method is set toωc = 2 rad/s, and a maximum of 50 iterations
are allowed for convergence in all three methods.

The convergence performance of PROCEST, TFSRIVC
and, proposed methods for different initial time delays
of [0, 3, 5, 7, 9] s, is presented in Table 1, and Table 2,
for Sys1 and Sys2, respectively, where for every initial
time delay total 100 Monte Carlo (MC) simulations are
performed with different noise initialization. The results
of Table 1 and Table 2 (see Fm: mean percentage of
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TABLE 1. Simulation results of 100 MC tests for Sys1 with different initial time-delay. Fm is the mean percentage of successfully converged models, Tm is
the mean time taken for each model estimation (including both successful and unsuccessful estimation) and, Itm is the mean number of iterations
required by the successfully converged models.

TABLE 2. Simulation results of 100 MC tests for Sys2 with different initial time-delay.

FIGURE 2. Evolution of estimated time delay in proposed method with iteration number using 100 MC tests with different noise and delay
initialization for successfully converged models of Sys1, Sys2 and Sys3.

successfully converged models) indicate that the proposed
method shows excellent convergence consistency with all
initial time delays for both systems as compared to PROCEST
and TFSRIVC methods. Furthermore, it can also be seen
in Table 1 and Table 2 that the mean simulation time Tm
required for each model estimation is minimum in proposed
method for all initial delays and the mean number of iter-
ations Itm required for successfully converged models are
significantly less as compared to PROCEST and similar
to TFSRIVC method. Fig. 2 is used to show the evolu-
tion of estimated time delay in the proposed method with
iteration number using 100 MC tests with different noise
and delay initialization for successfully converged models of
Sys1 and Sys2.

A total number of 100 MC simulations are performed to
compare the identification accuracy of all three methods for
Sys1 and Sys2, with different noise seeds and a uniformly

distributed initial delay between [0, 9]s. The results are pre-
sented in terms of estimated model’s step responses in Fig. 3,
and in terms of mean and standard deviation of estimated
parameters in Table 3 and Table 4, where the mean and
standard deviation values indicate that all three methods are
accurate in parameter estimation. However, the values of
simulation parameters (Spar ) supports the superiority of the
proposed method over PROCEST and TFSRIVC methods in
terms of a high percentage of successful convergence (Fm)
with less time required for identification (Tm).

Furthermore, to show the effect of the choice of ωc on suc-
cessful convergence 100 MC simulation with distinct noise
seed and a uniform initial delay between [0, 9] s, is performed.
The results are presented in Table 5, where it can be observed
that the proposed method is more robust for the choice of
SVF’s cutoff frequency ωc as compared to the TFSRIVC
method.
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TABLE 3. Estimated parameters for 100 MC tests for Sys1.

TABLE 4. Estimated parameters for 100 MC tests for Sys2.

TABLE 5. The effect of ωc in SVF on mean successful convergence (Fm).

B. EXAMPLE 2
In this example, Sys3 is used, which is a second-order under-
damped time-delayed system with a zero. The identification
of such systems is challenging as the phase contribution due
to the zero can cause false delay estimation, which further
affects the accuracy of rational parameter estimation and
may result in identification failure. The identification settings
for the PROCEST, TFSRIVC methods are the same as that
in Example 1, except the process model structure is set to
‘P2DUZ’ in PROCEST and ‘nz=1’ & ‘np=2’ are selected
in TFSRIVC. The identification settings for the proposed
method is according to Algorithm 2, with Dmin and Dmax
are set to 0 and 9 s, respectively. The Initial rational model
parameters are computed using SVF with ωc = 2 rad/s in all
three approaches, and remaining settings are the same as that
of Example 1.

The simulation results for 100 MC tests are shown
in Table 6 for each initial time-delay Di of 0, 1, 3, 5, 7,
8, and 9 s, respectively. It can be observed from the values
of Fm: mean percentage of successfully converged models
in Table 6, that the proposed method shows almost perfect
convergence for all initial time-delays while the PROCEST
and TFSRIVC methods do not converge well if the initial
time-delay is not close enough to the actual time-delay.
Furthermore, the values of mean simulation time for each
model estimation (Tm) and the mean iterations required for
successful convergence in the proposed method are compet-
itive to the TFSRIVC method and much lesser as compared
to PROCEST approach. Another interesting observation can
also be made from Table 6, that the proposed method requires

minimum time and only one iteration for convergence if the
initial delay is equal to the actual delay of 8 s, whereas the
PROCEST and TFSRIVC methods needed at least three iter-
ations for convergence. Moreover, the evolution of the time-
delay with each iteration in the proposed approach is shown
in Fig. 2 for diffident initial delays Di’s of [0, 3, 5, 7, 9] s.
To compare the identification accuracy, Sys3 is used for

100MC simulations with different noise seeds and uniformly
distributed initial time-delays between [0, 9] s. The results
of PROCEST, TFSRIVC, and proposed methods are summa-
rized in Fig. 3, as the step responses of estimated models and
in Table 7, as the mean and standard deviation of estimated
parameters. The values of estimated parameters in Table 7,
shows that the TFSRIVC and proposed methods are more
accurate than PROCEST method where the proposed method
also gained the advantage of superior and fastest convergence
with mean percentage of successful converged models Fm,
which is nearly 100% and minimum mean time required for
model estimation Tm < 0.1 s, as compared to the other two
methods.

C. EXAMPLE 3
This example considers the system (Sys4), which is a
fourth-order non-minimum phase time-delay system. The
identification experiment with 10 dB noise is performed sim-
ilarly to that of the previous examples to generate identifica-
tion data. A SOCTDZ model is identified for Sys4 using all
three approaches (PROCEST, TFSRIVC [12] and, the pro-
posed methods) by keeping all identification settings same
as that in Example 2. The identification results are presented
(see: Table 8) in terms of mean and standard deviation of
estimated parameters for 100 MC tests with an initial delay
which is uniformly distributed in the interval [0 9] s. The sim-
ulation results in Table 8 show that the proposed approach is
superior to the other two in achieving successful convergence
and requires less computation time. Furthermore, a selected
portion of measured and estimated model’s response is plot-
ted in Fig. 4, where it can be observed that the proposed
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TABLE 6. Simulation results of 100 MC tests for Sys3 with different initial time-delay.

FIGURE 3. Identified models step responses using 100 MC tests with different noise and delay initialization for Sys1, Sys2 and Sys3. Fm is the mean
percentage of successfully converged models, Tm is the mean time taken for each model estimation (including both successful and unsuccessful
estimation) and, Itm is the mean number of iterations required by the successfully converged models.

method is capable in handling severe noise interferences to
produce unbiased parameter estimates.

VI. REAL SYSTEM IDENTIFICATION APPLICATION
Let us now considered a real system to validate the proposed
identification technique. The experimental setup is shown

in Fig. 5, where the three identical conical tanks 1, 2, and 3
can be configured individually or together in a non-interactive
or interactive manner. In this paper, a single conical tank 1 of
height 70 cm, upper diameter 35 cm, and lower diameter
2.5 cm is considered. The water is fed to tank 1 through
a dedicated pneumatic control valve (RK valve ltd), which
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TABLE 7. Estimated parameters for 100 MC tests for Sys3.

TABLE 8. Identified SOCTDZ models for 100 MC tests in terms of mean and standard deviation of estimated parameters for successfully converged
models and simulation parameters for Sys4.

FIGURE 4. Measured and estimated model’s response for Sys4 in
Example 3.

is coupled to an electric pump (Kirloskar) that works at
a constant speed. The water returned to a reservoir by an
outlet at the bottom of tank 1. The system’s input is the flow
rate command in percentage (%) of the maximum flow rate
(500 liters per hour), and the output is the water level in the
tank 1. The current water flow rate is indicated by a Rotame-
ter (TELELINE). A differential pressure transducer ‘DPT’
(Rosemount) has been utilized to measure the liquid level in
the tank. All the sensors and actuators of the conical tank
system interact through MATLAB/Simulink in a computer
with the help of a digital data exchange interface (VDPID-03)
device, which converts the digital information from computer
to an analog signal for the process and vice versa.

The data generation experiment uses two steps. In the first
step, a fixed flow rate of 40% is supplied, and the manual

FIGURE 5. Real conical tank system used for identification.

outlet valve of tank 1 is adjusted to obtain a steady-state
liquid level around 42.27 cm. Secondly, identification data
is generated at T = 0.11 s sampling interval by applying a
PRBS signal having flow levels 0 and 50% and clock period
of 20 s. The static components in generated input/output data
u(k)|y(k) of 7500 samples are removed by subtracting the
expected values as ū(k) = u(k) − mean {u(k)} and ȳ(k) =
y(k) − mean {y(k)}. Then the recovered data ū(k)|ȳ(k) is
divided into two parts first 3500 samples (from 0 to 385 s) are
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used for model identification, and the remaining 4000 sam-
ples (from 385 to 825 s) are used for model validation.The
proposed algorithm uses this identification data with an initial
delayDi = 0 s andωc = 1 rad/s in SVF to estimate a SOCTD
model given by

Ĝ(s) =
34.29

4.55× 104s2 + 5047s+ 1
e−1.54s. (45)

The estimated model of the conical tank process in (45)
is tested on the validation data set, and the comparison is
shown in Fig. 6. The accuracy of the identified model is
computed by the percentage fitting criterion as Fit(%) =

100
(
1− ‖ȳ(k)−ŷ(k)‖

‖ȳ(k)−mean(ȳ(k))‖

)
%, in terms of measured ȳ(k) and

estimated ŷ(k) output. The obtained Fit(%) value for sys-
tem in (45) for validation data is comes out to be 83.81%.
The same identification experiment is also performed using
PROCEST and TFSRIVC methods, where the identified
models are ĜPROCEST (s) = 74.66

8.36×104s2+1.13×104s+1
e−2.84s and

ĜTFSRIVC (s) = 70.85
7.91×104s2+1.05×104s+1

e−2.85s with Fit(%)
values 78.65% and 78.96% respectively on validation data.

FIGURE 6. Identification result of proposed method on validation data for
conical tank process.

VII. CONCLUSION
This paper presented a simple, fast, robust, and accurate
method to simultaneously identify all the parameters, includ-
ing the time-delay of FOCTD, SOCTD, and SOCTDZ
models. It is mathematically formulated that the discretiza-
tion of a CTD system brings time-delay into rational model
parameters of the discretized system, where it can be effec-
tively utilized in an iterative algorithm to simultaneously
estimate all the parameters of original CTD system. The
simulation outcomes of three numerical examples on four
systems indicate that the proposed approach produces much
better results as compared to the recent instrument vari-
able based method TFSRIVC and the MATLAB’s (R2017b)
PROCEST routine in terms of identification speed, accuracy,
and robustness. It is observed that the global convergence
of the PROCEST and TFSRIVC algorithms for 100 MC
simulations is less than 80%, 70% and 50% for FOCTD,

SOCTD and, SOCTDZ systems respectively, while the pro-
posed method gives excellent convergence which is more
than 98% for all type of FOCTD, SOCTD, and SOCTDZ
systems. Furthermore, the proposed method is also validated
for the identification of a real conical tank system with good
fitting accuracy. The future work directions could be the
extensions of the proposed methodology for identifying the
multi-variable and nonlinear time-delayed systems.
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