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ABSTRACT Congestion in airports and metroplexes is increasingly becoming a key bottleneck in the global
air transport system. It is largely due to inefficient utilization of runway resources and its consequences
of imbalance between demand and capacity. Existing studies mainly focus on runway configuration in a
single airport system, and little consideration is given to the impact of demand management on runway
configuration in metroplexes. Therefore, this paper proposes a methodology and assessment framework for
runway configuration with a focus on the exploitation of multiple active runways in metroplex airports.
The primary innovation is an integrated runway configuration management formulation with air traffic
demand management options. The first is static and dynamic runway configuration management models
featuring three optimization objectives, four cases of demand-capacity imbalance, three air traffic demand
management options and three assessment scenarios, for eleven priority settings. The second is an efficient
multi-objective evolutionary algorithm with a mechanism of objective-guided individual selection, which
can obtain close-to optimal solutions with a very low computational cost within 6 seconds. Computational
experiments for the real-world case of the Shanghai metroplex airports show that, the inducing strategy of
minimizing the total number of adjusted flights is the best mechanism for making satisfactory tradeoffs
among multiple objectives in dynamic runway configuration. The proposed model reduces the total number
of adjusted flights by an average of 36% compared with the baseline static runway configuration manage-
ment. Furthermore, unlike the conventional approach of giving priority to arriving aircraft, a higher priority
for departures is more effective in enhancing the performance of runway systems and reducing the number
of adjusted flights. The proposed framework can be applied at pre-tactical (e.g., one-day planning) as well
as tactical (e.g., several-hours rolling horizon) levels.

INDEX TERMS Runway configuration, demand management, metroplex system, airports, performance
tradeoff, optimization.

I. INTRODUCTION

A. PROBLEM DESCRIPTION

Growing air traffic congestion in airports and metroplexes
is a major concern in the global air transport system due to
the imbalance between increasing demand and insufficient
capacity. The resulting low-performance, such as conflict,
queue and delay, experienced at high density traffic airports,
poses significant costs to relevant stakeholders including
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air navigation service providers, airports, airlines and pas-
sengers. In particular, runway performance is crucial to
the system-wide efficiency of airport movements, and its
inefficient operation is generally believed to be the critical
bottleneck in airports and metroplexes. Therefore, enhanc-
ing the runway performance has the potential to increase
capacity enabling a higher level of traffic demand to be
accommodated.

There has been some effort devoted to addressing the
imbalance of demand and capacity at busy airport sys-
tems. The first is delivering enhanced capacity through the
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construction of new runways and new airports. However,
such measures mainly focus on increasing capacity through
investment in either building or maintaining infrastructure.
This is costly, time consuming, and sometimes impractical
because of political, economic, social and environmental con-
straints. The second is controlling traffic demand given a
level of capacity in a specified period of time. For example,
(i) optimizing landings and take-offs by runway sequencing
and scheduling [1], [2] (ii) planning spatial-temporal move-
ments in a taxi network system by the management of taxi
movements [3], [4], and (iii) optimizing the gate assignment
for arrival movements [5], [6]. However, most of these studies
are conducted based on a fixed runway configuration without
considering flexible use of existing runway resources. In fact,
Runway Configuration Management (RCM) in practice is
dynamic, due to the influence of weather conditions and run-
way status. The runway status for either arrivals or departures
has a significant influence on runway configuration and in
turn airport capacity. If the runway configuration changes
between any two successive time intervals, the planning traf-
fic management initiatives have to be re-optimized to satisfy
runway constraints. Therefore, an effective alternative is to
firstly enhance runway performance through dynamic RCM
and secondly, make it a key input to the other studies referred
to above.

The purpose of RCM is to generate a combination of
runways that are active at any particular time in an airport
system. Inefficient runway configurations cause an imbal-
ance between demand and capacity leading to airport con-
gestion and flight delays on a network scale. Taking, China,
the world’s second largest aviation market, as an example,
many airports such as Shanghai Pudong (ZSPD), Shanghai
Honggiao (ZSSS), Shenzhen Baoan (ZGSZ), Hangzhou
Xiaoshan (ZSHC) and Nanjing Lukou (ZSNJ) are gener-
ally characterized by segregated parallel operations as the
main mode or sub-mode for a long period of time after the
completion of multi-runway construction [7]. This makes a
two-runway system approximately equals to a single runway
(except for saving on runway occupancy time) resulting in
low capacity serving high traffic demand.

In the case of a metroplex where a group of airports are
in close geographical proximity, the runway configuration of
one airport has some effect on other airports simultaneously
used for landings and takeoffs [8], [9]. This is because dif-
ferent patterns of arrival and departure at one airport lead to
different resource (airport and airspace) usage in the whole
terminal area with multiple airports. In practice at these air-
ports, the selection of runway configuration is a major task
faced by Air Traffic Controller Officers (ATCOs) primarily
based on their experience. Therefore, a more efficient use of
available runway resources has the potential to improve the
integrated efficiency (e.g., maximum ultilization of capacity)
in metroplex airports.

In this paper, we propose a methodology and assessment
framework for RCM research in metroplex airports. We use
it to analyze the impact of multiple Air Traffic Demand
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Management (ATDM) options on RCM performance com-
pared to a baseline static case.

B. LITERATURE REVIEW

The core of RCM is related to the integration of air traffic flow
management (i.e., controlling demand based on capacity)
and runway capacity management (i.e., controlling capacity
based on demand). It started to receive appreciable attention
in the past few years. In this section, we conduct a literature
review of the existing RCM studies, including their strengths
and limitations.

The existing RCM studies focus on strategic configura-
tion [10] and tactical configuration [11]-[13], to satisfy the
decision-making needs at different operational phases. When
selecting the runway configuration in a particular time hori-
zon, the key factors considered by ATCOs include weather
conditions, runway status, traffic demand and environmental
considerations [14]. In particular, when the wind speed and
direction exceed the maximum allowable levels (defined by
the airport operational procedures), ATCOs are required to
change to a new runway configuration [15]. Most of the RCM
studies are based on the Runway Configuration Capacity
Envelope (RCCE), defined by the axes of acceptance rate
and capacity curve [16]. The capacity curve is a piecewise
linear function representing a set of capacity values that
reflect the operational capabilities of an airport under certain
conditions. The RCCE has been applied to make tradeoffs
between arrivals and departures, which can be served to a
maximum extent during a period of time (e.g., 15 minutes,
30 minutes or 1 hour).

The RCM models can be either optimized or analytical.
In the former, almost all the models minimize the cost of flight
adjustment due to the imbalance between demand and capac-
ity, subject to a variety of constraints. Bertsimas et al. [8]
propose a mixed integer programming model to select the
optimal sequence of runway configurations and determine the
optimal balance of arrivals and departures. By considering
the uncertainty factors of airport operations, a robust RCM
optimization model is proposed to minimize the average
delay cost [17]. Through the course of a day of operations as a
function of observed congestion on the ground and in the air,
and meteorological and wind conditions, Jacquillat ez al. [12]
minimize congestion costs by jointly controlling runway
configurations and arrival and departure acceptance rates.
Ng et al. [13] established a formulation for robust run-
way scheduling with RCM considerations, and adopted the
min-max regret approach to solve the proposed model.

Analytical RCM primarily focuses on data-driven
approaches. Ramanujam and Balakrishnan [14] formulate
a statistical model to characterize the selection process of
runway configuration and propose a framework of discrete-
choice modeling to identify the influence of some factors
using a utility function. Avery and Balakrishnan [18] present
a probabilistic RCM model to predict the configuration
of runway resources at 15-minute intervals, extendable to
3 hours. Altinok et al. [19] use machine learning techniques
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on historical data in airport systems, such as weather and
runway status, to determine the key features of weather con-
ditions that are significantly correlated with RCM selections.

Corresponding to the RCM models, the algorithms mainly
include heuristic and meta-heuristic algorithms [7], [8],
[10], [13], exact algorithms [12] and data mining algo-
rithms [19], [20]. Besides the influencing factors such as
weather and runway status referred to above, others are also
considered. Roach [21] determines that reducing the number
of runways is the primary factor in causing flight delays,
with the secondary factors being reduced approach precision
and high workload arising from uncommon runway config-
uration. In order to closely represent the real world condi-
tions, some research effort is devoted to the transition cost
(e.g., capacity loss) of configuration change. For example,
considering the capacity decrease incurred by configuration
switching, Weld et al. [22] introduce a transition penalty
matrix to specify the relative transition costs, which benefits
from allowing customizable transition penalties.

However, research to date firstly, mainly focuses on the
runway configuration in a single airport system, and the
RCM formulation is commonly a single-objective model
minimizing the cost of flight adjustment, while ignoring the
RCM in metroplex systems. Secondly, the minimum cost
configuration, commonly used by most of existing optimized
models, is not the best choice for RCM. Finally, the impact of
demand-capacity imbalance patterns on RCM is still not clear
in the existing studies. Therefore, in this paper, we formulate
two RCM models for metroplex operations with multiple
optimization objectives. We classify the imbalance cases and
ATDM options in detail, and design multiple assessment
scenarios and a set of priority settings to assess the impact
of ATDM options on runway configuration. Accounting for
the three weaknesses, this paper optimizes the selection of
runway configurations in metroplex airports under multiple
ATDM options, using flexible tradeoffs of priorities between
arrivals and departures.

C. CONTRIBUTION OF THE RESEARCH

This paper proposes a novel framework to optimize the
dynamic runway configuration in metroplex airports and
assess the impact of ATDM options on runway configuration.
The methodology improves the flexibility of ATDM and
RCM, and performance of runway operations in different
assessment scenarios. The proposed framework allows for
the application of a set of priority coefficients for arrival
and departure movements to obtain expected computational
results of flight adjustments. The contributions of the research
are summarized as follows.

a) This paper focuses on dynamic and integrated runway
configuration in the Shanghai metroplex system with
2 high-density traffic airports ZSPD and ZSSS, and
analyzes the impact of ATDM options on runway con-
figuration by establishing in detail 4 cases / 6 sub-
cases of demand-capacity imbalance and 3 options of
RCCE-based ATDM.
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b) The formulated dynamic RCM (DRCM) and static
RCM (SRCM) models optimize 3 objectives of cost,
total number and maximum number of flight adjust-
ment, subject to a variety of constraints. We design
3 assessment scenarios with 11 priority settings for
arrival and departure movements and establish the
relationship between assessment scenarios and ATDM
options.

¢) We present an improved Efficient Multi-Objective Evo-
lutionary (EMOE) algorithm with an Objective-Guided
Individual Selection (OGIS) mechanism, which can
obtain close-to optimal solutions with a very low com-
putational cost within 6 seconds and satisfy operation
needs on pre-tactical and tactical levels. The designed
3 inducing evolution strategies can be applied to make
reliable tradeoffs among different objectives.

d) Computational results show that the DRCM model
has a significant advantage over the baseline SRCM,
and the minimum total number configuration is the
best choice to make satisfactory tradeoffs among cost,
total number and maximum number. A higher priority
for departures is suggested to reduce the number of
adjusted flights.

D. ORGANISATION OF THE PAPER

The rest of this paper is structured as follows. In Section II,
we present the methodology. First, we analyze the
Demand-Capacity Balancing (DCB) patterns of RCCE and
establish a set of ATDM options. Second, two RCM mod-
els are formulated to optimize the runway configuration in
metroplex airports. Third, we establish 3 assessment sce-
narios and propose a framework to analyze the impact of
ATDM options on runway configuration. Section III presents
our EMOE algorithm with the OGIS mechanism. Section IV
presents the EMOE performance, and computational results
from a real-world case study for Shanghai metroplex air-
ports. Findings and insights are presented by analyzing
the numerical results for multiple scenarios and models.
Finally, Section V discusses the results and concludes
the paper.

Il. METHODOLOGY

In this paper, a multi-objective runway configuration model
is formulated to enhance the performance of integrated run-
way operations in metroplex airports, considering a series of
RCCE-based ATDM options. The ATDM options reflect the
priority settings for arrivals and departures based on different
cases of demand and capacity imbalance. In other words,
for a certain runway configuration with a known RCCE,
the selection of ATDM options defines the nature of flight
adjustment which in turn has a significant impact on run-
way configuration. Compared with the existing studies, our
model is applied to not only manage runway configuration,
but also evaluate the impact of ATDM options on runway
configuration.
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FIGURE 1. lllustration of RCCE and DCB patterns of operating points. (a) RCCE under different meteorological conditions;

(b) Distribution of operating points in a particular RCCE.

A. RCCE-BASED ATDM

The runway capacity under different configurations can
be represented by the RCCE [8], [12], [23], [24], which
captures the tradeoffs between arrival rate and departure
rate. In this section, we analyze 4 cases / 6 subcases of
demand-capacity imbalance, and then propose 3 options for
RCCE-based ATDM to design a flight adjustment mechanism
with 11 priority settings.

1) DCB PATTERNS
Fig. 1(a) illustrates the general RCCEs for an airport for
two different meteorological conditions of Visual Flight
Rules (VFR) and Instrument Flight Rules (IFR). Each oper-
ating point inside the RCCE corresponds to a feasible com-
bination of arrivals and departures, while any point outside
the RCCE is infeasible [7], [8]. Taking the RCCE-VFR
in Fig. 1(a) as an example, the points ‘+’ inside the
RCCE-VER and ‘ -> on the RCCE-VFR are feasible, which
means that no ATDM options will be applied to these points
in our RCM model. However, the points ‘x’ outside the
RCCE-VFR represent where the runway system does not
have a sufficient capacity to accommodate simultaneously
the number of arrivals and departures, which means that
some flight adjustments should be made to keep the DCB.
In Fig. 1(b), we present the historical statistics of observed
air traffic data in Shanghai Pudong airport, and depict the
distribution of all the feasible and infeasible operating points
in a particular RCCE. It can be seen that some points are
located outside the RCCE. This is due to the existing runway
configuration in ZSPD not being dynamically optimized but
statically selected as a long-period configuration. This results
in a low efficiency of runway operations and motivates us to
conduct dynamic optimization of runway configuration.

We can formulate the equations for all the RCCE segments
P1P;, PyP3, P3P4 and P4Ps, if the coordinates of any two
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FIGURE 2. Feasible space to keep the DCB in different cases of
demand-capacity imbalance. (a) Case a-AODI; (b) Case b-AIDO;
(c) Case c-AIDI; (d) Case d-AODO.

adjacent points are known [25]. For example, let x; and y, be
the arrival and departure values for point P, and x3 and y3
the corresponding values for point P3, then the mathematical
expression of the RCCE-VFR segment P P3 is

(2 = y3)x + (x3 —x2)y + (x2y3 — x3y2) = 0 ()

Then, any feasible point P;(x;, y;) of RCCE in Fig. 1(a)
must satisfy

2

For any infeasible point which does not satisfy the inequal-
ity (2), the extra arrivals or departures corresponding to this
point will be adjusted to the next time interval, to keep the
DCB in RCCE. Fig. 2 shows that several flight adjustment

(2 = y3)xi + (x3 — x2)yi < X3y2 — X2)3
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strategies are available for consideration to keep the DCB,
in different imbalance cases of demand and capacity.

Note that the ‘imbalance’ referred to here and the rest
of the paper indicates the infeasible points outside RCCE.
We define the maximum arrival rate as Saturated Arrival
Capacity (SAC) and the maximum departure rate as Saturated
Departure Capacity (SDC) for the convenience of analysis.
Then, all the infeasible points in Fig. 2 can be classified into
the following 4 cases:

o Case a: Arrival Outside and Departure Inside (AODI)

The area containing point Q1 in Fig. 2(a) is where while the
arrival demand exceeds SAC, the departure demand does not
exceed the SDC. Hence, only arrival capacity is insufficient
to accommodate air traffic demand and point Q1 will be
adjusted to the green-hatched area.

o Case b: Arrival Inside and Departure Outside (AIDO)

The area containing point Q2 in Fig. 2(b) is where while
the departure demand exceeds SDC, the arrival demand does
not exceed the SAC. Hence, only departure capacity is insuf-
ficient to accommodate air traffic demand and point Q2 will
be adjusted to the yellow-hatched area.

o Case c: Arrival Inside and Departure Inside (AIDI)

The area containing point Q3 in Fig. 2(c) is where while
the arrival (departure) demand does not exceed SAC (SDC),
the sum of arrival and departure demands exceeds the RCCE
constraint. Hence, RCCE is insufficient to simultaneously
accommodate air traffic demand, and point Q3 will be
adjusted to the red-hatched area.

e Case d: Arrival Outside and Departure QOutside

(AODO)

The area containing point Q4 in Fig. 2(d) means that arrival
(departure) demand does exceed SAC (SDC), and the total
demand exceeds the RCCE constraint. Hence, RCCE is not
sufficient to separately accommodate air traffic demand and
point Q4 will be adjusted to the blue-hatched area.

2) ATDM OPTIONS

In view of the analysis of feasible space for Case a ~ Case d,
ATCOs can formulate corresponding ATDM options to adjust
queuing flights, and then ensure that all the infeasible points
in Fig. 2 can be relocated in the RCCE feasible space.
Fig. 3 illustrates the multiple ATDM options for different
imbalance cases. Similar to the SAC and SDC, we define
Restricted Arrival Capacity (RAC) as the maximum arrival
rate under SDC, and Restricted Departure Capacity (RDC)
as the maximum departure rate under SAC.

Obviously, each of Case a and Case b in Fig. 3 has 2 sub-
cases. The flight adjustment strategy for each subcase should
be selected, according to the priority settings for arrival and
departure operations. Let p, and p; be the weight coefficients
of priority for arrivals and departures in runway operations,
and satisfy

Pa>pa €10, 1] 3)
Pa+pa=1 )
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Therefore, we design 11 arrival / departure priority settings,
which includes:

o Prior arrival adjustment: {(0,1)};

o Prior departure adjustment: {(1,0)};

o Tradeoffs between arrival and departure adjust-
ments: {(0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6),
(0.5,0.5), (0.6,0.4), (0.7,0.3), (0.8,0.2), (0.9,0.1)}.

Definition 1 (Flight Adjustment Coelfficients): The arrival
(departure) adjustment coefficient o, (¢4) is defined as the
proportion of the number of adjusted arrivals (departures)
during the DCB. Ideally, the priority coefficients and adjust-
ment coefficients hold:

$a=1—pa (5)
©d =1—pa (6)

Table 1 illustrates the ATDM options selection strategy for
Case a ~ Case d.

Note that more than one ATDM option may exist and
can be applied to keep the DCB in each imbalance case.
For example, the candidate set of ATDM options for Case
a includes: (a) adjusting only arrivals and (b) adjusting both
arrivals and departures. From the perspective of global opti-
mization for all the time intervals in the planning horizon, the
solution (b) should also be considered in runway configura-
tion, even though the departure demand satisfies the RCCE
constraint. Therefore, optimizing the selection of multiple
ATDM options for different imbalance cases is one of our
main concerns in this research, which is also the basis for
assessing the impact of ATDM options on runway configura-
tion in metroplex airports. As illustrated in Fig. 3 and Table 1,
the ATDM strategy for each imbalance case can be classified
into the following 3 options:

o Option a: adjusting arrivals and not adjusting depar-
tures (YAND)

The priority setting for arrival and departure operations is
Pa = 0, pg = 1. The YAND adjustment strategy for all the
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TABLE 1. ATDM options selection strategy for different imbalance cases.

Case a Case b
ATPM Priority settings Case ¢ Case d
options Case a-1 Case a-2 Case b-1 Case b-2
YAND P,=0,p,=1 N ~ X X N X
NAYD p,=1Lp;=0 X X N ~ ~ X
YAYD 0<p,, ps<1 X N x N N N
imbalance cases is as follows. o Option c: adjusting both arrivals and departures
Ry — R, Casea-1 (YAYD)
. Ry, > R,. Casea-2 The priority setting for arrivall and departure operations is
Adj (YAND) = R R C @) 0 < pa, pa < 1. The YAYD adjustment strategy for all the
57 R asec imbalance cases is as follows.
@, Case b-1,b-2,d

Definition 2 (Inactive ATDM Option): An ATDM option
¢ € O is declared to be inactive in the imbalance case [ € ®
for a certain RCCE X e T, if the imbalance case / cannot be
adjusted (i.e., Adj (£)x; = @, or ‘x’ in Table 1) to keep the
DCB in RCCE X by the ATDM option ¢ € ®.

F(X, ) = {llAdj (O)x1 = ¥} ®)

According to Definition 2, F(X, 1) = {3, 4, 6}. The @ in
Eq. (7) corresponds to the ‘x’ in the first row of Table 1 and
means that the infeasible points cannot be adjusted within
RCCE using the YAND option. In other words, we have to
adjust departures to keep the DCB. Note that the ¢ under the
YAND option can be further transformed as:

Ry — R, Case b-1
Adj (YANDI®) = { Ry — R,R], Case b-2 (9)
R¢ — R,RR7RIR{, Cased

o Option b: not adjusting arrivals and adjusting depar-
tures (NAYD)
The priority setting for arrival and departure operations is
pa = 1, pg = 0. The NAYD adjustment strategy for all the
imbalance cases is as follows.

Ry — R, Case b-1
R R,, Caseb-2
Adj (NAYD) = ™4 ase (10)
Rs — R!, Casec
0, Case a-1,a-2,d

According to Definition 2, F(X, 2) = {1, 2, 6}. The @ in
Eq. (10) corresponds to the ‘x’ in second row of Table 1 and
means that the infeasible points cannot be adjusted within
the RCCE using the NAYD option. In other words, we have
to adjust arrivals to keep the DCB. The ¢ under the NAYD
option can be further transformed as:

Ry — R, Case a-1
Adj (NAYD|#) = { Ry — R,RY, Casea2 (1)
Rs — R(R R7R)R{, Cased
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Ry — RiR], Case a-2

R4y — R)R}, Case b-2
Adj (YAYD)= { Rs — RiRY, Case ¢

R¢ — W, Case d

@, Case a-1, b-1

(12)

According to Definition 2, F(X,3) = {1,3}. The @ in
Eq. (12) corresponds to the ‘%’ in the third row of Table 1 and
means that we do not simultaneously, but separately, adjust
the arrivals and departures. The ¢ under the YAYD option
can be further transformed as:

Ry —>R/1,
R3—>R/3,

Case a-1

Adj (YAYD|#) = Case b1

(13)

Remark 1 (Reset Flexibility of ATDM Options With ()
Outputs in non-Extreme Conditions): The ATDM options
will be converted into the YAYD option if one of the fol-
lowing conditions exists with #. First, the NAYD option
with @ for Case a-2. Second, the YAND option with @
for Case b-2. Third, the YAND and NAYD options with ¢
for Case d.

Adj (YAND, NAYD, YAYD|})Non-extreme

R4 — R)R}, Case b-2
= 1R — R,R}, Case a-2 (14)
Rs — R(RyR7RIRY{, Cased

That is to say, regarding the ¥ for Case b-2 and Case d
in Eq. (9), and the ¥ for Case a-2 and Case d in Eq. (11),
we do not separately, but simultaneously, adjust the arrivals
and departures.

Remark 2 (Reset Restriction of ATDM Options With () Out-
puts in Extreme Conditions): The NAYD and YAYD options
with ¥ for Case a-1 are converted into the YAND option.
Similarly, the YAND and YAYD options for Case b-1 are

VOLUME 8, 2020



J.Yin et al.: Impact Analysis of Demand Management on Runway Configuration in Metroplex Airports

IEEE Access

converted into the NAYD option.

Adj (YAND, NAYD, YAYD|D)Extreme

_ Ry — R/l Ry — R/le,
Rz — R/3 Rz — R/3R/6,

Case a-1
Case b-1

That is to say, regarding the @ for Case b-1 in Eq. (9),
Case a-1 in Eq. (11), and Case a-1 and Case b-I in
Eq. (13), we do not simultaneously, but separately, adjust
the arrivals and departures. Remark 2 can be validated by
Definition 3 and Proposition 1.

Definition 3 (Equivalent ATDM Options): For any two
ATDM options ¢, € O, ¢ is declared to be equivalent to
¥ if the number of adjusted flights A(¢) for ¢ equals A(%)
for 9.

(15)

AZ) = p(¢) +q(&) (16)
A() = p(@) + q(9) 7)

where p(-) and g(-) denote the number of adjusted arrivals and
departures, respectively. If A(¢) = A(¥}), then ¢ is equivalent
to 9. If A(¢) < A(), then ¢ is better than ¥, i.e., ¥ is worse
than ¢.

Proposition 1 (The Optimal DCB on RCCE With the YAND
and NAYD Options for Case a-1 and Case b-1): For any initial
arrival-departure operating point for Case a-1 and Case b-1
in Remark 2, the YAYD option is not equivalent to, but worse
than, the YAND and NAYD options.

Proof: LetR) = (xl,yl)L’lz (SAC, y1). For any point
R; = (SAC,y;) in segment R|R{, the number of adjusted
flights using the YAND and YAYD options for Case a-1
satisfy

A(YAND)case a-1 = X1 — SAC (18)
A(YAYD)case a-1 = (x1 — SAC)+ (y1 —yi)  (19)

Obviously, A(YAND)case a—1 < A(YAYD)cuse a—1- Then,
the YAND option is better than YAYD option for Case a-1.

Similarly, Let R3 = (x3,y3), Ry = (x3,SDC). For any
point R; = (x;, SDC) in segment R;Rg, the number of
adjusted flights using NAYD and YAYD for Case b-1 satisfy

A(NAYD)case b-1 = y3 —SDC (20)
A(YAYD)case b-1 = (y3 —SDC) + (x3 —x))  (21)

Obviously, A(NAYD)case b—1 < A(YAYD)case b—1. Then,
the NAYD option is better than YAYD option for Case b-1.

Therefore, Eq. (15) holds. O

Remark 3 (The Scalability and Versatility of ATDM
Options in any RCCE): The ATDM options can be flexibly
recombined and applied to any runway configurations (e.g.,
the RCCE_I ~ RCCE_VI in Fig. 4) in an airport system,
according to the structure of RCCE.

The RCCE provides a complete description of runway
capacity under any specific set of conditions. Through
the RCCE-based ATDM method, we formulate two multi-
objective RCM models in the following section, aiming
to keep the DBC and maximize the utilization of runway
resources in metroplex airports.
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B. RCM OPTIMIZATION MODELS

Most of the existing studies of RCM optimization mainly
focus on a single-objective optimization in a single airport
system [10], [12], [13]. The RCM problem in metroplex
airports involves different concerns from air transport stake-
holders such as minimizing flight delay, maximizing the rate
of flight punctuality, and maximizing airport slot utilization
in multiple airports. However, there is very little published
research on multi-objective optimization of RCM in metro-
plex system [8]. In real practice at hub airports, the trade-
offs among multiple objectives may lead to a set of options
for scheduling aircraft to meet different needs of several
stakeholders. Hence, in this paper we seek to minimize the
cost (economic view), total number and single maximum
number (punctuality view) of flight adjustment due to the
DCB, by formulating two multi-objective RCM optimization
models in metroplex airports:

() Dynamic RCM (DRCM) model, and
(II) Static RCM (SRCM) model.

1) NOTATIONS

Consider a set of airports A in a metroplex system, indexed
by i. Let S be the set of intervals in the planning horizon
for runway configuration management, indexed by ¢. Each
airport i has an available runway configuration set denoted
as M;. In our runway configuration model, we assume the
influencing factors of M;, such as wind, visibility, runway
status and environment, to be known in the planning hori-
zon. Let M;; < M; be the set of available configura-
tions in interval ¢ at airport i, indexed by k. Let & be
the set of imbalance cases in Fig. 3 and Fig. 4, indexed
by [. The parameters and variables of our models are shown
in Table 2.

2) DRCM MODEL

DRCM encapsulates multiple flexible configurations used in
the planning horizon. Hence, the configurations between any
two intervals can be different from each other, which is the
main focus of our RCM optimization problem.

The objective function (22) focuses on the system delay
in the whole planning horizon and aims to minimize the
total cost of adjusted arrivals and departures. The objective
function (23) focuses on the adjusted flights in the whole
planning horizon and aims to minimize the total number of
adjusted arrivals and departures. The objective function (24)
focuses on the adjusted flights in a single time interval and
aims to improve the adherence rate of each interval. From
the literature the objective functions (23) and (24) are usually
ignored in the existing studies. However, they are important
issues of concern to the air transport stakeholders due to
a reflection of flight punctuality. Actually, we find that the
objective function (22), used by most of the research papers,
is not the best choice to solve the RCM problem when making
tradoffs among the three objectives Eqs. (22)~(24). This is
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FIGURE 4. ATDM options in different types of RCCE. (a) RCCE_I; (b) RCCE_II; (c) RCCE_III; (d) RCCE_IV; (e) RCCE_V; (f) RCCE_VI.

TABLE 2. Parameters and variables of the DRCM and SRCM models

Parameters Explanation

ay, d,-, The number of scheduled arrivals (departures) in interval ¢ at airport i

Dis» ¢,-, The cost of adjusting a single arrival (departure) for one interval in interval 7 at airport I

A ith The set of linear segments defining the RCCE for configuration & in interval ¢ at airport 1, indexed by J for each segment
Qs ﬁdg The linear coefficient for arrivals (departures) of segment J for configuration k at airport I

Vit The constant coefficient of segment ; for configuration k at airport i

Z A large number for constraint analysis to keep the feasible region of RCCE

Ct The maximum acceptance rate in interval £ in metroplex system

Wy The capacity loss coefficient during configuration transition at the start of interval # at airport i
Variables Explanation

5 itk 1, if configuration K is selected in interval # at airport 1;0, otherwise

T 1, if case / is the imbalance case for identifying the ATDM option in interval # at airport 1; 0 otherwise

o, 1, if configuration K in interval ¢ at airport I does not equal the configuration &' (k' # 1() in interval 1 at airport 1, which

means there is a transition of configuration at the start of interval £ ; 0, otherwise
X Vit The number of served arrivals (departures) in interval # at airport I
Pirs 9t The number of adjusted arrivals (departures) in interval ¢ at airport 7

discussed in detail in Section IV.

min max Z Z Z&'zkmz(pn + qir)

i€A keM;; €D

(24)

min Y YY" Eatilpipi + bigi)  (22)
i€A 1€S keMi led These objective functions (22) ~ (24) are achieved while
min Z Z Z ZS[tkTitl(pit + qit) (23) operating within the following constraints. Constraint (25)
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is selected in any airport i and any interval ¢. Constraint (26)
ensures that only one of the ATDM cases is identified for
a certain RCCE in any airport i and any interval . Con-
straint (27) ensures that any feasible operating point must
fall into the RCCE, where Z is a large enough constant such
that, when &;;z = 0, the constraint cannot reduce the RCCE
feasible region under the condition &;r = 1(k’ # k). When
a transition of runway configuration is made, Constraint (28)
will set a value of capacity loss coefficient w;; € [0, 1] [17]
to decrease the frontier represented by constraint (27). Con-
straints (29) and (30) ensure the conservation of air traffic
demand between any two consecutive intervals. That is to say,
the demand in interval ¢, plus the adjusted (i.e., remaining
or carryover) demand from interval + — 1, and minus the
served demand in interval 7, does not exceed the adjusted
demand in interval ¢. Constraint (31) ensures that the sum of
served arrivals and departures at all the airports in interval ¢
should not be larger than the maximum acceptance rate C;
in the metroplex system. Note that C; is a value issued by
the air navigation service provider, considering the conditions
of airport ground and terminal areas in a metroplex system.
Constraint (32) ensures that the queue length of arrivals and
departures at the start of the planning horizon at an airport
is equal to 0. Non-zero initial queues can be modelled by
increasing the values of pjy and gjp. In addition, for all
the infeasible operating points outside each selected RCCE,
Egs. (7) and (9)~(13) must hold to maximize the DCB.

Y Eu=1 VieA VieS (25)
keM;;

Y tu=1 VieA Vies (26)
led

aiixic + Bikjyin Vi €A, ¥Vt €8,

< yii(l1 — oppwir) + Z(1 — &)  Vk € My,

Vj € A (27
wit < Ot Vi e A, VieS (28)
ajr +pig—1 — Xt <pir Vi€A VieS (29
dit +qgir—1 —yit < qir Vi€eA VteS (30)
Y aty)<C Vies 31)
ieA

pio=qio=0 VieA (32)
and

(1), 9)~(13)

3) SRCM MODEL

SRCM requires that only one fixed configuration and RCCE
is used in the planning horizon, which is a common strategy
used in Chinese airports in a single day. Hence, the SRCM
model is used as a baseline model for comparison with our
DRCM model. Hence, for any airport i and any interval ¢,
there will be no notations w;; and oj; to reflect capacity
loss during a transition of configuration. According to the
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objectives and constraints of the DRCM model, the SRCM
model can be formulated as follows:
Egs. (22)~(24)

st &y =S| VieA, ko €My (33)
teS
aiXie + Bijyie Vi€ A, Vt €S,
< Vi +Z(1 —&ix) Vk € My, Vj € Ak
and
(M, 9)~(13), (26), (29)~(32) (34

Note that kg in Eq. (33) is set based on the operational
experience of air traffic controllers and the most frequently
used historical configuration in each airport. Through the
RCCE-based ATDM method, and the DRCM and SRCM
models, three assessment scenarios are designed to investi-
gate the impact of ATDM options on runway configuration
in metroplex airports.

C. ASSESSMENT OF ATDM IMPACTS
As discussed in Section II, we use 3 ATDM options, YAND,
NAYD and YAYD, to optimize the runway configuration
in the 4 cases / 6 subcases of demand-capacity imbalance.
It can be seen from Table 1 that there is only one ATDM
option to select when the imbalance between demand and
capacity arises in the form of Case a-1, Case b-1 and Case d.
However, for Case a-2, Case b-2 and Case ¢, multiple options
make the problem complicated. For these cases, we fur-
ther design 3 assessment scenarios to analyze the impact of
ATDM options on runway configuration.

(I) Priority for Arrival Adjustment (PAA),

(II) Priority for Departure Adjustment (PDA), and

(IT) Tradeoffs for Flight Adjustment (TFA).

1) ASSESSMENT SCENARIOS
In this section, Scenario PAA, Scenario PDA and Scenario
TFA are designed, aiming to ensure only one ATDM option is
selected for each imbalance case, not only Case a-1, Case b-1
and Case d, but also Case a-2, Case b-2 and Case c, for any
airport in metroplex system. The strategy for selecting an
ATDM option for each scenario is as follows.

o Scenario PAA

PAA represents the scenario that a departure aircraft has
an absolute priority to operate in the metroplex system, while
the arrival aircraft has no priority when an imbalance between
demand and capacity arises. Table 3 illustrates the basic rule
to select a unique ATDM option for each imbalance case in
Scenario PAA.

o Scenario PDA

PDA represents the scenario that an arrival aircraft has an
absolute priority to operate in the metroplex system, while the
departure aircraft has no priority when an imbalance between
demand and capacity arises. Table 4 illustrates the basic rule
to select a unique ATDM option for each imbalance case in
Scenario PDA.
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TABLE 3. ATDM option selection for different imbalance cases in
Scenario PAA.

ATDM Case a Case b Case Case
options a-1 a-2 b-1 b-2 c d
YAND N N X X N X
NAYD X x \ X X x
YAYD X x X \/ X N

TABLE 4. ATDM option selection for different imbalance cases in
Scenario PDA.

ATDM Case a Case b Case  Case
options a-1 a-2 b-1 b-2 c d
YAND N X X X X X
NAYD X X v \ \ X
YAYD x \ X x X \

TABLE 5. ATDM option selection for different imbalance cases in
Scenario TFA.

ATDM Case a Case b Case Case
options a-1 a-2 b-1 b-2 c d
YAND N X X x x x
NAYD X x N X x x
YAYD X N X \ N \

o Scenario TFA

TFA represents the scenario that there is no absolute pri-
ority for arrivals and departures, but that a tradeoff of ATDM
should be made when the imbalance between demand and
capacity arises. The adjustment of arrivals and departures
depends on the weight coefficients of priority p, and pg
described in Section II. Table 5 illustrates the basic rule to
select a unique ATDM option for each imbalance case in
Scenario TFA.

2) ASSESSMENT FRAMEWORK

According to the ATDM option selection rules discussed
in Table 3~Table 5 and the DRCM and SRCM models,
we establish a framework for assessing the impacts of ATDM
options on runway configuration for multiple scenarios of
PAA, PDA and TFA.

Section II has presented the RCCE-based ATDM method,
the RCM models and assessment method of ATDM impacts.
Accordingly, we propose an efficient evolutionary algorithm
in Section III to solve the RCM models, and make tradeoffs
among three objectives Egs. (22)~(24).

lll. EVOLUTIONARY ALGORITHM

Different from the single-objective RCM optimization, there
are some tradeoffs among the three optimization objectives
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Egs. (22)~(24). Hence, we propose an improved Effi-
cient Multi-Objective Evolutionary (EMOE) algorithm to
solve the multi-objective RCM models in metroplex air-
ports, based on the nondominated sorting genetic algo-
rithm [26]. The EMOE algorithm is featured with an
Objective-Guided Individual Selection (OGIS) mechanism
which is different from a traditionally weighted objective
function adopted by most studies when dealing with multi-
ple objectives [1], [27]. In addition, the solutions searched
by our EMOE algorithm for different scenarios of PAA,
PDA and TFA are used to assess the impacts of ATDM
options.

A. IMPLEMENTATION FRAMEWORK

Our EMOE algorithm employs techniques inspired by evo-
lutionary biology such as inheritance, mutation, natural
selection, and recombination to find satisfactory Pareto solu-
tions for RCM problem. Before the start of computation,
an initial set of candidate solutions is generated based on
the RCCE No. coding in each interval. The problem to be
solved, is represented by a list of variables, called individ-
ual. Each individual is evaluated, and the values of fitness
are returned by three functions designed by Eqgs. (22)~(24).
By removing less desired solutions from the current genera-
tion with the OGIS mechanism, and producing the new gen-
eration, the population gradually evolves to increase in fitness
until the process of iteration ends on the pre-set termination
condition. The pseudocode of the EMOE algorithm will be
presented in the following.

B. ALGORITHM DESIGN

The constructive metaheuristic provides initial solutions
which are generated in the range of RCCE sets and maintains
the population diversity. Then, the EMOE seeks nondomi-
nated Pareto solutions based on the assessment and evolution
in each iteration. In this section, we discuss the EMOE details
as follows.

1) SOLUTION REPRESENTATION
The variables tjy, oir, Xir, yit, pir and gj; in Table 2 can
be calculated according to the selected assessment scenario
and ATDM options, if the values of &;; are known. Hence,
we design &j in the form of RCCE No. coding, and gen-
erate an initial configuration number k as a gene for each
interval at each airport, to represent the binary variable &;x.
The phenotype of each gene in the chromosome is randomly
created in the range of M;;. For example, £1o3 = 1 means
that the runway configuration 3 € M1, is used in interval 2 at
airport 1. If £1o3 = 1 and &13p = 1, then there is a transition
of configuration at the start of interval 3 and o3 = 1.
Fig. 5 illustrates the solution representation rule of EMOE
algorithm in RCM problem.

Obviously, the number of genes in each chromosome
equals to |A| - |S|, which is the product of the num-
ber of airports in the metroplex system and number
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Implementation Procedure of the Assessment Framework

Input: Airport set in metroplex system, planning horizon, length of single interval, RCCE sets in each airport, initial air traffic
demand, cost of adjusting flights, maximum acceptance rate, capacity loss coefficient, etc.
Output: The cost and number of flight adjustment in metroplex airports.
Main Loop:
Initialization:
(I) LOAD the assessment scenario of ATDM impacts:
Scenario PAA: Selection ATDM options in Table 3.
Scenario PDA: Selection ATDM options in Table 4.
Scenario TFA: Selection ATDM options in Table 5.
(II) Set the initial time interval t = 0.
WHILE ¢ < |S| DO
(D Generate the runway configurations in interval ¢ for each airport:
Apply the ATDM method and RCM models presented in Section II.
Apply the evolutionary algorithm presented later in Section III.
(IT) Identify the imbalance case in interval ¢ for each airport.
(IIT) Calculate the DCB results in interval ¢ for each airport:
IF Scenario PAA
IF Case a-1, Case a-2, Case c
Only adjust the remaining arrivals p;; from ¢ to ¢t 4 1 to keep DCB.
ELSE IF Case b-1
Only adjust the remaining departures g;; from ¢ to t + 1 to keep DCB.
ELSE Case b-2, Case d
Simultaneously adjust the remaining arrivals p;; and departures g;; from ¢ to ¢t 4+ 1 to keep DCB.
END
ELSE IF Scenario PDA
IFCase a-1
Only adjust the remaining arrivals p;; from ¢ to ¢ + 1 to keep DCB.
ELSE IF Case b-1, Case b-2, Case ¢
Only adjust the remaining departures g;; from ¢ to t + 1 to keep DCB.
ELSE Case a-2, Case d
Simultaneously adjust the remaining arrivals p;; and departures g;; from ¢ to ¢ + 1 to keep DCB.
END
ELSE Scenario TFA
IF Case a-1
Only adjust the remaining arrivals p;; from ¢ to t 4 1 to keep DCB.
ELSE IF Case b-1
Only adjust the remaining departures g;; from ¢ to t + 1 to keep DCB.
ELSE Case a-2, Case b-2, Case ¢, Case d
Simultaneously adjust the remaining arrivals p;; and departures g;; from ¢ to t 4+ 1 to keep DCB.
END
END
(IV) Iteration continues:
SAVE Results of xj;, yiz, pit» qit-
t=t+1
END WHILE
Assessment:
Multi-objective analysis; PAA, PDA and TFA analysis; comparison between DRCM and SRCM.
RETURN Results of impact analysis of ATDM options on runway configuration.

of intervals in the planning horizon. The computational 2) ASSESSMENT WITH THE OGIS MECHANISM
cost is independent of the specific information of each According to the three objectives Eqgs. (22)~(24) in the
flight. formulated RCM models, the fitness functions of EMOE
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Iteration Procedure and Pseudocode of EMOE Algorithm:

Input: Airport set in metroplex system, planning horizon, length of single interval, RCCE sets in each airport, initial air traffic
demand, cost of adjusting flights, maximum acceptance rate, capacity loss coefficient, etc.
Output: The optimized runway configuration in each interval of metroplex airports.

Main Loop:
Initialization:

(I) Set the population size NIND, maximum generation MAXGEN, evaluation generation No. g = 0, algorithm
performance matrix OBJ [NIND, 3] = size(OBJ) returns the sizes of each dimension of OBJ.
(I) Generate the initial population I, to represent the solutions. |I,| = NIND.

WHILE g < MAXGEN DO

(I) Update OBJ of I, using the three optimization objectives Egs. (22)~(24).
(II) Generate the parent population P, using the OGIS mechanism:
Set the strategy for inducing evolution in the OGIS mechanism for minimum scenarios
Inducing evolution strategy I: Minimum cost configuration
Inducing evolution strategy II: Minimum total num. configuration
Inducing evolution strategy III: Minimum max. num. configuration
Apply the strategy of preferred level identification in the OGIS mechanism
Divide all nondominated Pareto fronts of I,: F = Sort_1(Ig), F = (F1, F2, -+ ).

Set Pgr1 =P andi =1
WHILE |Pg1| + |Fi| < NIND/2 DO

Apply the strategy of single-level assessment in the OGIS mechanism

Calculate Euclidian distances of all the individuals in F;

Por1 = Pgy1 UF;
i=i+1
END WHILE

Apply the strategy of cross-level assessment in the OGIS mechanism
Sort the solutions in F; using the partial order operator <,,: F; = Sort_2(F}, <,)

Pgi1 = Pg1 UF[1: ((NIND/2) — |Pg1])]

(III) Generate the offspring population Qg1 based on Pg:

Crossover operator: {x, y} = {x/, ¥}, u, v € [0, 1]

x" = INT {ux + (1 — p)y} (35)
y = INT {vy 4+ (1 — v)x} (36)

Mutation operator: Rand mutation model
Qg +1 = NewPop(Pg1), and [Qg 11| = |Pgy1]-

(IV) Combine the new Pg11 and Qg 1, let R = Pgy1 U Qgy1.

(V)Setg=g+1,I;, =R
END WHILE
RETURN the set of nondominated solutions in F
Tradeoff:

Set the benefit needs from different stakeholders, and assess the single and multiple objective-guided inducing strategies
RETRUN The minimum cost, total num. and single max. num. of flight adjustment for different tradeoff scenarios.

algorithm are formulated in Eqgs. (37)~(39). 1

Z Z Z Z Eitk Tit(Qirir + Girqir) +€ ¢ (37)

i€A teS keMj led

H=N=Y"3">"% Eutiualpi + qir) (38)

i€A teS keMj led

fr=N—maxy > Y Eutu(pi + gi) (39)

i€A keM;; €D

bil

where ¢ € (0, 1) denotes any real number, and N the total
number of arrivals and departures in the planning horizon.
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The OGIS mechanism in EMOE considers the Egs. (22)~
(24) to measure the individual performance during the evo-
lution iteration. We can then produce the top NIND/2 best
solutions from generation g as the parent population Pg41 in
the next evolution. The OGIS mechanism can be divided into
the following four perspectives.

a: PREFERRED LEVEL IDENTIFICATION

The preferred level identification focuses on all the indi-
viduals in each population. According to the performance
matrix OBJ, the evolutionary individuals in each iteration can
be divided into different levels with priority. Then we can
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FIGURE 5. EMOE solution representation in RCM problem.

obtain the preferred individuals at each level and the dominant
relationships among different levels. First, we calculate all the
performance indicators OBJ(1 : NIND, 1 : 3) correspond-
ing to the cost, and total and single maximum numbers of
flight adjustments. For any individual p in the population /,,
we compare its performance indicators with those of all the
other individuals g (¢ € I,,q # p). Then we analyze the
dominance relationship between p and g, and get the domi-
nated set S, and parameter n, [26]. Finally, The solutions with
n, = 0 are selected into the first level F'1, and similarly for the
other solutions in the levels F», F3, ...based on the dominated
sets of all the individuals.

b: SINGLE-LEVEL ASSESSMENT

The single-level assessment focuses on all the individuals
with the same n,, in each level. According to the individuals
in level F = (F1, Fa,---), we can analyze the density of
solution distribution around each individual and assess the
preferred sequence in level F;. First, we sort all the individuals
in level F; in ascending order based on the cost, and total
and single maximum numbers of flight adjustments. Then
the Euclidian distance for each individual in level F; can be
calculated based on the three objectives. During each evo-
lution, the Euclidian distances are mainly decided by OBJ.
In addition, for each iteration, the single-level assessment
will focus on OBJ(:, 1) for Eq. (22) condition, OBJ(:, 2)
for Eq. (23) condition, and OBJ(:, 3) for Eq. (24) condition.
Finally, we can get the preferred No. of each individual in
level F;.

c: CROSS-LEVEL ASSESSMENT

The cross-level assessment focuses on the individuals with
the top NIND/?2 best performance in each population. Based
on the partial order operator <,, we can get the preferred
No. of all individuals in the population ;. The guiding rule
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is: for the same level, we select the solutions with the larger
Euclidian distances; but for different levels, the lower levels
will be selected.

d: INDUCING EVOLUTION STRATEGY

Based on the preferred level identification, single-level
assessment and cross-level assessment, we adopt different
inducing evolution strategies from the single-objective-
guided and multiple-objective-guided perspectives. We com-
prehensively compare the evolutionary direction and assess
the optimization results. We then make tradeoffs among mul-
tiple performance indicators under different inducing evolu-
tion strategies presented in Section I'V.

3) EVOLUTION WITH GENETIC OPERATORS

For the top NIND/2 best individuals from the OGIS mech-
anism, we use the genetic operators of linear recombination
crossover and rand mutation to produce the other NIND/2
high quality offspring. Note that the initial phenotypes of
some new genes in the offspring will be non-integer values.
Hence, the new offspring will be further converted into an
integer by the round down function INT (-). Let the gene codes
on the same position in the old two chromosomes be x and y,
then the gene codes in the new chromosomes x’ and y’ can
be represented as the Egs. (35) ~ (36). The rand mutation
operator changes the value of chosen gene in the range of M;;.
Finally, the next evolution population is fully formulated, and
the next iteration begins.

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, DRCM / SRCM models and EMOE algorithm
are applied to optimize the runway configuration problem in
the Shanghai metroplex system, including Shanghai Pudong
airport (ZSPD) and Shanghai Honggiao airport (ZSSS).
We report the performance of the EMOE algorithm, and
present results calculated by using the DRCM and SRCM
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FIGURE 6. The RCCEs in Shanghai metroplex airports. (a) ZSPD; (b) ZSSS.
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FIGURE 7. Baseline RCCEs and DCB results in Shanghai metroplex airports. (a) ZSPD; (b) ZSSS.

models for Scenarios PAA, PDA and TFA. Finally, we analyze
the impacts of ATDM options on runway configuration in
the Shanghai metroplex system and conduct a comprehensive
analysis and comparison.

A. EXPERIMENTAL ENVIRONMENT

In the Shanghai metroplex system, all the preset runway con-
figurations and daily operating points are illustrated in Fig. 6.
The RCM horizon is set to 10 hours. Based on the decision-
making needs in practice at the ZSPD and ZSSS airports,
the single interval of dynamic configuration is assumed as
1 hour, with 10 intervals in the planning horizon. The avail-
able runway configuration sets for ZSPD and ZSSS are
{ZSPD-RC-01, ZSPD-RC-04, ZSPD-RC-05, ZSSS-RC-03,
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ZSSS-RC-04}. In order to assess the runway performance
under saturated conditions, we apply an incremental coeffi-
cient of 20% to the original demand. The air traffic demand
in the Shanghai metroplex system is 1225, the total number
of ZSPD / ZSSS and arrivals / departures are 708 / 517 and
634 / 591 respectively.

Note that the existing runway configurations in the Shang-
hai metroplex airports are usually static, mainly considering
the prevailing wind conditions. However, dynamic configu-
rations are still rarely used in practice. Based on historical
operations data for a single static configuration frequently
used in each airport, Fig. 7 shows the baseline RCCEs and
DCB results in the Shanghai metroplex airports. We can see
that many operating points in the ZSPD and ZSSS airports are
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located in the infeasible area of RCCEs, and results in some
inevitable congestion and delay. In this paper, the frequently
used RCCE:s in Fig. 7 are selected as baselines for SRCM
model to compare with the optimization effect of the DRCM
model.

In our EMOE algorithm, the size of the RCM popula-
tion in each generation is 100, the maximum number of
EMOE evolution iterations is 200, and the coding length
(i.e., sum of ZSPD and ZSSS intervals) of each chromosome
is 20. The crossover and mutation probability are 0.9 and
0.15 respectively. Additionally, we also conduct a further
analysis on the sensitivity of the EMOE parameters to the
computational results.

B. COMPUTATIONAL PERFORMANCE

The proposed EMOE algorithm is coded in Matlab 2016 and
run on a PC with a 8-core, 3.60 gigahertz and 3 gigabytes
RAM. Without loss of generality, we set the priority coeffi-
cients of arrival and departure for Scenario TFA as p, = 0.3
and pg = 0.7 for analysis.

The computational performance and solution distribution
of the proposed EMOE algorithm for Scenarios PAA, PDA
and TFA are shown in Fig. 8. It can be seen that the
EMOE algorithm has a significantly good performance and
approaches the optimum direction as the evolution itera-
tion increases in Fig. 8(a) ~ Fig. 8(c). Based on the OGIS
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mechanism designed in Section III, there are more than 50%
Pareto front solutions in Fig. 8(d) ~ Fig. 8(f) among the
whole evolution population for Scenarios PAA, PDA and
TFA, respectively. In Fig. 8(d) ~ Fig. 8(f), the green squares
are feasible solutions, and the red circles are non-dominated
solutions on the first-level Pareto front. It can be seen that
the algorithm searches the Pareto front solutions under the
premise of keeping the diversity of the population, which
prevents a premature convergence of the EMOE algorithm.
For a sample with 1225 aircraft, the running time of the
EMOE algorithm can be controlled within 6 seconds, which
can satisfy the decision-making needs in metroplex airports
on the pre-tactical or tactical levels. The EMOE algorithm
has a very low computational complexity, because we control
the air traffic demand at the aggregate level in which runway
assignments and flight sequences are not important for RCM
problem.

We design three strategies of minimum cost, minimum
total num., and minimum max. num. to analyze the com-
putational results of RCM studies. In this section, we take
the minimum cost strategy for an instance to illustrate the
performance changes during the EMOE iteration. Note that
the performance changes for the other two strategies are
similar to that for the minimum cost strategy. Fig. 9 shows the
changes of cost, total num. and max. num. during the evolu-
tion of the EMOE algorithm. Fig. 9(a), Fig. 9(d) and Fig. 9(g)
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illustrate the performance changes for Scenario PAA. With
the EMOE iteration increasing, the cost of adjusted flights
decreases from 477,993 CNY in the first evolution generation
to 281,599 CNY in the last evolution generation, the total
num. of adjusted arrivals and departures decreases from
125 aircraft in the first evolution generation to 63 aircraft in
the last evolution generation, and the EMOE algorithm tends
to be close to the optimal performance after generation No.61.
However, the max. num. of adjusted flights in a single interval
fluctuates during iteration, which reveals the fact that when
the cost / total num. approaches the minimum value, the max.
num. can be larger than the minimum max. num.

Similarly, the performance changes for Scenario PDA
are illustrated in Fig. 9(b), Fig. 9(e) and Fig. 9(h). With
the EMOE iteration increasing, the cost of adjusted flights
decreases from 537,627 CNY in the first evolution generation
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to 290,794 CNY in the last evolution generation. The total
num. of adjusted arrivals and departures decreases from
161 aircraft in the first evolution generation to 88 aircraft
in the last evolution generation, and the EMOE algorithm
tends to be close to the optimal performance after generation
No.41. Different from the Scenario PAA, the changes of
max. num. of adjusted flights for Scenario PDA are simi-
lar to those of cost and total num. In addition, Fig. 9(c),
Fig. 9(f) and Fig. 9(i) present the performance changes for
Scenario TFA. With the EMOE iteration increasing, the cost
of adjusted flights decreases from 430,621 CNY in the first
evolution generation to 295,115 CNY in the last evolution
generation. The total num. of adjusted arrivals and departures
decreases from 116 aircraft in the first evolution generation
to 76 aircraft in the last evolution generation, and the EMOE
algorithm tends to be close to the optimal performance after
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generation No.42. There are no fluctuations in the change
of max. num. of adjusted flights as the EMOE iteration
continues.

C. COMPUTATIONAL RESULTS

In this section, we conduct a comprehensive comparison of
the results from the DRCM and SRCM models, from the
perspectives of multiple objectives (cost, total num. and max.
num.) and multiple scenarios (PAA, PDA and TFA). Then we
present a comprehensive discussion of the impact of ATDM
options on runway configuration in the Shanghai metroplex
airports. Finally, the sensitivity of model and algorithm inputs
to RCM results is investigated.

1) MULTI-OBJECTIVE TRADEOFFS

For the fixed configuration in the SRCM model, there is only
one solution in the whole planning horizon, which is different
from the DRCM model characterized by tradeoffs among
multiple optimization objectives Egs. (22)~(24). Actually the
EMOE algorithm might search a set of nondominated Pareto
solutions from the different perspectives of cost, total num.
and max. num. Hence, it is necessary to investigate the trade-
offs among these objectives. According to the three inducing
evolution strategies presented in Section III, we select the
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minimum cost / total num. / max. num configuration, respec-
tively, to investigate the tradeoffs among cost, total num. and
max. num. Taking Scenario PAA as an example, the results of
these three inducing strategies based on the DRCM model on
1000 iterations, an extension of 200 iterations in Fig. 9, are
summarized in Table 6. Obviously, we can get the same final
results for different minimum configurations.

However, the evolution processes of the EMOE algorithm
for the three inducing strategies are significantly different.
Fig. 10 illustrates the tradeoff results for multiple minimum
configurations during the evolution of the EMOE algorithm.
For the minimum cost configuration, Fig. 10(a) shows that the
step-by-step changes of total num. differ little from those of
cost, but are similar to those of max. num., after No.100 evo-
lution of the EMOE algorithm. Some fluctuations exist dur-
ing the whole evolution of the EMOE algorithm. However,
for the minimum total num. configuration, Fig. 10(b) shows
that there is no fluctuation after generation No.61, and both
cost and max. num. can also reach the minimum when the
total num. reaches the minimum. In addition, we can see from
Fig. 10(c) that the changes of cost and total num. differ a
lot from those of max. num. That is to say, a nondominated
solution with a minimum max. num. is not a good choice to
optimizing the DRCM problem, because it can also result in
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TABLE 6. Comparison of optimization performance for different inducing strategies.

EMOE Minimum cost Minimum total num. Minimum Max. num.
performance Start End Start End Start End
Cost (CNY) 477993 281599 500302 281599 522943 281599
Total num. (a/c) 125 63 118 63 120 63
Max. num. (a/c) 30 14 33 14 25 14
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FIGURE 11. Comparisons of cost, total num. and max. num. differences for multiple minimum configurations during the evolution of EMOE algorithm.
(a) Cost differences for the minimum cost, total num. and max. num. configurations; (b) Total num. differences for the minimum cost, total num. and max.
num. configurations; (c) Max. num. differences for the minimum cost, total num. and max. num. configurations.

a large cost and total num. As presented in Table 6, Fig. 10(d)
shows that the three inducing strategies can achieve the same
performance at the end of the EMOE algorithm.

To summarize the above results illustrated in Fig. 10,
we can conclude that the inducing evolution strategy of min-
imum total num. in Section III can be selected as an opti-
mal OGIS mechanism when optimizing the DRCM problem.
However, the inducing strategy of minimum max. num. is not
a good choice for the DRCM model. Note that most of the
RCM optimization studies focus on minimizing the cost,
while ignoring the performance indicator of total num. during
flight adjustment. Actually, the total num. is a key metric
to assess ATDM options and measure flight punctuality, and
therefore, can be considered to be a significant reference for
RCM studies.

In order to investigate the difference among the three
inducing strategies, we analyze the comparisons of cost,
total num. and max. num. differences for multiple minimum
strategies. Fig. 11(a) shows that the mean cost difference
between minimum total num. / max. num. configuration and
minimum cost configuration is 872 / 20565 CNY, and the
corresponding standard deviations are 4006 / 34715 CNY.
For the cost optimization, the minimum total num. config-
uration has a significant advantage over the minimum max.
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num. configuration. Fig. 11(b) shows that the mean total num.
difference between the minimum cost / max. num. configu-
ration and the minimum total num. configuration is approxi-
mately equal to 0/ 5 aircraft, and the corresponding standard
deviation is 1/ 8 aircraft. For the total num. optimization,
the minimum cost configuration has a significant advan-
tage over minimum max. num. configuration. Additionally,
Fig. 11(c) shows that the mean max. num. difference between
minimum cost / total num. configuration and minimum max.
num. configuration is approximately equal to 0 / -1 aircraft,
and the corresponding standard deviation is 2 / 2 aircraft. For
the max. num. optimization, there is no significant difference
between the minimum cost configuration and minimum total
num. configuration. We can see from Fig. 10(c), Fig. 11(a)
and Fig. 11(b) that the minimum max. num. configuration is
an unsatisfactory strategy which can be ignored in the real
practice of RCM in metroplex airports.

In summary, the minimum max. num. configuration is the
worst inducing strategy in the proposed OGIS mechanism
of our EMOE algorithm. However, the minimum total num.
configuration is the best choice to make satisfactory trade-
offs among cost, total num. and max. num. concerned with
multiple stakeholders. In fact, the cost and max. num. can
also approach the minimum when minimizing the total num.
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TABLE 7. Comparisons of total num. for different assessment scenarios and RCM models.

Flight adjustment RCM models Movement type Scenario PAA Scenario PDA Scenario TFA
Arr. 49 27 45
DRCM Dep. 14 61 31
Total 63 88 76
Metro.
Arr. 103 16 78
SRCM Dep. 6 108 43
Total 109 124 121
Arr. 25 13 23
DRCM Dep. 14 33 25
Total 39 46 48
ZSPD
Arr. 54 6 36
SRCM Dep. 6 66 32
Total 60 72 68
Arr. 24 14 22
DRCM Dep. 0 28 6
Total 24 42 28
ZSSS
Arr. 49 10 42
SRCM Dep. 0 42 11
Total 49 52 53

Therefore, the minimum cost configuration, which is fre-
quently used by existing studies, is not the most sensible
choice for the RCM problem. The minimum max. num.
configuration can be ignored in the real practice of airport
operations, that is because it causes significant disturbances
to the cost and total num. Actually, the solution got from
optimizing the total num. is exactly that got from optimizing
the max. num.

2) PAA/PDA/TFA AND DRCM/SRCM COMPARISONS

Based on the results of multi-objective tradeoff, especially
for Fig. 10(b), we select the total num. as a key performance
indicator to assess the impact of ATDM options on the RCM
problem in the Shanghai metroplex airports. We also set
the priority coefficients for Scenario TFA as p, = 0.3 and
pa = 0.7 for analysis. The comparison results of adjusted
flights for different assessment scenarios (i.e., PAA, PDA and
TFA) and RCM models (i.e., DRCM, SRCM) are summarized
in Table 7. The computational results for each combination
of assessment scenarios and RCM models are significantly
different because of the selection of runway configurations
and ATDM options.

For Scenario PAA and the DRCM model, the number of
adjusted arrivals / departures in ZSPD, ZSSS and metroplex
systems are 49/14, 25/14 and 24/0 aircraft, respectively. For
the SRCM model, the corresponding performance indicators
are 103/6, 54/6 and 49/0 aircraft, respectively. Compared
with the SRCM model, the DRCM model has a significant
effect with a 42.2% reduction in the total num. of adjusted
flights in the metroplex system for Scenario PAA. Similarly,
for Scenario PDA and the DRCM model, the number of
adjusted arrivals / departures in ZSPD, ZSSS and metroplex
systems are 27/61, 13/33 and 14/28 aircraft, respectively.

VOLUME 8, 2020

For the SRCM model, the corresponding performance indi-
cators are 16/108, 6/66 and 10/42 aircraft, respectively. Com-
pared with the SRCM model, the DRCM model has a sig-
nificant effect with a 29.0% reduction in the total num.
of adjusted flights in the metroplex system for Scenario PDA.
In addition, for Scenario TFA and the DRCM model, the num-
ber of adjusted arrivals / departures in ZSPD, ZSSS and
metroplex systems are 45/31, 23/25 and 22/6 aircraft, respec-
tively. For the SRCM model, the corresponding performance
indicators are 78/43, 36/32 and 42/11 aircraft, respectively.
Compared with the SRCM model, the DRCM model has a
significant effect with a 37.2% reduction in the total num.
of adjusted flights in the metroplex system for Scenario TFA.
Based on the results presented in Table 7, a comparison of the
total num. of adjusted flights for multiple assessment scenar-
ios and RCM models is shown in Fig. 12. The comparisons
are discussed from four perspectives:

« Assessment scenarios: PAA, PDA and TFA;

e« RCM models: DRCM and SRCM;

o Airport systems: Metroplex, ZSPD and ZSSS;
« Movement types: Arrival and Departure.

a: PAA/PDA/TFA COMPARISONS

For any airport systems (Metroplex, ZSPD or ZSSS) and any
RCM models (DRCM or SRCM), the total num. of adjusted
flights in Scenario PAA is smaller than that for Scenarios
PDA and TFA. Compared with Scenario PDA using the
DRCM model, Scenario PAA further reduces the total num.
of adjusted flights in the Metroplex, ZSPD and ZSSS by
28.4%, 15.2% and 42.9%, respectively. This reflects the
practice in Shanghai metroplex system in which a higher
priority for departure movements can gain an advantage of
reducing the total num. of adjusted flights over the current
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FIGURE 12. Comparison of total num. for multiple assessment scenarios and RCM models. (a) Total num. under multiple Scenarios PAA, PDA, TFA

and DRCM, SRCM models; (b) Difference between DRCM and SRCM models.

way of setting a higher priority to arrivals. For Scenario TFA,
as the priority coefficients change, the number of adjusted
arrivals/departures is between Scenario PAA and Scenario
PDA. However, for the total num. of adjusted flights, no obvi-
ous rules can be followed.

b: DRCM/SRCM COMPARISONS

For any airport systems (Metroplex, ZSPD or ZSSS), the total
num. of adjusted flights using the SRCM model is much
larger than the DRCM model. Taking the SRCM as the
baseline model, the DRCM model further reduces the total
num. of adjusted flights in Metropex, ZSPD and ZSSS by
42.2% /35.0% / 51.0%, 29.0% / 36.1% / 19.2% and 37.2% /
29.4% | 47.2% for Scenarios PAA, PDA and TFA, respec-
tively. In practice in the Shanghai metroplex, a single and
fixed configuration, which is generally used for a long period
of time, has the effect of increasing airport congestion and
flight delay. The advantages of the DRCM model is very
important in reducing the impact of demand and capacity
imbalance through efficient utilization of existing runway
systems.

¢: METROPLEX/ZSPD/ZSSS COMPARISONS

For any airport systems (Metroplex, ZSPD or ZSSS) and any
RCM models (DRCM or SRCM), the total num. of adjusted
flights in the Metroplex is the sum of those at the ZSPD and
ZSSS airports. In particular, the total num. of adjusted flights
in ZSPD is larger than that in ZSSS because the air traffic flow
in the former is denser. Taking the DRCM model as an exam-
ple, the proportion of flight adjustment in ZSPD/ZSSS are
61.9%/38.1%, 52.3%/47.7% and 63.2%/36.8% for Scenarios
PAA, PDA and TFA, respectively. Actually, the flight schedule
in the ZSPD and ZSSS airports can be further optimized at
the strategic level to distribute air traffic in each airport and
enhance the integrated performance of the DCB.
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d: ARRIVAL/DEPARTURE COMPARISONS

For any airport system (Metroplex, ZSPD or ZSSS) and
any RCM model (DRCM or SRCM), the number of
adjusted arrivals for Scenario PAA is larger than the num-
ber of adjusted departures, while the result for Scenario
PDA is the exact opposite of that for Scenario PAA. Tak-
ing the DRCM model as an example, the proportions
of flight adjustment for arrivals/departures in the Metro-
plex are 77.8%/22.2%, 30.7%/69.3% and 59.2%/40.8% for
Scenario PAA, PDA and TFA, respectively. In addition,
the tradeoffs between arrivals and departures in Scenario
TFA having a varied relationship with Scenarios PAA
and PDA.

In addition, the differences between the SRCM and DRCM
results are shown in Fig. 12(b). The mean value/standard
deviation of the SRCM-DRCM differences for the Scenarios
PAA, PDA and TFA are 20/21, 16/20, and 20/12 aircraft,
respectively. We also investigate the correlations among cost,
total num. and max. num. for different inducing evolution
strategies in Fig. 13.

Here we use the label i-j to indicate the subgraph located
in row 7 and column j in Fig. 13. The histograms in subgraphs
1-1, 2-2 and 3-3 show that under the premise of ensuring the
diversity of the evolution population, the OGIS mechanism in
the EMOE algorithm can keep most of the values of cost, total
num. and max. num. close to the minimum, which also can
be validated by Fig. 8. The subgraphs 1-2 and 2-1 prove that
the linear correlation between cost and total num. is strong,
with the reason that the total num. has a key contribution in
the calculation of cost. In addition, the subgraphs 1-3, 2-3,
3-1 and 3-2 in Fig. 13 show that the correlations between
cost / total num. and max. num. are not significant, as seen
in Fig. 10.

In summary, different ATDM options have significantly
different impacts on runway configuration in the Shanghai
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FIGURE 14. Comparison of total num. for multiple parameter settings of priority. (a) Total num. distribution of adjusted arrivals and departures in
metroplex system; (b) Total num. distribution of adjusted arrivals and departures in each airport system and metroplex system.

metroplex system. The proposed DRCM model with Scenar-
ios PAA, PDA and TFA can improve the flexibility of selecting
runway configuration rules and ATDM options and keep the
DCB in a single airport and metroplex airports.

3) PARAMETER SENSITIVITY ANALYSIS

For any mathematical model or system, the output uncer-
tainty can be apportioned to different sources of input uncer-
tainty [28], [29]. Hence, parameter sensitivity analysis can be
useful to increase the understanding of relationships between
inputs and outputs. In this section, we investigate the sen-
sitivity of inputs (e.g., priority coefficients, capacity loss
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coefficient and algorithm parameters) to the DRCM model
and EMOE algorithm to the outputs, to further validate the
reliability of the proposed DRCM model.

a: SENSITIVITY OF PRIORITY COEFFICIENTS

Note that the results for Scenario TFA in Fig. 8, Fig. 9, Fig. 12,
Fig. 13 and Table 7 are all based on the priority setting
pa = 0.3 and p; = 0.7. Here the impact of other priority
coefficients (0.1:0.9, 0.2:0.8,0.4:0.6, 0.5:0.5,0.6:0.4,0.7:0.3,
0.8:0.2,0.9:0.1) for arrivals and departures on runway config-
uration is also studied. Fig. 14 illustrates the computational
results of the total num. for multiple priority settings.
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It can be seen from Fig. 14 that the flight adjustment for
Scenario TFA depends on the priority coefficients for arrivals
and departures. The number of adjusted arrivals decreases and
the number of adjusted departures increases, as the arrival
priority increases. Similarly, the number of adjusted depar-
tures decreases and the number of adjusted arrivals increases,
as the departure priority coefficients increase. Additionally,
the total num. of adjusted flights has an overall increasing
trend as the arrival priority increases, which reflects the fact
that the existing initiative with a higher priority for arrival
movements is not a good measure to improve flight punctual-
ity in the Shanghai metroplex system. Actually, according to
the decision needs in practice, multiple priority options can
be set to get the corresponding results of flight adjustments.

b: SENSITIVITY OF CAPACITY LOSS COEFFICIENT

In the DRCM model, the capacity loss coefficient w;; in
Constraints (27) ~ (28) determines the decrease of RCCE
frontier during configuration transitions. We set w; = 0.3
based on the requirements from ATCOs. We also test the
results for Scenario PAA with other settings of capacity loss
coefficient. For example, the total num. of adjusted flights
with w;; = 0/w;; = 0.5 is 52/71 aircraft. Through a com-
prehensive analysis of Scenarios PAA, PDA and TFA, we can
conclude that the runway configuration tends to be more
dynamic between successive intervals with a lower value of
wj;, and more static with a higher value of w;;. Therefore,
capacity loss during configuration transition can be reduced
by improving the response capability of ATCOs to changes
of runway operations.

c: SENSITIVITY OF ALGORITHM PARAMETERS

According to the parameter settings of the EMOE algorithm,
the coding length of each chromosome is fixed and depends
on the number of intervals in the planning horizon. In addi-
tion, Fig. 8 ~ Fig. 10 prove that the EMOE algorithm tends to
be close to the optimal performance after generations No.61,
No.41, No.42 for Scenarios PAA, PDA and TFA, respec-
tively. Hence, no further study is needed for the sensitivity
analysis of the maximum number of EMOE evolution iter-
ations. Instead, we investigate other settings of the size of
the RCM population in each generation (e.g., 60, 80, 120,
200), crossover probability (e.g., 0.6, 0.7, 0.8) and mutation
probability (e.g., 0.05, 0.1, 0.2). The computational results
show that the EMOE algorithm can approach the optimal
performance before generation No.120, and the running time
can be controlled within 10 seconds.

In summary, from the results in Sections IV, some impor-
tant conclusion can be drawn. Firstly, the minimum total
num. configuration is the best choice to make satisfactory
tradeoffs among cost, total num. and max. num. concerned
with multiple stakeholders. Secondly, a higher priority to
departure movements is suggested when selecting runway
configuration in the Shanghai metroplex airports. Thirdly,
we can apply the DRCM model with Scenarios PAA, PDA
and TFA to flexibly select the runway configuration in
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metroplex airports, and to maximally realize the DCB for
arrivals and departures.

V. DISCUSSIONS AND CONCLUSION

In this paper, we propose a methodology to assess the impact
of ATDM options on runway configuration in metroplex
airports. Our RCM research simultaneously focuses on the
perspectives of (i) 2 airports in a metroplex system: ZSPD and
ZSSS, (ii) 4 cases / 6 subcases of demand-capacity imbalance:
AODI (Case a-1, Case a-2), AIDO (Case b-1, Case b-2),
AIDI (Case c¢) and AODO (Case d), (iii) 3 options of
RCCE-based ATDM: YAND, NAYD and YAYD, (iv) 2 con-
figuration models: DRCM and SRCM, (v) 3 optimization
objectives: cost, total num. and max. num., (vi) 3 assess-
ment scenarios: PAA, PDA and TFA, (vii) 11 priority settings
for arrivals and departures: {0:1, 0.1:0.9, 0.2:0.8, 0.3:0.7,
0.4:0.6, 0.5:0.5, 0.6:0.4, 0.7:0.3, 0.8:0.2, 0.9:0.1, 1:0}. The
SRCM model, commonly used in Chinese airports in a sin-
gle day, is used as a baseline model for comparison with
our DRCM model. From the results our DRCM model
can reduce the total num. of adjusted flights in metro-
plex airports by 42.2%, 29.0% and 37.2% for Scenarios
PAA, PDA and TFA, respectively. The advantage of our
DRCM model is more pronounced for runway configura-
tion in metroplex airports, which can be applied to keep the
DCB of runway operations through a set of flexible ATDM
options.

Considering the multi-objective tradeoffs in the DRCM
and SRCM models, we have proposed an improved evolu-
tionary algorithm EMOE, with the mechanisms of objective-
guided individual selection (OGIS) to solve the formulated
RCM models. The OGIS mechanism involves four perspec-
tives of preferred level identification, single-level assess-
ment, cross-level assessment and inducing evolution strategy.
The EMOE algorithm allows us to flexibly make tradeoffs
among cost, total num. and max. num. of flight adjustment.
Computational results show that the EMOE algorithm has
a very low computational complexity with a running time
within 6 seconds. The close-to optimal solutions can be
obtained for tradeoffs among multiple objectives and sat-
isfy the decision-making needs in metroplex airports. Tak-
ing the minimum cost configuration for Scenario PAA as
an example, the performance in terms of cost decreases
from 477,993 CNY (No.l iteration) to 281,599 CNY
(No0.200 iteration), and the total num. decreases from 125 air-
craft (No.1 iteration) to 63 aircraft (No.200 iteration). The
max. num. in a single interval can be controlled within
15 aircraft.

A comprehensive analysis and comparison of computa-
tional results is conducted for different assessment scenar-
ios, RCM models and inducing evolution strategies. There
are some tradeoffs among cost, total num. and max. num.
for the minimum cost/ max. num. configurations. The min-
imum total num. configuration is the best choice to make
satisfactory tradeoffs among cost, total num. and max. num.
However, the minimum max. num. configuration is the worst
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inducing strategy in the proposed OGIS mechanism of our
EMOE algorithm. The PAA/PDA/TFA comparisons show
that different ATDM options have significantly different
impacts on runway configuration in the Shanghai metro-
plex system. The proposed DRCM model with Scenarios
PAA, PDA and TFA can improve the flexibility of select-
ing runway configuration rules and ATDM options and
keep the DCB in a single airport system and a metroplex
system.

Parameter sensitivity analysis shows that the existing ini-
tiative with a higher priority for arrival movements is not
an effective measure to improve the flight punctuality in the
Shanghai metroplex system. That is to say, a higher priority
for departure movements is more useful to keep the DCB and
reduce the number of adjusted flights.

The significance of this paper is a framework for char-
acterization of DCB patterns, ATDM options and integrated
optimization of runway configurations in metroplex airports.
The proposed DRCM model can be applied to different
assessment scenarios (i.e., PAA, PDA, TFA) for runway
configuration problems, to solve different demand-capacity
imbalances (i.e., AODI, AIDO, AIDI, AODO) with a flexible
setting of priority coefficients for arrivals and departures.
The DRCM model and EMOE algorithm presented in this
paper are expected to be particularly beneficial in these
cases. The findings can provide some significant references
about multi-runway operations (configuration, sequencing
and scheduling) in a metroplex system or a single air-
port system, which brings significant benefits to air traf-
fic demand management and runway capacity utilization
in hub airports and metroplex systems at the pre-tactical
(i.e. one-day planning) and tactical (i.e. several-hour rolling
horizon) levels.
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