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ABSTRACT In cinema it is standard practice to improve the appearance of images by adding noise that
simulates film grain. This is computationally very costly, so it is only done in post-production and not on
the set. It is also limiting because the artists are not able to really experiment with the noise nor introduce
novel looks. Furthermore, video compression requires a higher bit rate when the source material has film
grain or any other type of high frequency texture. In this work, we introduce a method for adding texture
to digital cinema that aims to solve these problems. The proposed algorithm is based on modeling retinal
noise, with which the images processed by our method have a natural appearance. This ‘‘retinal grain’’
serves a double purpose. One is aesthetic, as it has parameters that allow to vary widely the resulting
texture appearance, which make it an artistic tool for cinematographers. Results are validated through
psychophysical experiments in which observers, including cinema professionals, prefer our method over film
grain synthesis methods from academia and the industry. The other purpose of the retinal noise emulation
method is to improve the quality of compressed video by masking compression artifacts, which allows to
lower the encoding bit rate while preserving image quality, and to improve image quality while keeping
the bit rate fixed. The effectiveness of our approach for improving coding efficiency, with average bit rate
savings of 22.5%, has been validated through psychophysical experiments using professional cinema content
shot in 4K, color-graded and where the amount of retinal noise was selected by a motion picture specialist
based solely on aesthetic preference.

INDEX TERMS Image enhancement, noise, image perception, vision models, QoE, video compression,
adaptive streaming.

I. INTRODUCTION
After the digital cinema revolution, many directors and cine-
matographers are becoming increasingly frustrated by some
artistic limitations that the digital medium imposes. Since the
beginning of cinema and for many decades, there was a wide
variety of cameras, film stocks and film developing options
that allowed cinematographers to experiment, find and test
new possibilities for creative expression. But currently, most
professional productions resort to the same digital cinema

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Asikuzzaman .

camera model, causing the default look to be quite homoge-
neous to begin with.

An established way to improve the appearance of digital
images is to add to them a certain amount of fine-detail tex-
ture, and user studies have shown that observers indeed prefer
images with some noise [1], [2]. In cinema and TV fiction
the standard practice is to always add texture to digitally-shot
content, and this texture invariably takes the form of film
grain. This particular choice of texture aims to mimic the look
of film, that is still considered as the gold standard by many
cinematographers. In the movie industry the most popular
methods for film grain emulation are based on assembling a
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database of scannings of different types of film stock with
varying forms of grain, that are superimposed on the dig-
ital image that is processed. For these methods there is a
compromise between speed and the realism of the result: the
fastest algorithms overlay grain that is somewhat independent
from the content of the digital image, which may produce
noticeable artifacts especially when there is motion, and the
methods producing the more visually pleasing results are
computationally very intensive, requiring special hardware.
In the academic literature the state of the art is the work of
Newson et al. [3], who study the photographic process and
analyze the distribution of grain in the film emulsion, and then
use a computationally costly algorithm based on stochastic
geometry in order to produce realistic-looking synthesized
grain.

Due to their computational complexity, existing methods
impose a restriction on the creative work of filmmakers,
preventing them from having on the set an accurate represen-
tation of how the movie will look in postproduction after the
synthetic texture is added. The emulation of film grain is also
limiting because the artists are not able to really experiment
with awide diversity of texture options, nor to introduce novel
looks. An added complexity is the following: image content
with high frequency detail, like film grain, requires a higher
bit rate in order to be compressed properly, i.e. for a given
visual quality level, ‘‘clean’’ video requires less bits than
video with film grain. For this reason there are several works
in the field of video compression [4]–[7] that improve coding
efficiency by a process consisting, first, of denoising the input
video (removing the film grain), then modeling the noise with
a set of parameter values which are transmitted alongside the
denoised video, and finally at the decoder re-synthesizing the
film grain noise and adding it back to the decoded denoised
video. We are not aware of any of these methods actually
being used in practice in video streaming, and they require
practical solutions to very challenging problems like video
denoising.

Regarding this latter point, the importance of coding effi-
ciency cannot be emphasized enough. In the media industry
there’s a constant push in cinema, broadcast and stream-
ing services towards ever higher resolution, framerate and
dynamic range. The accompanying increase in data volume
that these new formats bring imposes considerable demands
on transmission bandwidth and memory, and as a result the
problem of compressing video is as relevant as ever. Specif-
ically, Ultra High-Definition (UHD)/4K video requires bit
rates nearly 10 times higher than Standard Definition (SD)
video and Full HD (FHD)/2K around four or five times
higher [8], [9]. In addition, video traffic is expected to
account for 82% of all IP traffic by 2022. Moreover, by that
year, UHD/4K video will be around 22% of IP video traf-
fic, and FHD/2K video around 57% [9]. Faced with these
remarkable data, content and service providers are constantly
searching for ways to provide increasingly higher quality
video and quality of experience (QoE) at restrained bit
rates.

In this respect, they can exploit the fact that most users
are not able to perceive some objective quality drops under
some conditions [10], [11]. In fact, the visibility of image
distortions is reduced by the presence of another stimulus,
a masking pattern. This phenomenon is called ‘‘visual mask-
ing’’ and it is a well known property of visual perception.
Visual masking takes several forms, as it depends on different
properties of the image stimuli: luminance, color, temporal
variations, spatial patterns. Visual masking is a key perceptual
phenomenon for the design of image and video compression
algorithms [12], and in particular texture masking or pattern
masking has been successfully applied for video coding [13].

In this work we propose a method for adding texture
to digital cinema that overcomes all the abovementioned
limitations.

The proposed algorithm emulates retinal noise, and the
motivation for our using a retinal noise model is that the
resulting images will have a more natural appearance, since
noise is always present in retinal signals, in photopic (day-
time) vision as well. Nonetheless, in our case the magnitude
of emulated retinal grain that is added to day-like scenes
is an artistic choice: it must be noticed that the method is
proposed as an artistic tool and an aesthetic alternative to
film grain emulation, rather than a physiologically accurate
simulation of perceived noise. It has a very low computational
complexity, so it is amenable for a real-time implementation
that can be used on set. It has parameters that can be varied to
achieve a wide range of texture appearances, allowing movie
creators to try out new looks. Results are validated through
psychophysical experiments in which observers, including
cinema professionals, prefer our method over film grain emu-
lation alternatives from academia and the industry.

Another contribution of our work is to show that the retinal
noise emulation can also be used to improve the quality of
compressed video by masking compression artifacts. Once
the movie creator has taken the artistic decision to add a
certain amount and type of this ‘‘retinal grain’’ to improve
the look of the digital film, the movie distributor can use this
fact to its advantage by encoding the ‘‘clean’’ content at a
lower bit rate and adding the retinal grain after decoding, the
exact same grain that the content creator decided was right
for the movie for aesthetic reasons, thus masking the visual
artifacts produced by the reduced bit rate and yielding the
same QoE of a higher bit rate. The extra data that is required
at reception to introduce the retinal noise is negligible, as it
only consists of the values for the user parameters (up to
5 floating point numbers per frame). This is completely novel
because in the literature, as mentioned above, the grain is
roughly estimated via a denoising process (which is an open
problem), parametric models of film grain provide coarse
approximations, and those works have a limited applica-
tion because they are intended just for films with grain,
whereas our approach can be used with any kind of content.
We performed psychophysical experiments using color-graded
professional cinema content shot in 4K, where the amount of
retinal noise was selected by a motion picture specialist based
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solely on aesthetic preference. This content was encoded at
different bit rates, and the retinal grain added after decoding.
The participants rated the quality of the resulting videos, and
the results show that when reducing the bit rate, the loss of
perceived quality is consistently smaller when the video has
had retinal grain added to it than when it has not. Our method
is shown to yield remarkable savings in bit rate, of over 22.5%
on average.

Additionally, we can mention some other application sce-
narios for our method. As the proposed scheme is able to
provide better subjective quality to compressed video, it can
also be applied to scalable video, thus opening its use in
the adaptive bitrate scenarios considered in streaming appli-
cations. Even more, it can be applied in novel multicamera
scenarios, like high quality free viewpoint video, where the
synthesis artifacts due to occlusions and missing data could
be hidden by the addition of retinal noise. Finally, our method
can be applied in-camera to enhance photographs and video,
specially in the case of acquisition devices with limited capa-
bilities.

As a closing point, we want to briefly discuss the possi-
bility of our proposed work being replaced by a deep neural
network (DNN) procedure. In our opinion, given that the
applications discussed in this paper are all based in the per-
ceived (aesthetic) appearance of images and videos, the use of
a DNN for these tasks would first require the ability of said
DNN to represent aesthetic preference, and while there are
some recent works in this regard, e.g. [14], [15], they have
been shown to be unsuitable in the professional media pro-
duction scenarios [16], [17] for which the method introduced
in the current paper is intended.

II. SOME VISION FACTS AND MODELS
The retina is a thin sheet of neural tissue that lines the back
of the eye and transforms light into electrical signals. It is
composed of five cell types that are arranged in three cellular
layers separated by two in-between layers, called plexiform
layers (See Fig.1). The photoreceptor cells (rod and cones) in
the outermost layer, absorb light and convert it into electrical
signals. These signals are passed to bipolar cells, which in
turn connect to retinal ganglion cells in the innermost layer.
In addition to this vertical pathway the retinal circuit includes
many lateral connections provided by horizontal cells in the
outer plexiform layer and amacrine cells in the inner synaptic
layer. Retinal ganglion cells are the output neurons of the
retina and their axons form the optic nerve that transmits the
visual signal from the retina to the brain.

Photoreceptors transform the light reaching the retina into
electrical signals. The response of photoreceptors is non-
linear and, for a single cell without feedback, can be well
approximated by the Naka-Rushton equation [19], which is
a particular instance of a divisive normalization operation
[20], i.e. a process that computes the ratio between the
response of an individual neuron and some weighted average
of the activity of its neighbors, and this in turns allows the

FIGURE 1. Neurons in the retina of the macaque monkey. Figure
from [18].

photoreceptor response to adapt to the average light level
therefore optimizing its operative range.

The lateral inhibition or center-surround processing,
in which a cell’s response is modeled as the difference
between the activity of the cell’s closest neighbors and the
activity of the cells in the near ring-shaped surround, allows
to encode and enhance contrast therefore being key for effi-
cient representation, and is present at every stage of visual
processing from the retina to the cortex. Lateral inhibition
is often modeled as a linear operation, a convolution with a
kernel shaped as a difference of Gaussians (DoG).

In order to study noise in the retina, ganglion cells’
responses have been measured with drifting gratings of var-
ious spatial and temporal frequencies and contrasts [21].
The precision of cell responses has been estimated in terms
of a noise measure, defined as the variability of neuronal
spike trains in response to this set of stimulus. It has been
shown [21], [22] that noise (variability) remains constant for
different levels of contrast, as it can be observed in Figure 2.

III. RETINAL NOISE EMULATION METHOD
The proposed method takes as input an image I , and creates
an output imageOwith added texture emulating retinal noise.
The transformations applied to the image are based on neu-
rophysiological models of the visual system. The method can
be summarized in the following main stages:

1) Transform the input image I with a model of reti-
nal processes, producing an intermediate image R that
emulates the retinal output.

2) Add ‘‘retinal’’ noise to R to obtain a noisy image Rn.
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FIGURE 2. Noise is independent of the increase in response amplitude
with contrast. Figure from [21].

3) Create the final output image O by applying to Rn the
inverse of the previous transformations that emulate
retinal processes.

A. THE ALGORITHM
The following transformations are applied separately in each
RGB channel of the input image. In this section, the image I
will represent each R, G, B channel of the input image in the
range [0,1].

Given that our method is based on the emulation of retinal
noise, wemust start by ensuring that the input image I has val-
ues that are proportional to the intensity of light arriving at the
retina. This is already the case if I is a RAW image, otherwise
we assume that a nonlinear transform like gamma-correction
has been applied to I with a standard exponent such as 1/2.2
[23] and we undo it, obtaining the linear image IL :

IL = I2.2. (1)

After this, the photoreceptor response P(IL) to the light
stimulus IL is emulated via the Naka-Rushton equation [19],
yielding IP:

IP = P(IL) =
ILn

ILn + Isn
, (2)

where Is is the semi-saturation constant and n controls the
slope of the Naka-Rushton curve.

The lateral inhibition or center-surround organization of
both bipolar cells and retinal ganglion cells is modelled as a
convolution between the photoreceptor response and a kernel
K similar to a DoG. The resulting image R, which will be our
proxy for the clean retinal image, is obtained as follows:

R = K ∗ IP. (3)

Motivated by the work of [24], we choose for K the fol-
lowing form:

K = F−1
(

1
0.81+ 0.2F(GK )

)
(4)

where F is the Fourier transform and GK is a 2D Gaussian
kernel with standard deviation equal to 1/3 of the maximum

of the image dimensions (height or width). A key advantage
of this choice of kernel is that it is invertible, which will be
very useful for us as we will see:

K−1 = F−1 (0.81+ 0.2F(GK )) . (5)

We add to R a certain amount a of retinal noise nr , that
emulates the noise measured in the RGCs,

Rr = R+ anr , (6)

and therefore the image Rr corresponds to the noisy image
created in the retina.

For the noise signal nr we use the same distribution as the
noise observed in RGCs [21], [25], which has a constant stan-
dard deviation (that does not depend on the input contrast),
and we impose as well a bandpass frequency spectrum as
approximately given by the contrast sensitivity function of
the visual system [26]:

nr = (Gc − Gs) ∗ IN , (7)

where IN is a Gaussian noise image with standard deviation
σ = 1, and Gc and Gs are 2D Gaussian kernels. As it is men-
tioned in [26], contrast sensitivity depends on the orientation,
and this effect could be modeled with the 2 × 2 covariance
matrices 6c and 6s of the kernels Gc and Gs. In practice,
in our experiments we will use symmetric kernels, and in this
case the covariance matrices are not needed as the kernels
can be described simply with the standard deviation of the
Gaussians, σc for Gc and σs for Gs.

Recapping, the noisy retinal image Rr results from adding
noise to

R = K ∗ P(I2.2), (8)

so we can find the noisy light stimuli O that would directly
produce Rr by undoing the previous chain of operations:

O = (P−1(K−1 ∗ Rr ))
1
2.2 . (9)

The image O is the final output produced by our method,
which as mentioned above is applied independently to each
of the three color channels.

The linearization, the Naka-Rushton transform and their
inverses can be encoded as 1D look-up tables (LUTs), so the
method is essentially as fast as the time it takes to compute
two convolutions, one with kernel K and the other with its
inverse K−1.

B. USER PARAMETERS
The full list of parameters for our method, by order of appear-
ance, is: Is, n, a, σc, σs. Default values are proposed for these
parameters so the method can be used as fully automatic.
Moreover, these parameters can be modified by the user
to control the visual aspect of the noise in the resulting
image.

For the Naka-Rushton equation, we have fixed both its
parameters: n = 0.74 following [27], and Is = 0.18 given
that 18% is the reflectance value for mid-gray, taking 100%
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FIGURE 3. Image with added retinal grain on the left. Close-up of the image with retinal noise in the center, and close-up of the original image on the
right.

FIGURE 4. Resulting images with different parameter choices, from top to bottom, left to right: (a) σc = 1, σs = 2, a = 0.05, (b) σc = 0.5, σs = 1, a = 0.05,
(c) σc = 0.5, σs = 1, a = 0.1, (d) Non-symmetrical kernels Gc and Gs, with covariance matrices 6c =

(0.2 0
0 0.05

)
and 6s =

(1 0
0 0.25

)
, a = 0.05 (e) σc = 0.05,

σs = 1, a = 0.05, (f) Non-symmetrical kernels Gc and Gs, with covariance matrices 6c =
(0.05 0
0 0.4

)
and 6s =

(0.25 0
0 4

)
, a = 0.05.

as diffuse white. The intensity of the noise in the final output
image O is controlled by the parameter a, that can vary in the
range [0, 1], and whose default value is set as a = 0.015.
As a increases, the noise becomes more visible, as Fig. 4

shows. For the sizes of the Gaussians Gc and Gs used to
generate nr , we have chosen as default values σc = 0.7 and
σs = 1.5. These parameters can be adjusted by the user allow-
ing certain control in the size and distribution of the noise.
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FIGURE 5. Left: frame without noise. At its right there is a zoomed-in detail in four versions, from left to right and top to
bottom: original, film grain emulation result by Newson et al. [28], film grain emulation result by DaVinci Resolve 14, our
retinal noise emulation result.

Higher values of σ result in bigger size noise. The effect
of using non-symmetrical Gaussian filters, defined by their
2× 2 covariance matrices6c and6s, is a non-symmetrically

distributed noise as it can be observed in Fig. 4 (d) and (f).
Modifying these values alters the power spectrum of the
noise, as it can be observed in Fig. 6.
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FIGURE 6. Proposed method applied to a flat grey image, with parameter
values σC = 0.7, σs = 1.5 (left) and σc = 1.2, σs = 2.6 (right). Top: power
spectrum. Bottom: result of proposed method.

C. PSYCHOPHYSICAL EVALUATION
The goal of adding noise to images with a creative intent is
to produce results that are visually appealing for observers.
Therefore, we conduct psychophysical experiments in order
to validate our results and to compare them with methods
from the state of the art in academia, like the algorithm of
Newson et al. [3] in its implementation [28], and in the movie
industry as well, like the film-grain emulation provided by the
professional post-production software DaVinci Resolve 14.

For this study, the parameters of each method have been
selected by a cinema expert to get the most appealing visual
appearance of images according to his liking. For the method
of Newson et al., grain radius is set to r = 1/200, type of
algorithm is pixel-wise and number of MonteCarlo iterations
is set to N = 1000. For DaVinci ResolveFX texture film
grain effect, the 35mm film settings have been used with an
intensity of I = 0.75. For our method, the parameters used
are a = 0.015, σc = 0.7 and σs = 1.5. Figure 5 shows
samples of four video frames, corresponding to asmany video
sources, showing the four different versions used in the psy-
chophysical experiments: a clean version, a version resulting
from the addition of retinal noise, a version resulting from the
addition of film-grain noise from the work by Newson et al.,
and a version resulting from the addition of noise using the
DaVinci ResolveFX texture film grain effect. All the methods
are applied using the parameter values just specified. It is
however worth noting that, in order to fully distinguish the
difference between the methods, the temporal dimension is
crucial.

For the evaluation, we used a room with dim ambient illu-
minance. Observers were instructed to sit approximately one
meter away from the screen. A two-alternative forced-choice
comparison (2AFC) technique was used: each observer was
shown two consecutive videos on the screen, each of them
obtained from one of the methods. The observers were asked
to choose the most visually appealing video from the pair
compared. Thirteen observers took part in the experiments,

FIGURE 7. Accuracy scores of competing methods for adding texture:
13 observers took part in each experiment and 5 videos were used. Left:
average. Right: scores per video.

one of them being a cinema professional from a major post-
production house.

The analysis of the psychophysical experiment is pre-
sented in Fig. 7. To compute accuracy scores from the raw
psychophysical data, we use the same approach as in [29]
(Chapter 5), that is based on Thurstone’s law of comparative
judgment. As it can be seen in this figure, our method is
preferred over the other two. This result is also consistent
for each video separately in all the cases except one. The
individual preference of the movie professional that took part
in the experiment follows the same trend of the whole group
of observers.

IV. RETINAL NOISE EMULATION FOR IMPROVING
COMPRESSED VIDEO QUALITY
We test here the suitability of retinal noise emulation to
improve the quality of compressed video, or, more precisely,
to mask the image degradation inherent to the compression
process (i.e. compression artifacts) in order to prevent users
from perceiving it. To evaluate this masking effect, we have
designed a set of experiments that simulates a video on
demand (VoD) service where the content is provided via
HTTP/TCP-based adaptive bit rate streaming (ABR) tech-
niques [30]. Under this paradigm, content is encoded at
different quality levels associated with unequal bit rates in
accordance to a given quality ladder and segmented. These
segments are stored in a server or set of servers (eg Content
Delivery Network (CDN)) and are provided to the client
upon request [31]. The client selects throughout the stream-
ing session the segments that best suit the system state
(channel available bandwidth, terminal capabilities, quality
control policies. . . ) to optimize the quality provided to the
user [30].

The results of the experiments will indicate down to what
point, if retinal grain is added, service providers will be able to
decrease the encoding bit rates included in the quality ladders,
and therefore the objective quality of the encoded sequences,
without the users noticing. To be able to remove the effect of
coding and so isolate that of retinal noise, sequences with and
without noise are used in the experiments.

All the procedures and selections related to the subjec-
tive tests fulfill the guidelines included in Recommenda-
tions ITU-R BT.500-13 [32], ITU-T P.910 [33] and ITU-T
P.913 [34].
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TABLE 1. SRCs’ spatial and temporal complexity.

A. TEST MATERIAL
The test material is made up of four 10-second-long 4K
(4096×2160p) Source sequences (SRCs) acquired at 24 fps.
They all use a 4:2:2 chroma subsampling at 12 bits. The
SRCs were selected from a public dataset made available
by Blackmagic including representative, varied, and habitual
contents for users [35]. The number, duration, and charac-
teristics of the source content were selected in accordance to
Rec. ITU-T P.913 [34]. Table 1 includes the characteristics
of the SRCs in terms of the average spatial and temporal
complexity considering the spatial information (SI) and the
temporal information (TI) indicators [33], [36].

Retinal noise was later on added to the ’clean’ SRCs to
obtain ’noisy’ versions of them. The procedure is described
next.

1) ADDITION OF RETINAL NOISE
The proofing observer, a motion picture specialist, was seated
two picture heights away from a Sony PVM-250 25’’ Full
HD OLED display (Rec709, gamma 2.4 calibrated [23]).
The display was driven by a Blackmagic 4K video card via
DaVinci Resolve. A Tangent Element color correction panel
was used as a control interface. The clips were shown in their
native resolution (4096× 2160), but were cropped to fit onto
the Full HD display. The Tangent Element panel provided
controls to shift the crop to different areas of the image. These
controls could be operated with some small delay while the
clip was playing.

First, proofing to select the proper noise shape parameters
was conducted. Eight different noise shapes were each gen-
erated for a one-second excerpt of a single video clip at three
different intensity levels.

Each of these shape sets were placed on the Resolve time-
line and viewed through theOLEDdisplay in a dark surround.
The pan and tilt functions were used to determine the areas
of the clip where the noise was most prominent and obser-
vations were recorded about each of the clips’ appearances.
It was found that several of the generated noise shapes added
textures to the image which appeared gritty and blocky, while
others introduced a finer grain that was more pleasing to the
eye. The most ideal grain shape of those generated in the
first round was selected to be σc = 0.5, σs = 1, which dif-
fers from the values obtained in the experiment discussed in
Section III-C because now the tests are performed on a higher
resolution monitor.

This noise was then added at varying intensity levels
(0.025, 0.05, 0.075) to all of the tested clips (1 second
excerpts). For this test, the clips were arranged on the Resolve
timeline along with the ‘‘clean’’ version of the clip with no
noise added. These different intensities were then compared

TABLE 2. HRCs used to create the test sequences presented to the
observers.

in the dark surround viewing environment. In many cases
the clean versions themselves had a considerable amount of
camera noise upon capture, which led to an unpleasant static
on the clips. However, when some of the retinal noise was
added, this camera noise was to some degree obscured and
an overall more pleasing image was produced. In general,
the lowest noise setting was selected for these images (0.025).
In other cases of brighter images, it was found that a higher
intensity of noise (0.05) seemed to improve the visual texture
and appearance of the test clips, particularly in high frequency
areas.

Figure 8 shows screenshots of the four sequences, with
the optimal amount (in terms of image appearance) of retinal
grain added to them.

2) GENERATION OF TEST SEQUENCES
We have tested 30 different combinations of encoding and
network parameter values. Each of these combinations, called
Hypothetical Reference Circuit (HRC) [33], is applied to
all source sequences, resulting in a set of Processed Video
Sequences (PVSs), one per SRC and HRC, that are presented
to the users for evaluation. The combinations considered in
the tests are included in Table 2. HRCs are 4:2:0 and have a
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FIGURE 8. Screenshots of the four sequences used in the subjective assessment, with optimal amount (in terms of image appearance) of retinal
grain added. Each image shows a zoomed-in region (marked with a red square) in two versions, with and without the retinal grain. From left to right,
top to bottom: ‘‘Balloon’’, ‘‘Nature’’, ‘‘Bugs’’, and ‘‘Closeup’’.

color depth of 10 bits to match common broadcast conditions.
Furthermore, they preserve the framerate of the sources:
24 fps. Five of them (named HRCC

i,1, where i = {1, . . . , 5})
are anchor points derived directly from the quality ladders
included in Apple’ HLS technical note [8]. To decrease
the gap between consecutive quality levels and so enable a
finer-grained analysis, two additional HRCs (named HRCC

i,j,
where j = {2, 3}) were created from each anchor point
HRCC

i,1. The spatial resolutions of these 15 HRCs, marked
with the superscript ‘‘C’’ for clean, nearly follow a geometric
progression with ratio 1/

√
2. So, each picture resolution is

close to half the previous one. The other half of the set of
HRCs, marked with the superscript ‘‘N’’ for noise, share
the same characteristics as the original set of HRCs and,
in addition, they include retinal noise.

All HRCs are H.264/AVC encoded. Bit rates for the anchor
HRCs were obtained from the H.264/AVC ladder whenever
the associated resolution was included there and extrapolated
accordingly to the ladder rule for the remaining resolutions.
The bit rates for the rest of the HRCs were obtained by
linearly interpolating between the values of the anchor HRCs.

Finally, we generated a total of 120 Processed Video
Sequences (PVS’s). As mentioned before, the aspect ratios of
the HRCs, and therefore of the PVS’s, were 16:9 (∼1.78:1),
following the SMPTE ST 2036-1 standard [37] and Rec-
ommendation ITU-R BT.2020 [38]. As the aspect ratio of
the SRCs is 256:135 (∼1.9:1), according to the Digital
Cinema System Specification of the Digital Cinema Initia-
tives (DCI) [39], the PVS’s resolutions required a minor

cinema-to-broadcast format adaptation that was conducted
using a bicubic filter [40].

B. ENVIRONMENT AND EQUIPMENT
The test room was set to simulate home viewing conditions.
Furthermore, the brightness was controlled according to rec-
ommended values [33]: 24.4 Lx in front of the subjects,
16.5 Lx to their left, 85.4 Lx to their right, 71.7 Lx above
them, and 20.1 Lx behind them.

The device used in the tests was a TV set with a
43-inch screen and a 3840× 2160 pixel resolution (Samsung
UE43NU7475). The viewing distance was set to twice the
height of the screen, in accordance to Rec. ITU-T P.913 [34].

C. METHODOLOGY
Before starting the experiments, the test designer read the
guidelines of the tests to the observers. Next, subjects were
trained by showing them examples of the best and worse
quality levels they should expect for sequences with and
without retinal noise (four extra PVS’s created from a fifth
content according to HRCC

1,1, HRC
N
1,1, HRC

C
5,3 and HRC

N
5,3).

In this way, subjects were more aware of the scale of qualities
that they would encounter and rate the sequences accordingly.

During the experiments, all the PVS’s, that is, every com-
binations of video sources -SRC’s- and encoding and net-
work conditions to be tested -HRC’s-, including the reference
sequence, were sequentially and randomly presented to the
subjects. Each PVS was presented once to each subject. The
order of presentation of the PVS’s was different for each pair
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FIGURE 9. DMOS per content and bit rate. From left to right, top to bottom: ‘‘Balloon’’, ‘‘Nature’’, ‘‘Bugs’’, and ‘‘Closeup’’. Orange bars are used for
’clean’ content and blue bars indicate content with retinal grain.

of observers and was set randomly, in accordance with Rec.
ITU-T P.910 [33]. The whole session was slightly shorter
than 30 minutes, as recommended by ITU-R BT.500-13. The
test method followed in the tests is the Absolute Category
Rating with Hidden Reference (ACR-HR) proposed in Rec.
ITU-T P.910 [33], where subjects have five possible answers
to choose from: ‘‘Excellent’’, ‘‘Good’’, ‘‘Fair’’, ‘‘Poor’’ and
‘‘Bad’’. The subjects were asked to assess each PVS right
after its visualization. To help it, a four-second grey sequence
was included between consecutive PVS’s, also as stated in
Rec. ITU-T P.910 [33].

There were 18 observers (6 women and 12 men) in the
experiment, all of them having normal or corrected vision,
aged between 20 and 30 years. The number of subjects is suf-
ficiently significant, as stated in Rec. ITU-R BT.910 [33].The
observers were rewarded for their participation in the tests,
and a maximum of two observers were allowed in each
test session. Due to the characteristics of the play-out sys-
tem, the assessment was conducted sequentially on the two
demi-sets of PVS’s: first the PVS’s including retinal noise
(named HRCN

i,j), called ’noisy’ PVS’s, and then the ’clean’
PVS’s (named HRCC

i,j). No observers were rejected after the
screening of the subjective results.

D. TEST RESULTS
Figure 9 depicts the results in terms of the evolution per
content of the differential mean opinion score (DMOS) versus
the encoding bit rate. The DMOS is defined as follows:

DMOS(PVS) = MOS(PVS)−MOS(REF)+ 5 (10)

where MOS is the Mean Opinion Score computed for a given
content (PVS or reference sequence). Therefore, the better
the image quality of the sequence presented to the user
(i.e. the more it looks like the reference one), the greater it
will be in principle the MOS of that sequence, and so the
resulting DMOS.

The DMOS values have been computed per user for each
one of the ‘clean’ and ‘noisy’ sets of PVS’s with respect to
the scores given to their corresponding references, HRCC

1,1
and HRCN

1,1, as it is usually done in the literature. Each bar
includes its 95% confidence intervals.

We can easily distinguish two trends in the figures per
content: that of sequences ‘‘Balloon’’ and ‘‘Nature’’ and
that of sequences ‘‘Bugs’’ and ‘‘Closeu’’. The results of the
assessment of the first two sequences show a clear and steady
decrease in the quality perceived by observers with the reduc-
tion of bit rate on average. However, the results for the other
two sequences do not show any clear connection between
the perceived quality and the bit rate. This is an interesting
outcome of this exploratory analysis on the addition of retinal
noise, as this discrepancy stems from the different nature
of the video contents. On the one hand, all the elements in
every picture in the sequences ‘‘Balloon’’ and ‘‘Nature’’ are
in focus. On the other hand, a significant part of every picture
in the sequences ‘‘Bugs’’ and ‘‘Closeup’’ are out of focus
due to the limited depth of field used in their acquisition.
As this experiment has been carried out on visual information
in a bit rate limited scenario, it means that the last two
sequences were always better treated by the compression and
decompression system, as more bits could be devoted for the
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FIGURE 10. Global DMOS per bit rate. Orange bars are used for ‘‘clean’’
content and blue bars indicate content with retinal grain.

encoding of the in-focus part of the picture. Therefore,
the selection of test material in subsequent experiments
should consider the depth of field information in addition to
their spatial and temporal information. Moreover, it is impor-
tant to note the type of content presented. Since the sequence
‘‘Bugs’’ did not show any benefit of being treated with noise,
there is a possibility that documentary content may be less
susceptible to being processed by adding noise. Thus, utmost
care should be placed on content selectionwhere texture noise
could be added.

The analysis of the aggregated DMOS, presented
in Figure 10, shows a reduced but significant advantage on
the addition of retinal noise in the outcome of the assessment.
Even if the confidence intervals overlap, the DMOS of each
‘‘noisy’’ PVS is always higher than the one of its ‘‘clean’’
counterpart, the advantage being more evident for resolutions
up to high definition.We consider the results significant since
there is a clear tendency for the results with noise to be better
rated on average. From these results we conclude that, when
the bit rate is reduced, the decrease in perceived image quality
is smaller if the video has had retinal grain added to it.

In order to measure properly the benefits of applying our
proposal to mask compression artifacts in terms of bit rate
saving and quality improvement, we have applied a regres-
sion on the noise and clean sets of points. The regression has
been performed using a sigmoid function [41] and the least
squares method. Figure 11 shows the result of the process.
The green and blue crosses represent the average user scores
for noisy and clean contents, respectively. The red and yellow
lines are their respective regression.

First, one can verify the conclusions drawn above: the
addition of noise represents an enhancement of quality over
the clean signal for all considered bit rates. Moreover, this
result can also be seen from another point of view: for a given
quality level, using the version that includes the emulation
of retinal noise leads to significant savings in bandwidth.
Both gains have been analyzed quantitatively. So, the former
has been measured in terms of BD-DMOS by computing the
area between the lines (represented in purple in Figure 12)
by means of a vertical integration [42], [43]. Results point

FIGURE 11. Regression on the bit rate-DMOS values. Green crosses
represent ’’noise’’ scores, blue crosses are ’’clean’’ scores, the red line
represents the regression on ’’noise’’ values and the orange line
regression on ’’clean’’ values.

FIGURE 12. Regression on the bit rate-DMOS values including the area
between the lines where the BD-DMOS is computed by vertical
integration. This plot highlights the fact that, at any given bit rate,
the addition of emulated retinal noise improves perceived image quality
(the DMOS value is higher for the sequence with retinal noise).

at a DMOS average improvement of 0.2. Regarding bit rate
savings, they have been measured in terms of BD-Rate by
computing the area between the lines (represented in purple
in Figure 13) through a horizontal integration [42], [43].
Results indicate that the application of the retinal noise emu-
lation method allows for a significant improvement in cod-
ing efficiency, with average bit rate savings of over 22.5%.
Nevertheless, let us point out that our experiments suggest a
potential weakness of our approach in that the applicability
of the method may depend on the specific video sequence
that is dealt with, because as remarked earlier there is the
possibility that for some kind of content, like documentary
footage, a cinema-like appearance is not preferable for the
viewer. However, a mere previous analysis of the content
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FIGURE 13. Regression on the bit rate-DMOS values including the area
between the lines where the BD-Rate is computed by horizontal
integration. This plot highlights the fact that, for any given perceived
quality level (DMOS value), the encoding of the sequence with emulated
retinal noise is more efficient (the required bit rate is lower than the one
necessary to attain the same DMOS value with the clean sequence).

could determine the suitability of the inclusion of retinal
noise.

V. CONCLUSIONS AND FUTURE WORK
We have presented a method for adding texture to digital
cinema that is inspired by processes in the visual system
and produces results that look natural and visually pleasing
even for challenging scenes. Themethod has three parameters
whose default values produce satisfactory results in a variety
of scenarios, and that can be modified for artistic purposes,
in order to achieve different looks. A psychophysical valida-
tion was conducted, showing that the proposed method out-
performs algorithms from the state of the art in the academic
literature and in the industry.

The retinal noise emulation method can also improve the
quality of compressed video by masking compression arti-
facts. The aim was to help concealing distortions due to
compression and thus allowing to maintain image quality
while reducing the bit rate or improving image quality while
maintaining the bit rate fixed. The proposed method has been
validated through subjective assessment on 4K professional
cinema sequences, where the amount of retinal noise was
selected by a motion picture specialist based solely on aes-
thetic preference. The experiment has shown that the pro-
posed method can yield very impressive savings in bit rate. A
special effort has been made to maintain the rigorousness and
reproducibility of the subjective tests carried out. As future
work, we intend to explore the impact of the type of content
in the usefulness of the addition of retinal grain noise to mask
compression artifacts.

Our results point to a novel and, we believe, very promising
avenue of research in computer visionwhich is the connection
between vision models of retinal grain, perceived image qual-
ity (a very active area of interest in computer vision because

the main challenges remain unsolved), image compression
algorithms and image compression as performed by the visual
system: the connection here is even more explicit since the
classic work of Olshausen and Field [44], that allows to link
convolutional neural netowrks (CNNs) trained for compres-
sion with the receptive fields that are actually measured in the
human visual system. Ongoing work involves training CNNs
for compression on natural images with and without retinal
grain.
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