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ABSTRACT Software Defined Networking (SDN) presents a tremendous opportunity for developing
abstract management of network updates. However, network updates introduce challenges in terms of
consistency. Many consistent update algorithms are proposed for Ethernet, but there is seldom update
algorithm for distributed time-triggered system to satisfy requirements of strict real-time and mixed-critical.
The contribution of this paper is to present a distributed update mechanism and a mixed-critical update
algorithm for the time-triggered (TT) and rate-constrained (RC) traffics to reduce the memory space
complexity, computational time complexity, update time, and keep per-packet consistent strictly. More
specifically, consistent update is defined and some basic update algorithms are described. And then a packet-
based network model is built to describe network resources. Subsequently, the update mechanism is changed
for the TT and RC traffics. Meanwhile, a mixed-critical update algorithm, which contains a time window-
based update and a rate-constrained update for TT and RC traffics respectively, is proposed. Whether the
mixed-critical update algorithm is consistent updates or not is proved logically. Finally, experiments analyzed
the performance of the mixed-critical update algorithm, compared with four conventional updates. The
results show that there is no black hole, loop and inconsistent path for the mixed-critical update algorithm.
The most important thing is that the memory space complexity is reduced by 19.93% at least, compared with
two-phase update. Meanwhile, the computational time complexity and update time are reduced by 17.14%
and 7.96% respectively, compared with time-based update. The mixed-critical update algorithm provides a
method to optimize policy update tasks for distributed time-triggered system, so as to improve the ability of
system reconfiguration.

INDEX TERMS Consistent update, distributed time-triggered system, software defined networking, space
complexity, time complexity.

I. INTRODUCTION
Time-triggered Ethernet (TTE) is a deterministic real-time
network for mixed-critical real-time systems, such as indus-
trial automation, aerospace, and aviation [1], [2]. As pre-
requisite, a global Time-triggered (TT) schedule table in
TTE is required for TT traffic to avoid collision among
different time-triggered windows [3]. However, a TT frame
might have to wait a full transmission period in the ES
before being scheduled out, because of asynchrony between
tasks and the network in end systems (ESes) [4]. Software
Defined Networking (SDN) is a central management system
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for routinely performing frequent policy and configuration
updates by updating flow table which contains the packet
paths [5]. Since the centralized controller knows the entire
network information, the initial and final configurations can
be optimal [6]. SDN was introduced into TTE to enhance
real-time and determinacy of TT messages called Software
Defined Time-triggered Ethernet (SDTTE) [7]. SDN can also
be used for rate-constrained (RC) traffic and best-effort (BE)
traffic to update flow tables, which contain message paths.

However, it can be difficult to reconfigure the network
correctly and efficiently for SDN, some incorrect transient
behaviors are often introduced during network updates. These
behaviors impact consistency which contains per-packet con-
sistency and per-flow consistency [8]. The former allows
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transmitting a packet in either the old path or the new path
only, and the latter requires a stream of related packets to
be handled by the unique path [9]. Per-packet consistency
should be first considered for network reconfiguration in
practice. For per-packet consistent update, incorrect transient
behaviors main contain congestion, black hole and loop [9].

Congestion is existed in multi-packet update, it may result
in unforeseen transient link overload or even congestions
[10]–[12]. Loop path and black hole may occur at single
packet update. The former leads to waste network resources
[13]–[18]. The latter may drop packets during updating flow
table [19]. As a basic bug, black hole is often analyzed
together with loop [20]–[22]. The three kinds of bugs some-
times are eliminated together [23]–[25].

No matter how complicated the above update algorithms
are, they belong to the ordered update which is an obvious
way to solve consistent problem. According to the per-packet
consistent constraint, the ordered update can avoid most of
bugs. But there is a complex algorithm for the ordered update
to complete the multi-flow update step-by-step [26]–[32].
The simplest algorithm is two-phase update where the version
tag is used to distinguish the new path from the old [9], [33].
The two-phase update is always consistent, but it costs
too many Ternary Content Addressable Memory (TCAM)
resources, because a large number of flow table entries need
concurrent during the whole updating process. Subsequently,
Mattos presented a simple algorithm called ‘‘reverse update’’
to solve consistent problem with a small quantity of calcu-
lation, installation, and collection [34]. Based on the above
basic update algorithms, many revised consistent updates are
presented [35]–[37]. However, the update time is too long.

Mirrokni first presented a simple polynomial time
framework for reduced-path decomposition in multipath
routing [38]. Subsequently, Černỳ used polynomial time
to optimal consistent network updates [6]. Meanwhile,
Mizrahi presented time-based update by clock synchroniza-
tion to reduce inconsistency rate and update time [39]–[41].
Moreover, Zheng presented time-based update to reroute the
updates of multiple network flows with a congestion-free
manner in a synchronized SDN [42]. The update time has
obvious reduction. But it needs complex computational time
which is a Non-deterministic Polynomial Complete (NP-C)
problem. Subsequently, Nguyen proposed distributed net-
work update while preserving various consistency proper-
ties, the update time and computational time are reduced
greatly [43], [44].

Most bugs can be avoided by the above algorithms.
However, if a packet is transmitted during updating flow
table, it may be a mixed path from old and new paths.
Considering TT traffic and RC traffic must have strictly
defined paths in TTE, the reliability and security of the TT
traffic and RC traffic can not be guaranteed by the above
algorithms.

To solve the above problem, we propose a mixed-critical
update algorithm which uses the time constraint of TT traffic
and the Bandwidth Allocation Gap (BAG) constraint of RC

traffic to guarantee the reliability and security of the TT traffic
and RC traffic. The primary contributions of this paper are
summarized as follows.

1) The update mechanism is changed from centralized
control to distributed control for TT traffic and RC
traffic in SDTTE. The controller should just provide the
boundaries to switches on the old and new paths. The
control does not have to provide precise update time.
So the central processing unit (CPU) computational
complexity can be reduced obviously.

2) A mixed-critical consistent update algorithm is pro-
posed to realize consistency and improve performance
for TT and RC traffic in SDTTE.

3) The consistency and performance of our mixed-critical
consistent update are demonstrated theoretically and
experimentally. The results show that our algorithm
satisfies requirements of strict real-time and mixed-
critical. Meanwhile, the performance of the mixed-
critical update algorithm is improved.

The remainder of this paper is organized as follows.
Section 2 describes basic update algorithms and explains
consistent update. And then section 3 builds network model
and distributed update mechanism. Subsequently, section
4 presents a new mixed-critical update algorithm. In detail,
two consistent updates corresponding to TT and RC traffics
are presented, respectively. They can satisfy the requirements
of strict real-time and mixed-critical, simplify the existing
update algorithms, and keep consistency. Section 5 compares
different consistent update algorithms by using a simulation
experiment based on OMNeT++. Subsequently, the perfor-
mance of these algorithms, which contains the properties of
consistency (black hole, loop, and inconsistent path), mem-
ory space complexity, computational time complexity, and
update time, are analyzed. Meanwhile, some phenomena in
the experiments are described and illustrated. Finally, some
conclusions are given in section 6.

II. BACKGROUND
A. BASIC UPDATE ALGORITHMS
1) ORDERED UPDATE
Ordered update programs the specific switch update order-
ing to avoid conflicts. Sequential update and reverse update
are representative ordered updates. Sequential update is per-
formed on the network devices along the new path, except
the ingress switch which is updated finally. Reverse update
is applied on the reverse sense, from the destination to the
source. Namely, it updates the network devices in the reverse
sense of the new path in the network [34].

2) TWO-PHASE UPDATE
Two-phase update introduces the network configuration ver-
sion tag to stamp virtual links. Thus, the version number
becomes a property of virtual links. A virtual link vlp,r
can be distinguished from another just by the version tag.
The two-phase update works by first installing the new
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configuration on internal ports, but only enabling the new
configuration for a packet containing the correct version
number. It updates the ingress ports one-by-one to stamp
packets with the new version number [9].

3) TIME-BASED UPDATE
Time-based update uses accurate time to trigger consistent
updates. It reduces the duration time required by switches to
maintain duplicate policy rules for the same flow [40].

B. PER-PACKET CONSISTENCY
Per-packet consistent updates reduce the number of scenar-
ios, a programmer must consider from multi-path to just
two paths: for every packet, it is as if the packet flows are
transmitted in the network by using the old path completely
before the update occurs, or using the new path completely
after the update occurs. Inconsistent update contains black
hole, and loop, inconsistent path as follows.

1) BLACK HOLE
Black hole means the packet loss in the flow update process.
The incoming packet must not be dropped. The process of
sequential update is shown in Fig. 1, where the flow table
entries in switches are updated from the old path 1–2–3–4–5
to the new path 1–6–3–7–5.

FIGURE 1. Sequential update flowchart with black hole. (Nodes 1–7 are
switches, source/destination ESes are hidden).

In sequential update, the ingress switch 1 should be
updated finally. The flow tables of switches are updated along
the direction 6-3-7-1. First, SW6 adds the new flow table
entry in Fig. 1(b), as SW6 is the new switch for the packet.
And then the SW3 changes from the old flow table entry to
the new flow table entry in Fig. 1(c), as SW3 exists in both
the old path and the new path. If a packet is transmitted at
this moment, the packet may be lost, because there is no
receiving node. And then SW7 adds the new flow table entry
in Fig. 1(d), the packet may be lost at this time. Thereafter,
SW1 changes the new flow table entry in Fig. 1(e), the black

FIGURE 2. Sequential update flowchart with loop path. (Nodes 1–4 are
switches, source/destination ESes are hidden).

hole will disappear. Finally, the flow table entries in SW2 and
SW5 are deleted, it is called as garbage collection.

2) LOOP PATH
Loop means that a packet reaches an switch more than once.
The network scenario shown in Fig. 2(b) illustrates the loop
path problem, where the old path is 1–2–3–4 and needs to be
updated to 1–3–2–4.

When the sequential update is also used, the flow tables
of switches are updated along the direction 3–2–1. The
first update is SW3 in Fig. 2(b). If a packet is sent from
SW3 or SW2 at this moment, the path for a packet may
become loop (2–3–2) to lead iterative flooding. After the SW2
is updated, the iterative flooding could be eliminated.

3) INCONSISTENT PATH
Inconsistent path means that a packet may be transmit-
ted along neither the old path nor the new path as shown
in Fig. 3, where the old path is 1–2–3–4–5 and the new path
is 1–6–3–7–5.

FIGURE 3. Reverse update flowchart with inconsistent path.
(Nodes 1–7 are switches, source/destination ESes are hidden).

According to reverse update, flow table will be updated
along the path 7–3–6–1. The first update switch is SW7
in Fig. 3(b). Subsequently, The SW3 is updated as shown
in Fig. 3(c). If there is a packet transmitted in the current
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path at this moment, the path for a packet may be another
mixed path 1–2–3–7–5. Similarly, the inconsistent path also
exists after SW6 is updated as shown in Fig. 3(d). After SW1
is updated as shown in Fig. 3(e), the inconsistent path could
disappear. Finally, the flow table in the SW2 is collected as a
garbage.

III. NETWORK ARCHITECTURE
A. NETWORK MODEL
A TTE network is a full duplex switched network with time-
triggered and event-triggered mechanism. A TTE network
can be formally modeled as a directed graph G(V ,E), where
the set of vertices V comprises the communication nodes
(switches and end systems, SWs and ESes) and the edges
E represent the directional communication links between
nodes, similar to Zhao [45].

And a vertex vi ∈ V can be denoted by the following tuple.

vi =< αi, βi, γi > (1)

where αi is the arrival curve which is obtained by all packets
arrived at the vertex vi. βi is the service curve in the vertex
vi. γi denotes the size of occupied TCAM resources in the
vertex vi.

αi = ρi(t + σi/ρi)+ =

{
σi + ρit, t > 0
0, others

(2)

βi = Si(t − Di)+ =

{
Si(t − Di), t > 0
0, others

(3)

where ρi is the sustained bitstream speed in the vertex vi, σi is
maximum burstiness caused by packet length, Si is the service
speed, Di is inherent delays caused by the switch.

For an edge ei,j with the bandwidth of physical links Cei,j
(e.g. 100 Mbit/s, 1 Gbit/s, etc.), it can be given by

ei,j = vi − vj ∈ E, vi, vj ∈ V (4)

A VL is a logical data-flow path in the network from one
sending node to receiving nodes. A typical virtual link vlp,r
from a producer task running on an ES ve1 to a consumer task
running on an ES ve2, routed through the switches v1, · · · , vn
is expressed.

vlp,r = ee1,1e1,1e1,2 · · · en,nen,e2
= ve1 − v1, v1 − v1, v1 − v2, · · · , vn − vn, vn − ve2
= ve1 − v1 − v2 − · · · − vn − ve2 (5)

where vlp,r is a virtual link (VL) for the r th update of a
message mp, and en,n = v1 − v1 denotes a packet delivering
in a switch, it can be ignored.

Let M denote the set of all messages in the system.
We model a message mp ∈ M by the tuple.

mp =< Pp,Lp > (6)

where Pp is the period and Lp is the size in bytes. A packet
mp,q can map the qth instance of the message mp.

mp,q =< Tp,q, vlp,r ,Pp,Lp > (7)

where Tp,q is the generated time of a packet mp,q in an end
system (ES).

In the TTE network, there are three traffic classes, TT
traffic, RC traffic and BE traffic.
• A TT traffic needs a global synchronized clock to sup-
port the TT schedule table which is a flow table with the
sending/receiving time window.

• A RC traffic has a Bandwidth Allocation Gap (BAG)
which is the minimum time interval between two con-
secutive packets of a RC traffic in the source end system
and a maximum allowable delay (MAD) which limits
the delay boundary. Generally, the two constraints have
the same value, we define the value in Pp. Because RC
traffic is event-triggered and has no period Pp. Mean-
while, RC traffic needs a flow table to storage the traffic
paths vlp,r . Generally, if system is not reconfigured,
the RC flow table should be static to guarantee the
reliability and security of the RC traffic.

• A BE traffic is a low-priority Ethernet traffic without
time-triggered and BAG constraints, but the delay time
should pay respect to retransmission timeout (RTO)with
automatic repeat-request (ARQ). Meanwhile, BE traffic
also needs a flow table to storage the traffic paths vlp,r .
However, the BE flow table doesn’t have to be static.

B. NETWORK FRAMEWORK
To increase the time determinacy of TTE degraded by the
asynchrony between tasks and the network in end systems,
Software Defined Networking (SDN) is introduced into TTE
called software defined time-triggered Ethernet (SDTTE) as
shown in Fig. 4 [7]. And TTE switches must have the ability
of software defined path.

FIGURE 4. The network architecture of Software Defined TTE.

When the system need be reconfigured, there is no flow
table or a huge difference between the generated time Tp,q and
the triggered time, the switch would report the TT message to
a centralized controller so that the centralized controller can
obtain the received time of the TT traffic from the source ES
to the first connected switch.

When the system need not be reconfigured, we defined a
threshold and time drift which are relative to the first gener-
ated time Tp,q+1 for a TT traffic after last update. If the time
drift exceeds the threshold, the flow table will be reconfigured
online. The threshold avoids big jitters for TT traffic during
updating the online TT schedule table.

No matter what the state of the system is, the TT sched-
ule tables required by TTE switches can be updated by the
corresponding controller as follows.
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C. DISTRIBUTED UPDATE MECHANISM
A logically-centralized controller directly manages the dis-
tributed network by configuring the update mechanisms.
Since flow tables are installed in switches, it needs a feasible
update table, which contains order and time to complete
updating all flow tables step-by-step [26]–[28]. However,
obtaining a feasible update table is NP-C problem, calculation
is complex [20]–[22].

Considering time constraint and BAG constraint, the dis-
tributed update mechanism is only used for the TT and RC
traffic. While the centralized controller provides the time
window constraints. When update requests come for the TT
and RC traffic, we calculate the new TT schedule table and
RC flow table first. According to old and new schedule/flow
table, the time window of the update table is obtained by our
mixed-critical algorithm. In the new TT schedule table and
RC/BE flow table, each schedule/flow table entry must be
sent before the time window in update table so that switches
can calculate the precise update time by Earliest Deadline
First (EDF) algorithm. At this moment, the precise update
time in a switch is a subset of the update time in controller.
If the consistent update can be realized by conventional cen-
tralized control, it can be realized by the distributed control.

The transmission delay between controller and each switch
is stable and same for each switches, because they are sin-
gle hop. And we can calculate the max transmission delay
by maximum round-trip time (RTT) once. The arrival time
had better close to the lower bound of time window, it can
reduce the waiting time of new flow table so that the TCAM
resources can be occupied less.

IV. MIXED-CRITICAL UPDATE
In ethernet, we does not have enough constraint to set time
window. So general ethernet can not realize the above dis-
tributed control mechanism. In SDTTE, the time constraint
and BAG constraint make the update mechanism of dis-
tributed control possible for TT traffic and RC traffic, respec-
tively. According to the update mechanism of distributed
control for TT traffic and RC traffic, a mixed-critical update
algorithm in SDTTE is illustrated as follows.

FIGURE 5. Scheduling process of the TT traffic in switches.

A. TIME WINDOW-BASED UPDATE FOR TT TRAFFIC
When there is no updated TT schedule table for TT messages
in switches, they are scheduled as shown in Fig. 5, where
T R,Up,q,i denotes the receiving time window of the packet mp,q
with the path version U in the switch i, TW ,Up,q,i is the waiting

delay, and T S,Up,q,i denotes the sending time window. T F,Up,q,i is
the time window from the sending deadline for a packet mp,q
to the receiving start time for the next packet mp,q+1 in the
switch i, T i,j,Up,q is the common part of time windows T F,Up,q,i and

T F,Up,q,j in two switches i and j, and T
I ,U
p,q,i denotes the remaining

part of time window for a time window T F,Up,q,i in the switch i,

namely, T Ip,q,i = T F,Up,q,i − T
i,j,U
p,q .

If a packet mp,q+1 is transmitted by using a new path
first, the corresponding TT schedule rule need be updated
before the packet is generated mp,q+1, T F,Np,q,n is the time
window from the sending deadline for a packet mp,q to the
new receiving start time for the next packet mp,q+1 with the
path version N in the switch n, and T i,j,Np,q is the common part
of time windows T F,Np,q,i and T

F,N
p,q,j .

For switches i and j in the new path, the common part of
time windows between the old path and the new path can be
described by

T i,jp,q =

{
T i,j,Op,q ∩ T

i,j,N
p,q , i, j ∈ SWp,O

T i,j,Np,q , others
(8)

where SWp,O is the switch set for a message mp with the old
path O.
The simplest way to solve the updating problem is to let

the update operation take place in the common time window,

TCp,q =
⋂

i,j∈SWp,N

T i,jp,q (9)

If the common time window TCp,q exists, all switches in the
new path can update their TT schedule tables at the same time
window. But the common time window TCp,q don’t always
exist. In other words, TCp,q = φ may often occur in multi-
hop network. The simplest update is not a universal method
and can not be used to update TT schedule table.
The switches in the new path N should update their TT

schedule tables separately. The packet mp,q+1 should not be
disturbed by the old TT schedule table, so the update must
happen before both the old and the new receiving time win-
dows. Without knowing if there are any updates, the certain
time window T Fp,q,n can be described by

T Fp,q,n = T F,Op,q,n ∩ T
F,N
p,q,n

=

[
2S,O
p,q,n,min

(
2
R,O
p,q+1,n,2

R,N
p,q+1,n

)]
(10)

where 2S,O
p,q,n is the sending deadline of a packet mp,q in

the switch n with the old TT schedule table, 2R,O
p,q+1,n is the

receiving beginning time of a packet mp,q+1 with the old TT
schedule table and 2R,N

p,q+1,n is the receiving beginning time
of a packet mp,q+1 with the new TT schedule table.
It needs installation time for updating flow table, so in

the detailed process for TT traffic updating, the installation
time should be counted in the decision of updating window.
Without loss of generality, we assume that the maximum
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installation time of a flow table is dm. The formula (10) can
be converted into

T Fp,q,n =
[
2S,O
p,q,n,min

(
2
R,O
p,q+1,n,2

R,N
p,q+1,n

)
− dm

]
(11)

Definition 1: Time window update changes a flow table
entry in switch n during the time window TFp,q,n ∈ T Fp,q as
shown in Algorithm 1, when a flow table for a packet need be
updated.

Algorithm 1 Time Window Update
1: Data : vlold , vlnew, scheduleold , schedulenew;
2: Result : T Fp,q;
3: Initialize : T Fp,q← ∅;
4: for i 1 to n by 1 do
5: if SWi ∈ vlnew then
6: calculate : T Fp,q,n, according to equation (11);
7: update : T Fp,q← T Fp,q,n;
8: end if
9: end for

10: return T Fp,q;

Theorem 1: Time window update for TT traffic is a per-
packet consistent update.
Proof of Theorem 1: There is no transmitted TT message

during the corresponding update, so black hole and loop could
never occur.

Meanwhile, each packet is scheduled by the either
old or new TT schedule table.

So time window-based update for TT traffic is a per-packet
consistent update.

B. RATE-CONSTRAINED UPDATE FOR RC TRAFFIC
There is no schedule table for the RC traffic, so time window
update can not be applied to RC traffic directly. The simplest
referable update is the two-phase update. But it takes up a
lot of TCAM resources during update. We present the rate-
constrained update for RC traffic to reduce the requirement
of TCAM resources.
Definition 2: The rate-constrained update for RC traf-

fic is shown in Algorithm 2. More specifically, it updates
new added switches SWn first. And then based on the time
T lastoldp,q−1 that the last packet using old path arrives at its first
switch, the rate-constrained update performs path updates
of common switches SWc belonging to both old path and
new path during the time window between the worst-case
end to end delay and the maximum allowable delay. Finally,
it performs garbage collection to delete the flow table entry
in old switches SWo immediately.
In Algorithm 2,Dp denotes the worst-case end to end delay,

it can be computed by network calculus (NC) using equation
(2) (3) [45]. The time window T Fp,q limits the update time of
common switches SWc.

T Fp,q =
[
T lastoldp,q−1 + Dp,T

lastold
p,q−1 + Pp − dm

)
(12)

where the maximum allowable delay is the same as its period.

Algorithm 2 The Rate-Constrained Update
1: Data : vlold , vlnew,Pp,Dp;
2: Result : SWn, SWc, SWo,T Fp,q;
3: Initialize : SWn← ∅, SWc← ∅, SWo← ∅;
4: calculate : T Fp,q, according to equation (12);
5: for i 1 to n by 1 do
6: if SWi ∈ vlnew then
7: if SWi /∈ vlold then
8: SWn← SWi;
9: else
10: SWc← SWi;
11: end if
12: else
13: if SWi ∈ vlold then
14: SWo← SWi;
15: end if
16: end if
17: end for
18: return SWn, SWc, SWo,T Fp,q,n;

Theorem 2: The rate-constrained update is a per-packet
consistent update.
Proof of Theorem 2: If there is no common switch between

the old path and the new path, namely, the old path and the
new path are mutually independent, so black hole and loop
can not occur, and packets follow the per-packet consistency.
In the case of no common switch, rate-constrained update is
a per-packet consistent update. Meanwhile, the second step
can be ignored.

FIGURE 6. An instance of the rate-constrained update flowchart
without black holes. (Nodes 1–7 are switches, source/destination ESes
are hidden).

If there are some common switches between the old path
and the new path, rate-constrained update has three steps.
After updating new added switches, the packet will continue
transmitting on old path as shown in Fig. 6(b). Due to BAG
constraint is same as MAD, there is no packet between the
worst-case end to end delayDp and MAD so that there is suf-
ficient time for updating common switches. And the garbage
collection is performed immediately. When a new packet is
generated, it will be transmitted on the new path. Thus rate-
constrained update is a per-packet consistent update.
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According to the above classified discussions, the rate-
constrained update for RC traffic is a per-packet consistent
update.

When old and new paths are shown in Fig. 3(a), the rate-
constrained update performs the three steps update. It updates
new added switches SW6 and SW7 first. And then all com-
mon switches are updated during the time window T Fp,q.
Finally, the garbage collection is performed. It eliminates
black holes as shown in Fig. 6.
Meanwhile, when old and new paths are shown in Fig. 2(a),

there is no new switch for new path, every switch belongs
to common switch sets. The rate-constrained update only
performs the second step, all switches are updated during the
time window T Fp,q. It eliminates loops.

C. CONVENTIONAL UPDATE FOR BE TRAFFIC
The rate-constrained update can not be applied to the RC
traffic directly, because there is no generated time constraint
for the BE traffic, not like either TT traffic or RC traffic. The
RC traffic can uses more loose strategy to update flow table,
such as conventional time-based update.

For transmission control protocol (TCP) pattern, BE traffic
must satisfy retransmission timeout (RTO) constraint to limit
the end to end delay, which can be gotten by the maximum
round-trip time (RTT) from the sending time of a message
to the receiving time of the corresponding acknowledgement
message (ACK). Garbage collection is performed with RTO
for TCP pattern or a default value for user datagram proto-
col (UDP) pattern [40].

V. CONSISTENT UPDATE EXPERIMENT
A. SIMULATION MODEL
The self-designed software based on OMNeT++ is used
to perform the experiment to evaluate the performance of
the mixed-critical update algorithm. The switch module
and the controller module are similar to Klein and Salih
[46], [47]. But the buffers in switch module and the cen-
tralized controller module are divided into three types, TT
buffers, RC buffers, and BE buffers.

An ES module is displayed in Fig. 7, where Sflow mod-
ules generate all packets with different traffic types, Rflow
modules receive all packets with different traffic types,
flowDispatch module is responsible for dispatching packets
to different Sflow/Rflow modules, buffer modules temporar-
ily store different packets, and scheduler module realizes
scheduling for different traffics according to different traffic
constraints. flowCheck module is used to check whether the
received packets satisfy rules, such as the TT schedule table
and BAG constraint.

The bandwidth of each link is 100Mbit/s. Message sources
and destinations are generated randomly. When the period of
TT messages is small (such as 2ms and 4ms), TT messages
can not be scheduled as the solution space is too big to
traverse. So in our experiment, the period of TT messages
is selected from set (16ms, 32ms, and 64ms). The BAG of

FIGURE 7. Implemented model of the ES.

RCmessages is a random value among 2ms, 4ms, and 8ms to
make full use of bandwidth in the absence of link congestion.
The link congestion may lead to packet loss, it influences
statistics of black hole.

B. INCONSISTENT UPDATE AND ASSESSMENT
1) NETWORK CONFIGURATION
The inconsistent bugs, which includes black holes, loop and
inconsistent path, rarely appear in usual complex networks.
Because any one update algorithm eliminates the most of
bugs. We find the network topology as shown in Fig. 8, where
black holes, loop and inconsistent path can appear with a high
probability during the path update. There are four end systems
and seven switches in the network, where SW6 and SW7 are
standby switches which are used in the new path. Meanwhile,
there is a SDN centralized controller connecting with each
switch to dispatch flow tables. The initial physical links are
green and blue physical links. To avoid congestion between
old paths and new paths during updating, green physical links
are break, pink physical links and pink switches are added to
reconfigure network topology.

FIGURE 8. Network topology in inconsistent update.

According to the old and new network topologies, each
path is updated by another path, except four paths with a
single switch, such as ES1–SW1–ES2. And others have the
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old undirected path (SW1–SW2–SW3–SW4–SW5). All new
paths are subdivided equally into two categories. The
one half is updated by reverse paths (SW1–SW4–SW3–
SW2–SW5) similar to Fig. 2(a), and the another half is
updated by their alternate paths (SW1–SW6–SW3–SW7–
SW5) as same as Fig. 1(a). According to the section II-B,
black hole, loop and inconsistent path are all highly likely to
occur in this path update. The results can show the difference
among algorithms well.

According to old paths of messages and the rule of new
paths, we can obtain the new paths of the random 128 mes-
sages. To schedule TT messages in the above network,
the number of TT messages can not be too many, it is
cautiously set to 16. The number of RC messages and BE
messages are randomly set to 60 and 52 respectively. Except
the messages in the four paths with a single switch, there
are 5 TT messages, 19 RC messages and 15 BE messages
updated by its alternate paths. Meanwhile, there are 5 TT
messages, 18 RC messages and 17 BE messages updated
by its reverse paths. The conventional update algorithms are
sequential update, time-based update, two-phase update and
reverse update. Our mixed-critical update algorithm will be
compared with these four update algorithms in terms of black
holes, loops, and inconsistent paths.

FIGURE 9. The number of black holes in sequential update.

2) BLACK HOLE BUGS
Black hole may only occur in the sequential update, when
SW3 and SW7 are updated by its alternate paths. The num-
ber of black holes for different types of messages is shown
in Fig. 9. The results show that the maximum of black holes
in sequential update are 1, 3, and 11 for TT messages, RC
messages and BE messages, respectively. So the maximum
ratios of black holes are 20%, 15.79%, and 73.33% in alter-
nate paths. All update algorithms have no black hole, except
sequential update. The sequential update can not be applied
to TT traffic or RC traffic in SDTTE.

FIGURE 10. The number of loops in sequential update.

3) LOOP BUGS
Loop may occur in the sequential update, when SW3 and
SW4 are updated by its reverse paths. The number of loops for
different types of messages is shown in Fig. 10. The results
show that the maximum of loops in sequential update are
4, 4, and 10 for TT messages, RC messages and BE mes-
sages, respectively. So the maximum ratios of loops are 80%,
22.22%, and 58.82% in reverse paths. All update algorithms
also have no loop, except sequential update. It also proves that
the sequential update can not be applied to TT traffic or RC
traffic in SDTTE.

FIGURE 11. The number of inconsistent paths in reverse update.

4) INCONSISTENT PATH BUGS
Inconsistent path may occur in the sequential update and
reverse update, especially in reverse update. Inconsistent path
bugs may exist in reverse update, if there are transmitted
packets during updating corresponding flow tables. The num-
ber of inconsistent paths for different traffics in reverse update
is shown in Fig. 11. The results show that the maximum of
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loops in reverse update are 5, 5, and 16 for TT messages,
RC messages and BE messages, respectively. So the maxi-
mum ratios of inconsistent paths in reverse update are 50%,
13.51%, and 50% in all update paths. The results show that
reverse update can not be applied to TT traffic or RC traffic.
Because TT traffic and RC traffic must satisfy requirements
of strict real-time and mixed-critical in SDTTE.

C. PERFORMANCE ANALYSIS
1) NETWORK CONFIGURATION
To analyze the performance of the mixed-critical update algo-
rithm, the above special network is not suitable. To finish
experiments efficiently with a general computer (CPU is
i3-M380, and memory is 4G), we build a larger suitable
network, where flow table, TT schedule table and update
table can all be calculated in 30 minutes. The network is
mesh network shown in Fig. 12, all core switches SWs are
interconnected with each other. And each core switch is
connected with 2 edge switches ESWs. All 8 edge switches
ESWs are connected with 8 ESes. So there are 64 ESes in
the network totally. Meanwhile, there is a SDN centralized
controller connected with all SWs and ESWs to dispatch flow
tables.

FIGURE 12. Network topology in performance analysis.

We generate different numbers of messages with the ran-
dom paths to analyze algorithm performance. According to
actual situations in distributed real-time system, the ratio
of TT, RC, and BE traffics is 1:3:4. The conventional
update algorithms are sequential update, time-based update,
two-phase update and reverse update. Our mixed-critical
update algorithm will be compared with these four update
algorithms in terms of memory space complexity, computa-
tional time complexity, and update time as follows.

2) MEMORY SPACE COMPLEXITY
The space complexity describes that an update algorithm
occupies the sizes of TCAM resources. Different traffics have

FIGURE 13. The memory space complexity of all update algorithms
with different amount of messages.

different memory information, such as TT traffic has the trig-
gered time uniquely. To eliminate the impact of the number of
randomly generated different traffics, the maximum number
of flow table entries in the whole network can reflect the
memory space complexity better. The memory space com-
plexity of all update algorithms are shown in Fig. 13. The
results show that the maximum number of flow table entries
processed by two-phase update is more than others. Namely,
Two-phase update needs the more TCAM resources than oth-
ers. Except two phase update, the memory space complexities
of other different update algorithms are same. The updates
without version tag reduce TCAM resource requirements by
an average of 19.93%.

FIGURE 14. The time complexity of all update algorithms with different
amount of messages.

3) COMPUTATIONAL TIME COMPLEXITY
Computational time complexity is the number of CPU
instructions. Different consistent update algorithms also have
different computational time complexities for updating the
flow table as shown in Fig. 14. The result shows that
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the computational time complexity of two-phase update is
the least than others. Namely, it takes the least comput-
ing resources to update flow table, compared with others.
However, the mixed-critical update has the lowest time com-
plexity in all four updates without version tag. The mixed-
critical update reduced computational time complexity by an
average of 17.14%, compared with time-based update.

4) UPDATE TIME
Update time of different update algorithms with different
amount of messages are shown in Fig. 15. The results show
that the update time of two-phase update is also the least
than others. However, themixed-critical update has the lowest
time complexity in all four updates without version tag. The
mixed-critical update reduced update time by an average
of 7.96%, compared with time-based update.

FIGURE 15. The update time of all update algorithms with different
amount of messages.

D. PHENOMENA ANALYSIS
As shown in Fig. 9, Fig. 10, and Fig. 11, the black holes,
loops, and inconsistent path for TT traffic are periodic in the
100 times independent repeat experiments. Because the initial
updated instant of the flow table is periodic and TT traffic
are transmitted periodically according to TT schedule table.
However, RC and BE traffics are not time-triggered, so their
black holes, loops, and inconsistent path are not periodic in
the experiments.

Except two-phase update, other four algorithms are the
same memory space complexity. Because they have the simi-
lar operations (add, replace and delete) in the same situation.
For the four algorithms, the main differences of their update
mechanisms are operating time and operating sequence.

If there are old packets in SW2− SW4 during updating its
reverse paths or there are old packets in SW2− SW3 during
updating its alternate paths, inconsistent path bugs may exist
in time-based update in practice. However, the probability of
inconsistent path bugs is very small. Due to the time con-
straint and BAG constraint, there is no packet in the network

before we update corresponding flow table entry of TT and
RC traffics. Our mixed-critical update algorithm guarantees
requirements of strict real-time and mixed-critical in SDTTE
absolutely.

VI. CONCLUSION
Consistency is a critical prerequisite for SDN to ensure
network updates. Per-packet consistent updates reduce the
number of scenarios, and improve network security. Just two
paths must be considered, namely the packet flows through
the network completely before the update occurs, or after the
update occurs. Due to the black hole, loop, and inconsistent
path, network updates are not per-packet consistent. Through
analyzing the traffic constraints in SDTTE, there is a potential
to optimize the existing updates for time-triggered Ethernet
by traffic constraints.

First, the update mechanism is changed from the cen-
tralized control to distributed control in SDTTE. The cen-
tralized controller need not calculate the precise update
time for the TT and RC traffic, Only the boundary of the
update time for the TT and RC trafficis constrained by
the centralized controller. It reduces the computational time
complexity.

And then a mixed-critical update algorithm is presented
for the TT and RC traffic to guarantee their reliability and
security. At the same time, the mixed-critical update algo-
rithm is per-packet consistent for the TT and RC traffic
strictly.

Finally, the 100 independent repeat experiments are real-
ized to analyze the performance of our mixed-critical update
algorithm. The statistical results show that the mixed-critical
update algorithm are consistent update. Compared with
two-phase update, the mixed-critical update reduces TCAM
resources by more than 19.93%. Meanwhile, compared with
time-based update algorithm, the computational time com-
plexity and update time in themixed-critical update algorithm
reduces by 17.14% and 7.96%.
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