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ABSTRACT Spatial modulation (SM) uses a single antenna for transmission each time to avoid syn-
chronization and interferences among transmitter antennas, and differential SM (DSM) is a kind of SM
technique that does not need pilot symbols and channel estimation. The original noncoherent detection
for DSM is very complicated, so various low-complexity detectors have been proposed. However, they are
still too complicated to be applied to DSM with many transmitter antennas. In this paper, low-complexity
DSM schemes for dozens or hundreds of transmitter antennas are designed. Two bit-mapping schemes are
proposed: one is group arrangement for maximizing data rates, and the other is full mapping so that DSM
can be easily detected at the receiver. A low-complexity detection algorithm that is less complicated than all
existing fixed-complexity detectors is proposed as well. In addition, two detection strategies for the proposed
bit mappingmethods are proposed. Simulation results show that the proposed low-complexity DSM schemes
have satisfactory error performance.

INDEX TERMS Differential detection, differential encoding, massive MIMO, spatial modulation.

I. INTRODUCTION
Wireless communication systems equipped with multiple
antennas can achieve high spectral efficiency. Spatial mod-
ulation (SM) [1]–[4] is a kind of multi-antenna technique
which uses a single antenna for transmission each time so it
avoids synchronization and interferences among transmitter
antennas. By selecting indices of antennas, SM can transmit
additional data bits without increasing radio-frequency cir-
cuits and power consumption.

Coherent SM needs pilot symbols for channel estimation.
When the channel varies rapidly, pilot symbols should be
transmitted frequently so the rate loss is significant. For such
channels, differential SM (DSM) [5]–[18] with differential
detection is more suitable than coherent SM. Different from
SM, DSM is modulated block-by-block. Conventionally,
DSM is viewed as a special case of differential space-time
modulation (DSTM) [12], [19] which tests all data matrices
one-by-one at the noncoherent maximum-likelihood (ML)
receiver. A differential detector utilizes the previous symbol
(block) as a reference symbol (block) to detect the current
symbol (block). In DSTM and DSM systems with NT trans-
mitter antennas, each transmitted block consists of NT time
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slots so the reference block contains sufficient information
of channel coefficients. More specifically, each antenna is
activated exactly once during each transmitted block of DSM,
so all channel coefficients of NT transmitter antennas can be
estimated from the previous block. For a fixed transmission
rate, because the number of NT ×NT data matrices increases
exponentially withNT , theML detector is very complicated if
NT is not small. To reduce the complexity of the receiver, sev-
eral detectors were proposed in [7]–[9], but their complexity
also grows exponentially with NT . Consequently, they were
simulated for NT ≤ 8 only.

Massive multiple-input-multiple-output (MIMO) systems
where the base station is equipped with dozens or hundreds
of antennas have attracted much attention in recent years.
For noncoherent downlink massive MIMO systems, only two
schemes [10] and [11] were proposed. Unlike regular DSM
usesNT×NT square space-timematrices, in the DSM scheme
proposed in [11], the number of time slots per transmitted
block is T < NT , resulting in NT × T rectangular space-time
matrices. Because the reference block does not have enough
information of channel coefficients, conventional two-block
differential detection [12] cannot be used. In fact, for a
specific transmitter antenna, it always has a nonzero proba-
bility that this antenna is not activated during finite transmit-
ted blocks. Hence, multiple-block differential detection [13]
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still cannot be used. Consequently, only recursive decision-
feedback differential detection [14] which uses all previously
received blocks with a forgetting factor can be applied to the
transmitter in [11]. Since the signals received a long time ago
are still utilized, the scheme in [11] is not suitable for time-
varying channels though it is simple enough for large NT .
To the best of my knowledge, the detection algorithm

proposed in [10] is the simplest detector for regular DSM.
The detector we proposed in [9] is not simple enough
because antenna-index matrices, which are antenna indices
of all symbols in a block, are still detected one-by-one. In
[10], instead of detecting indices of all received symbols
jointly, the authors proposed to detect them individually.
All individually-detected values form a temporarily decided
antenna-index matrix which is very likely illegitimate, e.g.,
containing some identical antenna indices (note that each
antenna is activated only once). If the temporary matrix is
invalid, some legitimate antenna-index matrices modified
from the temporary matrix are tested. Among all tested legit-
imate matrices, the one whose probability is the highest is
chosen as the finally-determined antenna-index matrix. How-
ever, the number of tested matrices is not fixed and likely very
large for NT � 1, so only NT = 6 and 16 were simulated
in [10]. Detailed discussion of [10] can be found later in
Sec. III.

In this paper, the proposed detection algorithm also detects
the received symbols individually like [10]. However, the
values of antenna indices are determined successively, and
a later detected index value cannot be the same as pre-
viously decided values. The detection order is determined
according to their reliability, and a more reliable symbol is
detected earlier than a less reliable symbol. By doing so, the
temporarily-decided antenna-index matrix does not have the
same antenna indices, so it is very likely legitimate. If it is
not, the proposed modification method is also simple. By
the proposed simple fixed-complexity detection, simulation
results of square DSM with NT = 256 can be obtained.
Compared with the noncoherent ML detection, the proposed
algorithm is much less complicated, at the price of higher
error probability which is only slightly higher for NT = 4, 6
and 8 according to simulation results.

On the other hand, the bit mapping method proposed in
[5] and used in [7] and [10] is complicated for NT � 1.
To my best knowledge, bit mapping designed for large NT
such as NT = 16 has not been proposed yet. In this paper,
new mapping schemes for a lot of transmitter antennas are
proposed also. There are independently-mapping symbols
and mapping groups in the proposed scheme. An algorithm
of group arrangement for maximizing data rate is proposed.
Besides, a full mapping method to simplify detection is pro-
posed as well.

Coded DSM schemes for increasing transmit diversity
have been proposed in [15], [16], [18]. For M -ary PSK
(phase-shift keying) with a fixed value of M , coded DSM
schemes have less data rate than the original DSM which
maximizes transmission rate. Note that this paper only

considers the original DSM, so coded DSM is beyond the
scope of this paper.

The main results and contributions of this paper are sum-
marized as follows.

1) The differential encoding of DSM is performed by
multiplication of NT × NT matrices which is not
easy for NT � 1. This paper indicates that differ-
ential encoding of DSM by matrix multiplication is
equivalent to differentially encoding of NT DPSK
(differential phase-shift keying) symbols whose ref-
erence symbols are in the previous block. DSM
transmits additional data bits by selecting different
reference orders.

2) For a lot of transmitter antennas, a low-complexity
bit mapping technique and a group arrangement
algorithm to maximize data rates are proposed as
well.

3) A low-complexity detection algorithm for DSM
which is less complicated than all existing fixed-
complexity detectors is proposed. Simulation
results indicate that error performance of the pro-
posed detection is close to that of the noncoherent
ML detection.

4) To simplify the detection complexity, a new
full-mapping scheme and two detection strate-
gies are proposed. Using the full-mapping scheme
and symbol-wise mapping, the complexity of the
receiver is extremely low so error performance can
be simulated for downlink massive MIMO systems.

The remainder of the paper is organized as follows. In
Sec. II, background knowledge of DSM in [5] and [9] is
briefly reviewed. In Sec. III, a new multi-group bit mapping
scheme and a new detection algorithm for DSM are proposed.
Group arrangement for bit mapping, full-mapping DSM and
detection strategies are proposed in Sec. IV. Finally, Sec. V
concludes this paper.
Notation: (.)T and ‖.‖ denote the transpose and the

Frobenius norm of a matrix, respectively. diag{.} represents
the operation from a row vector to a diagonal matrix. bc
denotes the floor function. CN (0, σ 2) denotes the zero-mean,
σ 2-variance, complex Gaussian distribution.

II. REVIEW OF DSM
Consider a communication system with NT transmitter
antennas and NR receiver antennas. The channels between
antenna pairs are Rayleigh-fading and independent of each
other. If the symbol s is transmitted via the mth antenna,
the constellation vector is represented by a column-vector
[0, · · · , 0, s, 0, · · · , 0]T where the only nonzero entry s is the
mth element. Each block of DSM contains NT time slots, and
allNT column-vectors form anNT×NT matrix of transmitted
signals S(t) for the tth block which satisfies two restrictions:
(1) At each time slot, only one antenna is activated, i.e., there
is only one nonzero entry in each column of S(t). (2) In
each block, each transmitter antenna is activated exactly once,
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i.e., there is only one nonzero entry in each row of S(t). For
the tth block, the NR × NT matrix of received signals is

Y(t) = H(t)S(t)+ N(t) (1)

where H(t) is the NR × NT matrix of channel coefficients
whose entries are CN (0,1), and N(t) is the NR × NT matrix
of AWGN with CN (0,N0) entries.
The number of permutating the antennas index in each

block isNT !, andQ permutations are used whereQ is a power
of two. IfQ achieves themaximumvalue, i.e.,Q = 2blog2 NT !c,
the DSM is called full rate. The signal constellation for data
symbols is M -ary PSK where M = 2b and b is an integer.
There are totally log2 Q + NT b data bits at each block, so
the spectral efficiency is R = log2 Q

NT
+ b bits/s/Hz. For

the tth block, log2 Q bits determine an antenna-index matrix
A(t) ∈ A = {A1,A2, · · · ,AQ} and NT b bits decide NT data
symbols x(t) = [x1(t), x2(t), · · · , xNT (t)]. All antenna-index
matrices Aq where q ∈ {1, 2, · · · ,Q} have entries 0 or 1 and
there is only one nonzero entry in each row and column. Note
that complex-valued antenna-index matrices proposed in [6],
[9] are not considered in the paper because they should be
detected one by one and thus cannot be detected efficiently.
An NT × NT data matrix X(t) is calculated by

X(t) = diag{x(t)}A(t). (2)

Because X(t) is a unitary matrix, DSM can be viewed as a
special case of DSTM. Therefore, differential encoding and
differential detection of DSTM is applied to DSM. At the
transmitter, S(t) is determined by

S(t) = S(t − 1)X(t). (3)

The initial reference matrix X(0) is the identity matrix, so
the transmitted matrix S(t) is unitary and satisfies the two
restrictions. At the receiver, the noncoherent ML detection
is

X̂(t) = arg min
X̃∈X
‖Y(t)− Y(t − 1)X̃‖2 (4)

where X denotes the set of all possible values of X(t). To
obtain X̂(t), the receiver has to try all Q ×MNT elements in
X . If NT is not small, differential encoding and detection is
not easy.

In [9], given an antenna-index matrix, we indicate that
differential detection of DSM is equivalent to differen-
tially detecting data symbols separately. For A(t) and Aq
where q ∈ {1, 2, · · · ,Q}, define p = (p(1), p(2), · · · , p(NT ))
and pq = (p(1)q , p

(2)
q , · · · , p

(NT )
q ) where p(k) and p(k)q ∈

{1, 2, · · · ,NT } represent the position of 1 in the kth column
of A(t) and Aq, respectively, for k ∈ {1, 2, · · · ,NT }. Let
sk (t) denote the transmitted symbol in the kth time slot of
the tth block S(t). According to the differential encoding in
(3), in the kth time slot of the tth block, the activated antenna
is the antenna used in the p(k)th time slot of the t − 1th
block, the reference symbol is sp(k) (t−1), and the transmitted
data symbol is xp(k) (t). That is, sk (t) = sp(k) (t − 1)xp(k) (t).
Therefore, the receiver can use yip(k) (t − 1) and yik (t) only to

detect xp(k) (t) where i ∈ {1, 2, · · · ,NR} and yij(t) denotes the
entry in the ith row and the jth column of Y(t).
Example 1: Assume NT = 4, NR = 1, and

A(t) =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


whose p = (3142), so

X(t) =


0 x1(t) 0 0
0 0 0 x2(t)

x3(t) 0 0 0
0 0 x4(t) 0

 .
If S(t − 1) is

0 s2(t − 1) 0 0
0 0 0 s4(t − 1)
0 0 s3(t − 1) 0

s1(t − 1) 0 0 0

 ,
then in

S(t) =


0 0 0 s4(t)
0 0 s3(t) 0

s1(t) 0 0 0
0 s2(t) 0 0

 ,
we have s1(t) = s3(t − 1)x3(t), s2(t) = s1(t − 1)x1(t),
s3(t) = s4(t − 1)x4(t) and s4(t) = s2(t − 1)x2(t). For
simplicity, yj(t) is used instead of y1j(t) ∀j ∈ {1, 2, · · · ,NT }.
For thisA(t),Y(t)−Y(t−1)X̃ in (4) with X̃ = X(t) is [y1(t)−
y3(t − 1)x3(t), y2(t) − y1(t − 1)x1(t), y3(t) − y4(t − 1)x4(t),
y4(t) − y2(t − 1)x2(t)], and the minimization in (4) can be
done separately, e.g., x̂3(t) = argminx̃ |y1(t) − y3(t − 1)x̃|2.
Therefore, [y3(t−1), y1(t)], [y1(t−1), y2(t)], [y4(t−1), y3(t)]
and [y2(t − 1), y4(t)] are utilized for detecting x3(t), x1(t),
x4(t) and x2(t), respectively.
The low-complexity ML detector proposed in [9] is

described as follows. At the receiver, ∀q ∈ {1, 2, · · · ,Q}, the
determined data symbols of Aq, x̂q(t) = [x̂(q)1 (t), x̂(q)2 (t), · · · ,
x̂(q)NT (t)], are obtained by

x̂(q)
p(k)q

(t) = argmin
x̃

NR∑
i=1

|yik (t)− yip(k)q (t − 1)x̃|2 (5)

and the metric of Aq is

mq(t) =
NT∑
k=1

NR∑
i=1

|yik (t)− yip(k)q (t − 1)x̂(q)
p(k)q

(t)|2. (6)

The detected value of A(t) is Aq̂ satisfying

Aq̂ = arg min
Aq∈A

mq(t) (7)

and the detected value of x(t) is x̂q̂(t). Theminimization of (5)
and (7) needs to try Q× (MNT + 1) times, so the complexity
reduction compared with the one-by-one ML detector in (4)
is 1− MNT+1

MNT
.
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Two methods for the mapping from log2 Q data bits to p
were proposed in [5]. The first method is looking-up a table
which is too huge if NT is not small, so the second method is
used in [7] and [10] which consists of two steps:

Step 1 Map log2 Q data bits to q = (q1, q2, · · · , qNT−1)
where qk ∈ {0, 1, 2, · · · ,NT − k} ∀k = 1, 2, · · · ,
NT − 1.

Step 2 Convert q to p. Define an ordered list 2 =

{1, 2, · · · ,NT }. The value of p(1) is the value of
the q1 + 1th element in 2 and then this element
is removed from 2. After that, the value of p(2) is
the value of the q2 + 1th element in 2 and then
this element is removed from2, and so on. Finally,
p(NT ) is the only element in 2.

In Step 1 in [5], an integer m (0 ≤ m < Q) is formed
by log2 Q data bits first. Then q is determined based on the
equation

m = q1(NT − 1)! + q2(NT − 2)! + · · · + qNT−11!. (8)

The algorithm first finds the value of q1 which is the max-
imum value satisfying q1(NT − 1)! ≤ m, and then finds
the value of q2 which is the maximum value satisfying
q2(NT − 2)! ≤ m− q1(NT − 1)!, and so on. Because p(NT ) is
the only element in 2 in Step 2, there is no data bit mapped
to qNT in Step 1. In this paper, this two-step mapping is used,
but new mapping methods instead of (8) will be proposed in
the following sections.

III. THE PROPOSED FULL-RATE DSM
A. BIT MAPPING
The multiplication of NT × NT matrices in (3) is not easy
if NT � 1. In fact, the transmitter can be realized with-
out matrix multiplication. For each block, log2 Q data bits
determine p = (p(1), p(2), · · · , p(NT )) ∈ {p1,p2, · · · ,pQ}.
After that, differential encoding of DPSK whose reference
symbols are the symbols of the t − 1th block is done NT
times independently. The order of the reference symbols is
specified by p. At time slot k = 1, 2, · · · ,NT of the tth block,
using the p(k)th symbol of the t − 1th block as the reference
symbol, the data symbol is differentially encoded. Unlike
coherent SMwhich selects orders of antenna activation, DSM
selects orders of reference symbols. Note that by reference
order p only, one cannot know which transmitter antenna is
used. For instance, consider Example 1 whose p is (3142).
For the first time slot of the tth block, the used transmitter
antenna is the antenna used by the third symbol of the t−1th
block, but we do not know whether it is the first or second
antenna.

The complexity of the ML detection proposed in [9] is
proportional to the number of reference order Q. If NT is
large, then Q is extremely huge and thus the decoding is too
complicated to be realized. The high complexity is due to
the joint detection of p(1), p(2), · · · , p(NT ) in (7). To further
simplify the detection complexity, we should first separately
detect p(1), p(2), · · · , p(NT ) and then consider the relation of

p(1), p(2), · · · , p(NT ), like [10]. There are two limits on the
relation between p(1), p(2), · · · , p(NT ). The first one is essen-
tial to DSM.
Limit 1: p(i) 6= p(j)∀i 6= j.
For NT > 2,Q is always less than NT ! because NT ! is not a

power of two. Hence, some patterns of (p(1), p(2), · · · , p(NT ))
are not used by the mapping from data bits to p.
Limit 2: ForNT > 2, there areNT !−Q invalid permutations

for p.
For example, consider NT = 4 for which there are 4! = 24

permutations for p. Because only blog2 24c = 4 data bits are
used for choosing p, there are 24− 16 = 8 permutations are
not used and thus are invalid permutations for p.

In the bit mapping scheme proposed in [5] and intro-
duced in Sec. II, the integer m is formed by log2 Q data
bits, so if NT � 1, the value of m is too large and the
mapping to q by (8) is very complicated. In such a case,
the mapping should be divided into several mapping groups
and some independent symbols. For clarity of presentation,
q′NT+1−k = qk is used instead of qk which has NT + 1 − k
possible values. For instance, {q′8, q

′

7, q
′

6} is used instead of
{q1, q2, q3} for NT = 8. For q′2l corresponding to pNT+1−2l
where l is a positive integer, all 2l values can be mapped
by l data bits. Hence, the bit mapping for q′2l can be done
independently. A group is composed of multiple elements,
say {q′`1 , q

′

`2
, · · · , q′`n} where `1 > `2 > · · · > `n are

not powers of two. To maximize the data rate, `1, `2, · · · , `n
are not necessarily consecutive integers in general. How-
ever, the mapping method in [5] cannot be used directly if
`1, `2, · · · , `n are not consecutive integers.
A newmapping method for a group is proposed as follows.

The proposed mapping consists of the same two steps in
Section II, but the mapping from data bits to q is different
from (8). An integer m`1 , formed by blog2(`1 × `2 × · · · ×
`n)c data bits, is mapped to {q′`1 , q

′

`2
, · · · , q′`n} by using

n − 1 division. ∀k ∈ {1, 2, · · · , n − 1}, m`k divided by `k
gives out a quotient of m`k+1 with a remainder of q′`k∀k ∈
{1, 2, · · · , n − 1}. Finally q′`n = m`n . The equation of m`1
and {q′`1 , q

′

`2
, · · · , q′`n} is

m`1=q
′

`1
+ q′`2 × `1 + q

′

`3
× `1 × `2 + q′`4 × `1 × `2 × `3

+ · · · + q′`n × `1 × `2 × · · · × `n−1. (9)

B. A NEW LOW-COMPLEXITY DETECTION ALGORITHM
In [10], the values of p(k) are detected individually, so the
temporarily detected value of p, denoted by p̂, is likely to be
invalid. To satisfy Limit 1, the algorithm in [10] replaces the
repeated values among the elements of p̂ by unused values,
and all possible replacements are tried. However, the number
of identical values of p(k) may differ, so the complexity is not
fixed and perhaps very high for NT � 1. For Limit 2, if the
detected value of p(k) is invalid, the value of p(k) is exchanged
to a value of p(k

′) where k ′ > k . Nevertheless, it is possible
that all possible exchanges are still invalid, but [10] does not
discuss such a situation.
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In this paper, by deciding the elements of p̂ one-by-one
according to their reliability, the proposed detection algo-
rithm always obeys Limit 1. A more reliable symbol is
detected before a less reliable symbol. Once p(k) is detected
to be p̂(k), p̂(k) is removed from the candidate list, denoted by
8, for the remaining undetected p(k

′). Hence, the elements of
p̂ are never identical.
Set the initial value of the candidate list 8 =

{1, 2, · · · ,NT }. The proposed detection algorithm consists
of the following seven steps of which explanations are given
later.

Step 1 For k, l = 1, 2, · · · ,NT , compute

x̂ lk = argmin
x̃

NR∑
i=1

|yik (t)− yil(t − 1)x̃|2 (10)

and

ηlk =

NR∑
i=1

|yik (t)− yil(t − 1)x̂ lk |
2. (11)

Step 2 For k = 1, 2, · · · ,NT , sort all η1k , η
2
k , · · · , η

NT
k

in ascending order. The sorted metrics are denoted
by η

lk (1)
k ≤ η

lk (2)
k ≤ · · · ≤ η

lk (NT )
k where

lk (1), lk (2), · · · , lk (NT ) ∈ {1, 2, · · · ,NT }.
Set i = 1.

Step 3 Find the value of k ∈ 8, denoted by k̂ , which has
the maximum value of ηlk (2)k − η

lk (1)
k . That is

k̂ = argmax
k∈8

η
lk (2)
k − η

lk (1)
k . (12)

The detected value of p(k̂) is p̂(k̂) = lk̂ (1). Remove
k̂ from 8.

Step 4 For all elements in 8, say k , find the value of n
satisfying lk (n) = p̂(k̂). Delete ηlk (n)k and move the
following sorted metric ηlk (n+1)k , · · · , η

lk (NT+1−i)
k

up. In other words, ∀j = n, n + 1, · · · ,NT − i,
the updated value of lk (j) is the original value of
lk (j+ 1).

Step 5 If i < NT , add 1 to i and repeat Step 3 and Step 4;
otherwise, go to Step 6.

Step 6 Check whether p̂ = (p̂(1), p̂(2), · · · , p̂(NT )) is a valid
reference order. If it is invalid, modify p̂ so that it
becomes legitimate.

Step 7 Convert p̂ to data bits. For k = 1, 2, · · · ,NT , the
detected value of xk (t) is x̂k (t) = x̂ p̂

(k)

k , and recover
b data bits accordingly.

The flow chart of the proposed algorithm is illustrated
in Fig. 1. In Step 1, based on the assumption that sk (t) is
differentially encoded on sl(t−1), the detected data symbol is
x̂ lk and the metric is ηlk . After the sorting of η1k , η

2
k , · · · , η

NT
k

in Step 2, the value of k in 8 which maximizes the metric
difference in (12) is chosen in Step 3. The reason why the
comparison is based on the metric difference ηlk (2)k − η

lk (1)
k

instead of the metric ηlk (1)k is explained in the following
lemma.

FIGURE 1. The flow chart of the proposed detector.

Lemma 1: Consider p̃ = (l1(1), l2(1), · · · , lNT (1)) with
l1(1) = l2(1). There are two possible modifications of p̃
to obey Limit 1: replacing l2(1) by l2(2) which results in
p̃1 = (l1(1), l2(2), l3(1), · · · , lNT (1)) or replacing l1(1) by
l1(2) which results in p̃2 = (l1(2), l2(1), l3(1), · · · , lNT (1)).
If ηl1(2)1 − η

l1(1)
1 > η

l2(2)
2 − η

l2(1)
2 , then p̃1 is more likely

than p̃2.
Proof: The metric of the invalid p̃ is η =

∑NT
k=1 η

lk (1)
k ,

and the metrics of p̃1 and p̃2 are η1 = η − η
l2(1)
2 + η

l2(2)
2

and η1 = η − η
l1(1)
1 + η

l1(2)
1 , respectively. If ηl1(2)1 − η

l1(1)
1 >

η
l2(2)
2 − η

l2(1)
2 , then we have η1 < η2 which means that p̃1 is

more likely than p̃2. �
The lemma indicates that we should choose p(1) = l1(1)

instead of p(2) = l2(1). Therefore, the priority of
l1(1), l2(1), · · · , lNT (1) should depend on the metric differ-
ence ηlk (2)k − η

lk (1)
k where k ∈ {1, 2, · · · ,NT }.

When p(k̂) is decided, all p(k) where k 6= k̂ cannot be the
same value of p(k̂), so we delete the corresponding metric in
Step 4. The element k̂ is removed from 8 because 8 is the
set of the indices of the remaining undetected symbols. After
Step 3 and Step 4 are done NT times iteratively, a temporarily
decided value of p satisfying Limit 1, p̂, is obtained. In Step
6, to check whether p̂ satisfies Limit 2, usually p̂ is converted
to q̂ = (q̂1, q̂2, · · · , q̂NT ) for NT > 4. If p̂ is illegitimate, the
modification of p̂ is necessary. A modification rule for one
mapping group is proposed in Sec. III.D. In the final step, the
conversion from p̂ to data bits is the inverse function of bit
mapping.
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C. COMPARISON BETWEEN THE PROPOSED DETECTION
AND EXISTING DETECTION TECHNIQUES
First consider the complexity issue. Definitions of complexity
in [7], [8] and [10] are all different. In [7], the search com-
plexity contains a term NT 2NT−1, so it grows exponentially
with NT . In [8], an example of NT = 4 and NR = 3 shows
the complexity reduction compared with the one-by-one ML
detector is only between 44% and 70% for different SNRs,
which is worse than the detector of [9] reviewed in Sec. II.
Hence, the complexities of both detectors proposed in [7] and
[8] are not low enough for large NT . In [10], the complexity
is linear with N 2

T , but it varies as discussed at the beginning
of Sec. III.B. In the proposed algorithm, the main complexity
is the computation of the Euclidean distance in (10) in Step 1,
which is also linear with N 2

T , and the sorting in Step 2. Notice

that (x̂`1(1)1 , x̂`2(1)2 , · · · , x̂
`NT (1)
NT ) of the proposed detector is the

temporarily-decided antenna-order in [10], and the number
of computation in (10) is also needed in [10]. However, the
Euclidean distance in (10) is transformed into a different
form (7) in [10], but the so-called HL-ML detector is valid
for QAM only. Unlike [10], the complexity of the proposed
detector is fixed except Step 6. In fact, Step 6 is simple and
will be omitted for the full-mapping DSM in the next section.

Then consider the issue of error performance. In [7], [8]
and [10], there is no mathematical analysis of error proba-
bilities, and only computer simulation results are provided.
The gap between two curves of a low-complexity detector
and the ML detector is an indicator of the error performance
of the low-complexity detector. In this paper, error perfor-
mance of the proposed schemes are also justified by computer
simulations.

D. A MODIFICATION RULE AND EXAMPLES FOR DSM
WITH A MAPPING GROUP
Consider DSM which consists of a mapping group
{q′`1 , q

′

`2
, · · · , q′3} where q′3 = qNT−2 and several

independently-mapping symbols q′2l . Note that such DSM is
always full rate. Let q′3,max denote the maximum value of
q′3, i.e., the value of q′3 = q′`n in (9) where m`1 is formed
by blog2(`1 × `2 × · · · × 3)c data bits 11 · · · 1. Apparently,
possible values of q′3 are either {0, 1, 2} or {0, 1}, so q

′

3,max is
either 2 or 1.

For the DSM described above, the modification in Step 6 is
listed as follows. If p̂ is invalid, switch the values of p̂(NT−2)

and p̂(k
′) where k ′ denotes the latest k̂ except NT − 2 in Step

3. If q′3,max = 1, then check whether the updated p̂ is a valid
reference order. If it is still invalid, undo the switch and switch
the values of p̂(NT−2) and p̂(k

′′) where k ′′ denote the second
latest k̂ except NT − 2 in Step 3.
For simplicity, if p̂ is an invalid reference order, the modi-

fication changes the value of p̂(NT−2). Changing other values
of p̂(k) where k 6= NT − 2 may make p̂ valid, but it is more
complicated. Hence, in Step 6, p̂(NT−2) and p̂(k

′) which is the
most unlikely among p̂(1), p̂(2), · · · , p̂(NT−3), p̂(NT−1), p̂(NT ) is
exchanged. If q′3,max = 2, there is only one possible invalid

value of p̂(NT−2) corresponding to q̂NT−2 = 2; hence, a new
value of p̂(NT−2) always makes p̂ valid. However, if q′3,max =

1, q̂NT−2 = 2 is always invalid, and q̂NT−2 = 1 is possibly
invalid (it depends on the value of p̂). In such a case, there
are two possible invalid values of p̂(NT−2) corresponding to
q̂NT−2 = 1 and 2, so the updated p(k̂) should be checked
again; once p(k̂) is still invalid, p̂(NT−2) = p̂(k

′′) will always
make p̂ valid.

Examples of DSM for NT = 4, 6, 8 are given below to
demonstrate Step 6 of the proposed detection algorithm, and
to show gaps between BER curves of the proposed algorithm
and BER curves of the ML detection. For NT > 8, DSM
with a mapping group is complicated, and the ML detection
cannot be realized. Because they are full rate, their spectral
efficiency is R = log2 Q

NT
+ b bits/s/Hz.

Example 2 (NT = 4 and Q = 16): Because there are
two independently-mapping symbols q′4 = q1 and q′2 = q3
and one remaining symbol q′3 = q2 in the mapping group,
the mapping equation in (9) is not used. Therefore, we have
q′4 ∈ {0, 1, 2, 3}, q

′

3 ∈ {0, 1}, q
′

2 ∈ {0, 1} and q
′

1 = q4 = 1.
In other words, at the transmitter, two data bits choose four
possible values of p(1) ∈ {1, 2, 3, 4}, one data bit selects two
possible values of p(2) ∈ {1, 2, 3} 6= p(1), and the last data bit
decides two possible values of p(3) ∈ {1, 2, 3, 4} 6= p(1) and
6= p(2). Consequently, we have q′3,max = 1, so q̂2 = q̂′3 = 2
is invalid. Because there is only one symbol in the mapping
group, q̂2 = 1 is always legitimate. Invalid reference orders
for Limit 2 either have p̂(2) = 4 or (p̂(1), p̂(2)) = (4, 3). Notice
that both invalid cases of p̂ correspond to q̂2 = 2.
Example 3 (NT = 6 and Q = 512): There are two

independently-mapping symbols, q′4 and q′2, and a mapping
group {q′6, q

′

5, q
′

3}. Among total 6 × 5 × 3 = 90 patterns
of {q′3, q

′

5, q
′

6}, valid 64 patterns are (0, 0, 0), (0, 0, 1), · · · ,
(0, 4, 5), (1, 0, 0), (1, 0, 1), · · · , (1, 4, 5), (2, 0, 0), (2, 0, 1),
(2, 0, 2), (2, 0, 3); while invalid 26 patterns are (2, 0, 4),
(2, 0, 5), · · · , (2, 4, 5). In Step 6, p̂ is a valid permutation
order if and only if q̂′6 + q̂

′

5 × 6+ q̂′3 × 30 < 64. Apparently,
q′3,max = 2 and there is only a possible invalid value of
q̂4 = q̂′3 which is 2. If p̂ is illegitimate, the proposed switch
in Step 6 makes q̂′3 < 2 and thus the updated p̂ is valid.
Example 4 (NT = 8 and Q = 215): There are three

independently-mapping symbols q′8, q
′

4 and q′2, and a map-
ping group {q′7, q

′

6, q
′

5, q
′

3}. Among total 7 × 6 × 5 ×
3 = 630 patterns of (q′3, q

′

5, q
′

6, q
′

7), valid 512 pat-
terns are (0, 0, 0, 0), (0, 0, 0, 1), · · · , (0, 4, 5, 6), (1, 0, 0, 0),
(1, 0, 0, 1), · · · , (1, 4, 5, 6), (2, 0, 0, 0), (2, 0, 0, 1), · · · ,
(2, 2, 1, 0); while invalid 118 patterns are (2, 2, 1, 1),
(2, 2, 1, 2), · · · ,, (2, 4, 5, 6). In Step 6, p̂ is a valid permuta-
tion order if and only if q̂′7+q̂

′

6×7+q̂
′

5×42+q̂
′

3×210 < 512.
Similar to Example 3, this example has q′3,max = 2 and a
possible invalid value of q̂4 = q̂′3 is 2. If p̂ is invalid, the
proposed switch in Step 6 let q̂′3 has a new value, so the
updated p̂ is legitimate.
Throughout the paper, quasi-static Rayleigh fading is used

in computer simulations. Simulation results of QPSK with
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FIGURE 2. Simulation results of Examples 2-4 with M = 4 and NR = 1.

FIGURE 3. Simulation results of Examples 2-4 with M = 8 and NR = 2.

NR = 1 and 8PSK with NR = 2 are shown in Fig. 2
and Fig. 3, respectively, where solid curves represent the
proposed detection algorithm and dashed curves denote the
ML detection. It can be observed that the gap between theML
detection and the proposed detection is very small. Notice that
for NR = 1, DPSK with M = 8 performs better than DSM
with M = 4 and NT = 3 or 4 [5]. However, as NT and M
increase, the data rate of DSM increases, so the advantage
of DSM over DPSK becomes more obvious. For example, in
Example 4 whoseNT = 8, the DSM using 8PSK has data rate
4.875 bit/s/Hz, but DPSK with similar data rate is 32-DPSK
whose BER is very high.

IV. PROPOSED GROUP ARRANGEMENT, FULL-MAPPING
DSM AND DETECTION STRATEGIES
A. GROUP ARRANGEMENT
Because q′k has k possible values, its information is log2 k
bits. Consequently, total information of the antenna indices
in a block is

∑NT
k=1 log2 k = log2 NT ! bits. It means that

for full-rate DSM, the number of data bits deciding the
reference order p is blog2 NT !c and the unused information

is r = log2 NT ! − blog2 NT !c bit. Similarly, for a group
{q′`1 , q

′

`2
, · · · , q′`n}, the unused information is

∑n
i=1 log2 `i−

b
∑n

i=1 log2 `ic bit.
For NT � 1, a mapping group is impractical because m`1

in (9) is too large. For such a case, in addition to independent-
mapping symbols q′2` , multiple mapping groups are neces-
sary. If the sum of unused information of all groups does not
exceed r , the resulting DSM is full-rate DSM. Arrangement
steps for two mapping groups of full-rate DSM are listed as
follows.

Step 1 Define a set � = {3, 4, 5, · · · ,NT }, and remove
4, 8, · · · , 2blog2 NT c from �. The resulting � does
not contain indices of independent-mapping sym-
bols. Let a denote the value of the product of all
elements in �, so blog2 ac denotes the number of
total data bits of both groups and r = log2 a −
blog2 ac denotes the unused information in �.

Step 2 Divide � into two groups G1 = {`1, `2, · · · , `n}

and G2 = {`
′

1, `
′

2, · · · , `
′

n′} where `i < `′j, `i <
`i+1, `′j < `′j+1 ∀i, j, and n satisfies

∏n
i=1 `i <

√
a

and `′1 ×
∏n

i=1 `i ≥
√
a.

Step 3 Check if the inequation
n∑
i=1

log2 `i − b
n∑
i=1

log2 `ic ≤ r (13)

is true; if not, switch `i and `′j until the inequal-
ity holds. If all tries fail, switch two (or more)
elements in G1 and two (or more) elements in
G2 until the inequality holds. The two groups
{q′`1 , q

′

`2
, · · · , q′`n} and {q′

`′1
, q′
`′2
, · · · , q′

`′
n′
} are

the desired groups where {`1, `2, · · · , `n} and
{`′1, `

′

2, · · · , `
′

n′} are the updated G1 and G2, i.e.,
G1 and G2 after switch if necessary, respectively.

In order to roughly divide � into two balanced sub-
sets, i.e., the product of all elements in G1 is close to the
product of all elements in G2,

∏n
i=1 `i <

√
a and `′1 ×∏n

i=1 `i ≥
√
a are required in Step 2. The product of all

elements in G1 is less than
√
a because it is likely to increase

the product in G1 by the switch in Step 3. Because the
value r is the unused information for full-rate DSM, the
unused information in G1

∑n
i=1 log2 `i − b

∑n
i=1 log2 `ic bit

cannot be larger than r . If it fails, the exchange between
elements in G1 and G2 is needed. For simplicity, first
one-element switch is tried and a possible switch order
is (`n, `′1), (`n, `

′

2), · · · , (`n, `
′

n′ ), (`n−1, `
′

1), (`n−1, `
′

2), · · · .
Usually, the one-element switch can be successful. The fol-
lowing lemma proves that the inequation (13) guarantees full-
rate DSM.
Lemma 2: The two groups {q′`1 , q

′

`2
, · · · , q′`n} and

{q′
`′1
, q′
`′2
, · · · , q′

`′
n′
} which satisfy (13) always achieve full-

rate DSM, i.e.,

blog2

n∏
i=1

`ic + blog2

n′∏
j=1

`′jc = blog2 ac (14)
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Proof: Defining x =
∑n

i=1 log2 `i and y =
∑n′

j=1 log2 `
′
j,

log2 a can be written as log2 a = x + y because of a =∏n
i=1 `i ×

∏n′
j=1 `

′
j. Let r1 and r2 denote x − bxc and y− byc,

respectively. Hence, the decimal part of x + y is r = x +

y−bx+yc =
{

r1 + r2 if r1 + r2 < 1
r1 + r2 − 1 otherwise

. Because of r1 >

r1+r2−1, inequation (13) which is x−bxc ≤ x+y−bx+yc
implies r = r1+r2 which is x−bxc+y−byc = x+y−bx+yc.
Consequently, the equation becomes bxc + byc = bx + yc
which is (14). �
The following is an example of the proposed arrangement.
Example 5 (NT = 16 and Q = 244): The DSM has

four independent-mapping symbols q′16, q
′

8, q
′

4 and q
′

2 which
ten data bits are mapped to. In Step 1, � has parameters
log2 a = 34.25 and r = 0.25. Two groups in Step 2 are
G1 = {3, 5, 6, 7, 9, 10} and G2 = {11, 12, 13, 14, 15}. The
inequation (13) fails due to

∑6
i=1 log2 `i = 15.79 which

implies that the unused information in G1 is 0.79 larger
than 0.25. The first switch makes G1 = {3, 5, 6, 7, 9, 11}
which has

∑6
i=1 log2 `i = 15.93, so it still cannot satisfy

(13). The second switch makes G1 = {3, 5, 6, 7, 9, 12}
which has

∑6
i=1 log2 `i = 16.05, so it is successful. Hence,

there are four independently-mapping symbols q′16, q
′

8, q
′

4
and q′2, and two mapping groups {q′12, q

′

9, q
′

7, q
′

6, q
′

5, q
′

3} and
{q′15, q

′

14, q
′

13, q
′

11, q
′

10}. For {q′12, q
′

9, q
′

7, q
′

6, q
′

5, q
′

3}, there
are 216 = 65536 valid reference orders among total 12 ×
9 × 7 × 6 × 5 × 3 = 68040 permutations; while for
{q′15, q

′

14, q
′

13, q
′

11, q
′

10}, there are 2
18
= 262144 valid refer-

ence orders among total 15× 14× 13× 11× 10 = 300300
permutations.

The proposed two-group arrangement can be general-
ized for more groups. For k-group arrangement, groups
G1,G2, · · · ,Gk should have product close to k

√
a in Step 2,

and switch elements to ensure the sum of the unused infor-
mation in all groups does not exceed r . An example of three-
group arrangement is given as follows.
Example 6 (NT = 20 and Q = 261): In Step 1,

� has parameters log2 a = 51.0774 and r = 0.0774
only. Three groups in Step 2 are G1 = {3, 5, 6, 7, 9, 10},
G2 = {11, 12, 13, 14} and G3 = {15, 17, 18, 19, 20}. The
switch between G1 and G2 makes G1 = {3, 5, 6, 7, 9, 12}
as Example 5, and the unused information in G1 is 0.0541
which means that the unused information in G2 cannot
exceed 0.0774 − 0.0541 = 0.0233. Because G2 =

{10, 11, 13, 14} has
∑4

i=1 log2 `
′
i = 14.2892, the switch

between G2 and G3 is necessary. All one-element exchanges
fail, and then a two-element exchange which makes G2 =

{10, 11, 15, 20} and G3 = {13, 14, 17, 18, 19} is successful,
which have

∑4
i=1 log2 `

′
i = 15.0102 and

∑5
i=1 log2 `

′′
i =

20.0131, respectively. Hence, there are four independently-
mapping symbols q′16, q

′

8, q
′

4 and q′2, and three map-
ping groups {q′12, q

′

9, q
′

7, q
′

6, q
′

5, q
′

3}, {q
′

20, q
′

15, q
′

11, q
′

10} and
{q′19, q

′

18, q
′

17, q
′

14, q
′

13}.
Unlike Examples 2, 3 and 4, the above examples have

more than one mapping groups, so the detection algorithm
in Sec. III.D cannot be directly applied to the two examples.

B. FULL-MAPPING DSM AND DETECTION ALGORITHMS
For multiple mapping groups, if p̂ is invalid in Step 6, to find
a valid p̂ efficiently and reasonably is a difficult problem.
To solve this problem, we propose a new idea to satisfy
Limit 2: all NT ! permutations are valid reference orders,
i.e., NT ! − Q originally invalid permutations for p are also
mapped by data bits. For instance, in Example 2 whose NT
is 4, in addition to sixteen valid patterns of {q′1, q

′

2, q
′

3, q
′

4},
(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 1, 0),
(0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 1, 3), (0, 1, 0, 0), (0, 1, 0, 1),
(0, 1, 0, 2), (0, 1, 0, 3), (0, 1, 1, 0), (0, 1, 1, 1), (0, 1, 1, 2),
(0, 1, 1, 3), eight illegitimate patterns of {q′1, q

′

2, q
′

3, q
′

4},
(0, 0, 2, 0), (0, 0, 2, 1), (0, 0, 2, 2), (0, 0, 2, 3), (0, 1, 2, 0),
(0, 1, 2, 1), (0, 1, 2, 2), (0, 1, 2, 3) are also mapped by data
bits at the transmitter. Because there are no invalid reference
orders, Step 6 is omitted. DSM which maps data bits to all
NT ! reference orders is called full-mapping DSM.

The full mapping is accomplished by expanding the ranges
of all mapping groups and independently-mapping symbols.
For a group {q′`1 , q

′

`2
, · · · , q′`n} or a symbol q′`1 which can be

viewed as a group with n = 1, there are d = blog2(`1× `2×
· · ·× `n)c data bits. For the original DSM, among all

∏n
i=1 `i

permutations in the group, 2d legitimate permutations are
mapped by d data bits, and

∏n
i=1 `i − 2d < 2d permutations

are invalid. For the proposed full mapping,
∏n

i=1 `i − 2d

(among 2d ) valid permutations and
∏n

i=1 `i − 2d invalid
permutations are mapped by the same d data bits one by one.
First choose a data bit in another mapping group or symbol,
say b0. For these

∏n
i=1 `i−2

d chosen valid permutations, they
are the same if b0 = 0, but they would become the originally-
invalid permutations one by one if b0 = 1. Steps of the
proposed full mapping are listed below. First d data bits form
an integer m′`1 . If b0 = 1 and m′`1 < `1× `2× · · · × `n− 2d ,
then m`1 = m′`1 + 2d ; otherwise, m`1 = m′`1 . By doing
so, the value of m`1 is 0 ≤ m`1 ≤

∏n
i=1 `i − 1. Mapping

m`1 to {q′`1 , q
′

`2
, · · · , q′`n} is the same as what we propose

in Sec. III.A, i.e., using (9). By the proposed mapping, if
m′`1 < `1 × `2 × · · · × `n − 2d , then b0 = 0 and b0 = 1
have different mapping.

For the proposed full-mapping, there are two detection
strategies: ignoring the information of b0 or not. The former
is simple because the detected d data bits are simply the
rightmost d bits in the binary representation of m̂`1 which
denotes the detected value of m`1 converted from q̂ in the
last detection step. The d + 1-th bit from the right which
may contain the information of b0 is discarded. Examples 2-6
with M = 4 and NR = 1 using full-mapping and the simple
detection are simulated and presented in Fig. 4. For NT = 4,
6 and 8, the redundancy ratio (NT ! − Q)/NT ! is 1/3, 13/45
and 59/315, respectively. For a larger value of NT , the curve
of full-mapping is closer to the curve of the original mapping
in Fig. 2 because the ratio of the redundancy to the number
of permutations becomes smaller.

The latter strategy is to use the information of b0. To
find the improvement of the latter over the former, we
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FIGURE 4. Simulation results of Examples 2-6 using full-mapping with
M = 4 and NR = 1.

FIGURE 5. Simulation results of full-mapping DSM with M = 4 and
NR = 1.

propose a simple symbol-wise full-mapping scheme. In
this scheme, all symbols are independently mapped, i.e.,
NT − 1 independently-mapping symbols for NT antennas.
Let b1`, b

2
`, · · · , b

blog2 `c
` denote the blog2 `c data bits corre-

sponding to symbol q′` where ` ∈ {NT ,NT − 1, · · · , 2}. First
b1`, b

2
`, · · · , b

blog2 `c
` form the integer m′`. If b

1
`−1 = 1 and

m′` < ` − 2blog2 `c, then add 2blog2 `c to m′`. Take ` = 7
as an example. Two bits b17 and b27 are the two data bits
corresponding to symbol q′7. First b

1
7 and b

2
7 form the integer

m′7 (0 ≤ m′7 ≤ 3). If b16 = 1 and m′7 = 0, 1 or 2, then add 4
to m′7. Therefore, q

′

7 is full-mapping due to 0 ≤ m′7 ≤ 6.
Obviously, for NT ≥ 6, DSM using the simple mapping
cannot achieve full rate. For instance, NT = 8 has Q = 256
and NT = 16 has Q = 213, so they have one and two bits loss
compared with Example 4 and Example 5, respectively.

Fig. 5 compares simulation results of symbol-wise full-
mapping DSM with those of group-wise full-mapping DSM
in Example 3, 4 and 5. With the same NT , symbol-wise DSM
outperforms group-wise DSM because the former has less
codewords and thus a smaller error coefficient than the latter.

FIGURE 6. Simulation results of full-mapping reduced-rate DSM different
detection strategies with M = 4 and NR = 1.

Symbol-wise full-mapping DSM has higher redundancy
ratio than group-wise full-mapping DSM, so discarding the
information of b1`−1 when detecting q′` is somewhat waste-
ful. Hence, a technique to simply use the information of
b1`−1 is proposed as follows. Let the detection order of
p̂(1), p̂(2), · · · , p̂(NT ) in Step 3 be oNT , oNT−1, · · · , o1. In the
final detection step, if q̂′` < `− 2blog2 `c or q̂′` > 2blog2 `c− 1,
then the temporarily detected value of b1`−1, denoted by b̄

1
`−1,

is the blog2 `c+1-th bit from the right in the binary represen-
tation of q̂′`. Let b̃

1
`−1 denote the value of b

1
`−1 converted from

q̂′`−1. If b̄
1
`−1 is different from b̃1`−1, then the finally detected

value of b1`−1, denoted by b̂1`−1, is determined according to
the detection order in Step 3, i.e.,

b̂1`−1 =

{
b̄1`−1, if o` < o`−1
b̃1`−1, if o` > o`−1.

(15)

Simulation results of symbol-wise full-mapping DSMwith
NT ≤ 256 using different detection strategies are shown in
Fig. 6 where curves labeled by ‘‘discarding" represent dis-
carding the information of the bit belonging to another group
and curves labeled by ‘‘use" denotes using the information of
the bit belonging to another group by (15). With the sameNT ,
the latter provides a little gain over the former.

V. CONCLUSION
In this paper, low-complexity DSM schemes for a lot of
transmitter antennas have been designed. A low-complexity
detection algorithm whose error performance is close to the
error performance of the noncoherent ML detection is pro-
posed. The algorithm is less complicated than all existing
fixed-complexity detectors. In addition, two techniques of
mapping data bits to reference orders which are suitable for
a lot of transmitter antennas are proposed: one is the group
arrangement algorithm for full-rate DSM, and the other is the
full-mapping for simple detectors. Two types of full mapping
are proposed: group-wise and symbol-wise. The group-wise
full-mapping is proposed for multi-group full-rate DSM so
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that the proposed low-complexity detector can be applied
to it, and the symbol-wise full-mapping is proposed to fur-
ther decrease the complexity so it is suitable for downlink
massive-MIMO systems. Simulation results confirm that all
proposed low-complexity DSM schemes have satisfactory
error performance.
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